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Abstract
The POU (Pit-Oct-Unc) protein family is an evolutionary ancient group of transcription factors (TFs) that bind specific 
DNA sequences to direct gene expression programs. The fundamental importance of POU TFs to orchestrate embryonic 
development and to direct cellular fate decisions is well established, but the molecular basis for this activity is insufficiently 
understood. POU TFs possess a bipartite ‘two-in-one’ DNA binding domain consisting of two independently folding struc-
tural units connected by a poorly conserved and flexible linker. Therefore, they represent a paradigmatic example to study 
the molecular basis for the functional versatility of TFs. Their modular architecture endows POU TFs with the capacity to 
accommodate alternative composite DNA sequences by adopting different quaternary structures. Moreover, associations with 
partner proteins crucially influence the selection of their DNA binding sites. The plentitude of DNA binding modes confers 
the ability to POU TFs to regulate distinct genes in the context of different cellular environments. Likewise, different binding 
modes of POU proteins to DNA could trigger alternative regulatory responses in the context of different genomic locations 
of the same cell. Prominent POU TFs such as Oct4, Brn2, Oct6 and Brn4 are not only essential regulators of development 
but have also been successfully employed to reprogram somatic cells to pluripotency and neural lineages. Here we review 
biochemical, structural, genomic and cellular reprogramming studies to examine how the ability of POU TFs to select regu-
latory DNA, alone or with partner factors, is tied to their capacity to epigenetically remodel chromatin and drive specific 
regulatory programs that give cells their identities.
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Introduction

The octameric DNA element (ATG CAA AT) was originally 
discovered in 1984 as a conserved nucleotide sequence 
upstream of immunoglobulin genes [1]. Functional DNA 
elements related to the octamer sequence were subse-
quently found in promoters of the ubiquitously expressed 
small nucleolar RNA and histone 2B genes, enhancers of 

the SV40 virus as well as in the adenovirus origin of rep-
lication [2–5]. Oct1 and Oct2 (initially termed NF-A1 and 
NF-A2 [6], OTF-1 and OTF-2 [7–9], OBP100 [5] or NFIII 
[10]) were simultaneously discovered by various labs in the 
search for the trans-acting protein factors utilizing octamer 
DNA to regulate gene expression [11–14]. At the same 
time a factor was discovered as transcriptional activator of 
growth hormones and prolactin genes in the pituitary gland 
and termed Pit1 [15, 16]. Pit1, Oct1 and Oct2 contain two 
sequence motifs spanning a total of about 160 amino acids 
with homology to the C. elegans unc-86 gene [17]. This 
novel bipartite domain was, therefore, designated with the 
acronym POU (pronounced ‘pow’) after its founding family 
members Pit, Oct and Unc-86 [18]. One of the two sequence 
motifs is a 60 amino acids region with homology to the 
homeodomain initially discovered in the fruit fly Drosoph-
ila [19, 20] and, is therefore, termed POU-homeodomain 
 (POUHD). The second sequence motif, unknown by the time 
POU was discovered, is composed of 75 amino acids located 
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N-terminally to the  POUHD that is specific for these proteins 
and is, therefore, named POU-specific  (POUS) domain [18, 
21]. A linker of variable length and sequence joins the  POUS 
and  POUHD. Mouse and human genomes encode 15 POU 
genes (Fig. 1a). POU TFs have essential roles in a wide array 
of cellular processes and gained particular prominence in 
studies demonstrating the reprogramming of somatic cells 
to pluripotency and the directed lineage reprogramming by 
the trans-differentiation to neural precursor cells (NPCs) or 
post-mitotic neurons. The bipartite architecture of the POU 
endows these TFs with the ability to associate with DNA in 
structurally diverse configurations. Several excellent reviews 
have discussed DNA binding by POU TFs and their func-
tion in mammalian development [22–29]. Here we provide 

an update about our current understanding on the molecular 
basis for the selective DNA recognition and context-depend-
ent gene regulation by POU TFs and discuss these proper-
ties in the functional context of cellular reprogramming and 
chromatin remodeling.

Classification, nomenclature and expression

As most other major transcription factor (TF) families POU 
genes are present in the genomes of all metazoans designat-
ing them as basic molecular toolkit driving animal evolution 
[30]. However, they are absent in plants and fungi. Many 
POU genes were identified in the late 1980s and early 1990s 

Fig. 1  Classification and expression of POU TFs. a Dendrogram gen-
erated using full-length mouse POU protein sequences with T-Coffee 
(http ://www.tcoff ee.org/). Systematic names and commonly used 
synonyms are indicated for each of the 15 factors. The six classes 
are represented in different colors and the traditionally used separa-
tion into octamer and non-octamer binding factors is highlighted. 
b Expression of POU genes in eight developmental domains repre-
sented as mean Z-scores of expression for all cell types in a domain 
[34]. POU factors are color coded according to class membership. 

c Expression of POU genes in selected mouse cell and tissue types 
represented as log2 transformation of GC-normalised RNA-seq read 
count data per gene. Domain assignments of datasets are indicated 
and color-coded. EM embryonic, SE surface ectoderm, MS meso-
derm, NC neural crest, GC germ cells, EN endoderm, NR neuroec-
toderm, BM blood mesoderm. Pou4f3 is absent from the expression 
table as it was barely detectable in any of the 272 analyzed cell and 
tissue types

http://www.tcoffee.org/
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in parallel by several laboratories using different model 
organisms. POU factors were discovered either genetically 
or biochemically using gel shift assays with octamer DNA 
as probe and subsequent cloning of the associated gene. As 
a consequence, the nomenclature has been somewhat con-
fusing with alternative names for many family members. 
POU genes were grouped into six classes based on sequence 
similarities denoted with roman numbers I–VI [29, 31]. Indi-
vidual genes are now unambiguously referred to with pre-
fixes designating class membership from POU1 to POU6 
(Pou1–Pou6 for mouse factors) [32]. However, the classical 
synonyms are still more common in the literature and will 
thus also be used in this review (Fig. 1a). POU classes I, III, 
IV and VI can be found in genomes of sponges and eumeta-
zoans and are, therefore, present in the common ancestors 
of all living animals. The POU class II group evolved later 
in bilaterian evolution whilst class V is constrained to verte-
brates [30]. Traditionally, POU genes were grouped based on 
their biochemical activity as octamer DNA binding (classes 
II, III, and V) and non-octamer binding (classes I, IV, VI) 
(Fig. 1a, [27]). Octamer binding factors were numbered 
based on the position of retarded DNA probes in electro-
phoretic mobility shift assays from Oct1 to Oct11 [33].

POU factors function pleiotropically in a wide range of 
cell types. To illustrate expression patterns of POU genes, 
we used a recently compiled collection of RNA sequencing 
(RNA-seq) data from 272 mouse cell and tissue types that 
were assigned to 8 broad developmental domains (Fig. 1b, 
c) [34]. In Fig. 1c, a selection of these cell and tissue types is 
shown where individual POU genes are strongly expressed. 
The first isolated family members belong to classes I (Pit1) 
or II (Oct1, Oct2 and the later discovered Oct11). Pit1 has 
been intensely studied for its function in the anterior pitui-
tary gland [15, 16] but is also widely expressed in the blood 
mesoderm (Fig. 1b, c). Oct1 is ubiquitously expressed and 
can be detected in almost any cell type [5, 7, 35]. In accord-
ance with early studies, Oct2 is strongly expressed in the 
blood mesoderm in particular B-lymphocytes and can also 
be found in cells of the neuroectoderm [6, 9, 13, 14, 36, 37]. 
Oct11 has the most restricted expression of class II POU 
genes and predominates in cells of the surface ectoderm such 
as the epidermis, skin and taste buds [38, 39]. Some mem-
bers of classes III (Brn1, Brn2 and Brn4), IV (Brn3) and VI 
(Brn5) were originally discovered in adult brain tissue and 
hence designated Brn1-5 [40–43]. A fourth POU III class 
gene, Oct6, was initially detected in the rat testes (termed 
Tst-1) [41] and in glial cells (termed SCIP for suppressed 
cAMP inducible POU) [44] but was later found to be also 
expressed in the blastocyst and other lineages of the early 
embryo such as developing brain and skin [38, 45]. Class 
III POU genes are devoid of any introns. Brn2 is expressed 
in the neuroendocrine hypothalamus and pituitary [46, 47], 
Brn1 in the developing nervous system, hypothalamus and 

kidney [48, 49] while Brn4 is expressed in developing nerv-
ous system, hypothalamus, pituitary gland and inner ear [48, 
49]. Genome-wide profiling underlines the prominent and 
specific expression of the four class III POU genes in many 
neuroectodermal cell types (Fig. 1b, c). Class IV has the 
closest homology to the C. elegans gene unc-86 and con-
tains three members termed Brn3a [41, 50], Brn3b [51–53] 
and Brn3c [50, 54]. Although they were initially detected in 
neuroectodermal cell types, Brn3a is also expressed in the 
embryonic domain (Fig. 1c). Class VI comprises two genes 
that are either broadly expressed (Pou6f1/Brn5) or exhibit 
an overall rather weak expression (Pou6f2/RPF-1). Brn5 
was initially discovered in the neocortex [40] and Pou6f2 
in human retina cDNA libraries, thus called retina-derived 
POU-domain factor-1 (RPF-1) [55]. Class V POU TFs con-
sists of Pou5f1 (Oct4) as well as Pou5f2 (Sprm1). Oct4 is 
possibly the most prominent POU family member and was 
identified in embryonic and endometrial cancer cell lines for 
its activity to bind octamer DNA in electrophoretic mobility 
shift assays (EMSA) [48, 56, 57]. Several labs independently 
discovered Oct4 and used diverging numbering conventions 
initially leading to the parallel use of the designations Oct3 
or Oct4 (in some studies converging to Oct3/4) [48, 56–58]. 
Oct4 is a hallmark factor regulating the pluripotency of 
embryonic stem cells and is involved in the earliest cell fate 
decisions in mammalian development [59–61]. The expres-
sion of Oct4 is largely restricted to the embryonic domain 
and can barely be detected in somatic cell types (Fig. 1b, c). 
Several transcript isoforms of Oct4 were reported in human 
[62] and mouse [63]. The full-length Oct4 is termed Oct4A 
and a truncated isoform was named Oct4B [64]. The two 
versions of Oct4 have different expression patterns [65], 
gene regulation and self-renewal potential [64]. The second 
member of class V, Sprm1/Pou5f2, is transiently expressed 
in the testis [66] and is required for the development of male 
germ cells [67]. Class V has a complex evolutionary history 
with initially three members (Pou5f1, Pou5f2 and Pouf5f3) 
present in different combinations in vertebrate clades [68]. 
A zebrafish homologue was initially named Pou2 and clas-
sified as Pou5f1 orthologue [68, 69]. This was recently 
reinterpreted and Pou2 is now considered to be a Pou5f3 
orthologue that is present in marsupials, monotremes, birds, 
xenopus, salamanders and teleost fishes but unlike Pou5f1 
and Pou5f2, it is absent in eutherians.

POU‑erful reprogramming factors

The capacity of TFs to interconvert the state of somatic cells 
has first been demonstrated when the overexpression of the 
helix–loop–helix (HLH) factor MyoD alone could convert 
fibroblasts into myocytes [70]. Subsequently, the overexpres-
sion of C/EBPα or C/EBPβ was found to be able to convert 
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differentiated B-cells into macrophages [71]. Likewise, 
several POU factors are potent mediators of cellular repro-
gramming. This has been demonstrated when transcription 
factor cocktails were overexpressed in somatic cells leading 
to the reprogramming into pluripotent stem cells [72–74], 
proliferative neural precursor cells [75–80] and post-mitotic 
neurons [81–85] (Fig. 2a–d). However, the reprogramming 
trajectory and outcome depend on the identity of the POU 
factor used in these assays as well as on the external cues 
applied during reprogramming.

Somatic cell reprogramming to pluripotent stem 
cells

A hallmark accomplishment was the demonstration that self-
renewing induced pluripotent stem cells (iPSCs) can be gen-
erated by de-differentiating fibroblasts through the forced 
expression of exogenously provided TF cocktails (Fig. 2a, 
b). To accomplish this feat, 24 factors were screened and a 
minimal set of four factors comprising Oct4, Sox2, Klf4 and 
c-Myc (OSKM) was identified [73]. The same cocktail was 
also able to achieve pluripotency reprogramming of human 
somatic cells [72]. The same year, a modified human iPSCs 
generating cocktail was reported that also contained Sox2/
Oct4 but Nanog/Lin28 replaced Klf4/c-Myc [74]. Oct4 could 
not be replaced by Oct1 or Oct6 to induce pluripotency 
despite profound sequence conservation emphasizing its 
uniqueness [86]. However, recently Oct6 could be converted 
into an iPSCs inducer using rational protein engineering 
[87]. Similarly, the neural factor Brn4 was reported to allow 
iPSCs generation as part of an inducible polycistronic cas-
sette consisting of Brn4, Sox2, Klf4, c-Myc (BSKM) [75]. 
However, both engineered Oct6 and Brn4 induce iPSCs with 
very low efficiency (Fig. 2a). Therefore, what endows Oct4 
with its potent reprogramming activity is still an open ques-
tion. Besides fibroblasts, Oct4 also reprograms other cell 
types (summarized in Fig. 2). Oct4 alone could induce pluri-
potency in mouse and human NPCs [88, 89]. This is possible 
because the high expression of Sox2 obviates the need for its 
exogenous supply. A number of studies explored alternative 
reprogramming strategies centered on Oct4 where the SKM 
factors were replaced by small molecules or other factors 
(Fig. 2). The iPS technology has broad clinical applications 
in particular in disease modeling and iPSCs could be derived 
from patients affected by spinal muscular atrophy (SMA) 
[90], familial dysautonomia (FD) [91], amylotropic lateral 
sclerosis (ALS) [92], Parkinson’s disease [93] and variety of 
genetic diseases [94]. Oct4 has also been deployed to convert 
the renal epithelium cells from urine in a quick and efficient 
way, omitting the need of invasive techniques for obtaining 
patient samples [95]. In sum, Oct4 is a stalwart component 
of cocktails directing the induction of pluripotency in large 
variety of reprogramming systems and technologies.

Lineage reprogramming to directly 
trans‑differentiate somatic cells

Neural precursors cells (NPCs, here used to jointly include 
neural stem cells and neural progenitor cells following [96]) 
are proliferative and can, therefore, be expanded in culture 
and possess the capacity to differentiate into mature post-
mitotic cells. If NPCs are tripotent they can form neurons as 
well as the non-neural glia including oligodendrocytes and 
astrocytes. Induced NPCs (iNPCs) have initially been gener-
ated using the otherwise iPSCs generating OSKM cocktail 
but with modified culture conditions favoring neural lineages 
[77] (Fig. 2c, d). OSKM-driven production of iNPCs could 
also be achieved by limiting the exposure of reprogram-
ming cells to Oct4 to the early stages [79]. Alternatively, 
modified cocktails were used to produce iNPCs where the 
pluripotency factor Oct4 was replaced with Brn4 or Brn2. 
First, Brn4 was used alongside Sox2, Klf4 and c-Myc and 
the reprogramming efficiency could be further improved 
by the addition of E47/Tcf3 [76]. Second, tripotent iNPCs 
could be generated using a Brn2/Sox2/FoxG1 cocktail [78]. 
This suggested that the reprogramming of fibroblasts takes 
fundamentally different routes depending on whether Oct4 
or class III POU TFs are forcibly expressed in the start-
ing cells. Apparently, POU TFs have profoundly different 
activities in an identical nuclear environment despite a high 
degree of sequence homology. However, recent lineage trac-
ing experiments challenged this view and indicated that both 
OSKM and BSKM cocktails induce a pluripotent state [75]. 
Therefore, iNPCs may in fact transit through an intermediate 
pluripotent state rather than being directly reprogrammed. 
This also implied that exogenous Oct4 and class III POU 
TFs engage the fibroblast genome similarly to initiate repro-
gramming and the direction of the cell state conversion relies 
on signaling provided at later stages. To resolve this question 
the genome engagement and associated epigenetic changes 
driven by Oct4 and class III POU TFs should be profiled 
side-by-side.

With the objective to generate differentiated lineages, 
Oct4-containing cocktails have been deployed in a strategy 
called cell activation and signaling directed (CASD) line-
age reprogramming [97, 98]. Typically, a pulse of OSKM 
expression epigenetically de-differentiates the donor cells 
and induces a plastic state where cells are receptive for dif-
ferentiation cues provided by small molecules or growth 
factors [99]. This strategy has been used to convert fibro-
blast cells into hepatic [100], cardiac [84, 101], neural [77], 
endothelial [102], pancreatic [99] and blood lineages [103]. 
However, lineage-tracing experiments have put into question 
whether this approach truly circumvents the pluripotent state 
[75, 104].

Besides the generation of iNPCs, class III POU TFs have 
also been deployed to produce post-mitotic neurons. Here, 
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Fig. 2  POU factors used in pluripotency and lineage reprogram-
ming cocktails. POU factor-containing cocktails used in pluripo-
tency (a, b) or direct lineage (c, d) reprogramming of mouse (a, c) or 
human (b, d) cells. The starting cell type is represented in the center 
as sphere or box. The various reprogramming cocktail are shown 
besides the arrow. The size of cell cluster in a and b schematically 
represents efficiency. The reprogramming cocktail in each section 
(a–d) is numbered and abbreviations and references are given below. 
a Mouse pluripotency reprogramming cocktails: 1 OSKM (O: Oct4; 
S: Sox2; K: Klf4, M: c-Myc) [73], 2 OKM  +  S1/S3 (Sox1/Sox3) 
[86], 3 OSM + K1/K2/K5 (Klf1/Klf2/Klf5) [86], 4 OSK + N-Myc/
C-Myc/L-Myc [86], 5 OSK + Sall4 [237], 6 OSK + Glis1 [238], 7 
OSK [86, 239], 8 OS + Esrrb [240], 9 OKM + Alk5 inhibitor [241], 
10 OSM  +  Kenpaullone [242], 11 OS [243], 12 O  +  Bmp4 [244], 
13 O  +  Bmi1 [245], 14 OK  +  BIX01294  +  BayK8644 [246], 15 
OK  +  BIX01294  +  RG108 [246], 16 OK  +  BIX01294 [246], 17 
O4  +  VC6T [VC6T: (valproic acid, CHIR99021, 616452, tranyl-
cypromine)] [247], 18 O  +  oxysterol and/or puromorphine [245], 
19 O4  +  Shh [245], 20 *Oct6 (engineered Oct6) [87] /Brn4 [75], 
21 DP (dermal papilla): OKM, OK, O [248, 249], 22 HPC (hemat-
opoietic stem cells): OSKM [250], 23 ADC (adipose derived stem 
cells): OSKM [251], 24 TSC (trophoblast stem cells): OSKM [252], 
25 NSC (neural stem cells): OKM [250], OK  +  BIX01294 [253], 
OK + 2i (2i denotes PD0325901 and CHIR99021) [254], OK [255], 
O [89], 26 melanocytes and melanoma cells: OKM [256], 27 hepatic 
EN (endoderm): [257], 28 B and T cells: [250, 258], 29 pancreatic 

B (beta) cells: [259], 30 myeloid PC (progenitor cells): [250], 31 
skeletal MSC (muscle stem cells): [260], 32 Oct6-KSM [86], 33 
Oct1-KSM [86]. b Human pluripotency reprogramming cocktails: 
1 OSKM [72, 261, 262], 2 OSNL (N: Nanog; L: Lin28a) [74], 3 
OSK + Sall4 [237], 4 OSK + Utf1 [263], 5 OSK + Glis1 [238], 6 
OSK, OS [243], 7 OS  +  VPA (valproic acid) [264], 8 urine (renal 
epithelium cells): OSKM [95], 9 keratinocytes: OSKM [265], OSK 
[266], 10 MSC/dental (mesenchyme-like stem cells of dental ori-
gin): OSNL [267], 11 NSC: O [88], 12 Am-DC (amnion derived 
cells): OSN [268, 269], 13 SMA (spinal muscular atrophy): OSNL 
[90], 14 FD (familial dysautonomia): OSKM [91], 15 ALS (amylo-
tropic lateral sclerosis): OSKM, [92], 16 Parkinson’s: OSKM, OSK 
[93], 17 Genetic diseases: OSKM, OSK: [94]. 18 CB (cord blood): 
OSNL [270], OSKM, OSK, OS [271], 19 hepatocytes: OSKM [272], 
20 ADC (adipose derived cells): OSKM [251], OSK, [273], 21 M 
and M (melanocytes and melanoma cells): OKM [256], 22 pancreatic 
beta cells: OSKM [274]. c Mouse lineage reprogramming cocktails: 
1 BAM (Brn2, Ascl1, Myt1l) [105], 2 BAM [83, 85], 3 NPCs [77, 
79], 4 pancreatic lineages [99], 5 cardiomyocytes [101], 6 cardiomyo-
cytes (Oct4 alone) [84], 7 BKSM/OSKM [75], 8 BKSM + E47/Tcf3 
[76], 9 Brn2 + Foxg1 + Sox2) [78]. d Human lineage reprogramming 
cocktails: 1 endothelial cells [102], 2 blood [103], 3 hepatic cells 
[100], 4 iNSC (induced neural stem cell) [80], 5 Brn2 + Neurod1(β2) 
[82], 6 BAM or BAM  +  β2 or BM  +  β2 (β2: Neurod1) [82], 7 
BAM + Lmx1a +Foxa2 [108], 8 Brn2 + Mytl1 + miR-124 [81]
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Brn2 along with Ascl1 and Myt1l (BAM, Fig. 2c, d) could 
convert dermal fibroblasts into neurons with surprisingly 
high efficiency and speed [83, 85]. Besides fibroblasts, the 
same cocktail could also reprogram endodermal hepatocytes 
[105] (Fig. 2c). Brn2 containing cocktails were also used to 
induce neurons from human cells using analogous strate-
gies [81, 82, 106–108] (Fig. 2d). However, the efficiency 
in the human system is much lower and additional factors 
are required. Collectively, these studies demonstrate that 
the POU TF scaffold enables the potent interconversion of 
cellular states. However, individual POU TFs function non-
redundantly and are mostly irreplaceable by other family 
members. Reprogramming experiments provide a powerful 
assay to delineate the sequence-function relationships defin-
ing the regulatory programs driven by POU factors.

DNA recognition

Monomeric binding and cross talk of  POUS 
and  POUHD

After the discovery of octamer DNA in a selected set of 
regulatory sequences, it was verified as the dominant rec-
ognition sequence for many POU TFs by several unbiased 
assays. Initially, the octamer was recovered as the pre-
ferred binding sequence for Oct1 in a random oligonucleo-
tide selection study using the POU domain of Oct1 [109]. 
The relevance of octamer DNA to recruit POU TFs to 
chromatin was, for example, verified in a ChIP-seq study 
for Oct2 in splenic B cells [110]. To understand the struc-
tural basis for the recognition of the octamer, the structures 
of the 75 amino acid  POUS [111, 112] and the 60 amino 
acid  POUHD [113, 114] were initially analyzed separately 
by nuclear magnetic resonance (NMR) in the absence of 
DNA. The crystal structure of a whole POU could first be 
solved for Oct1 bound to a classical octamer DNA element 
derived from the histone 2B promoter (Fig. 3a) [115]. 
These studies showed that the POU domain belongs to the 
class of all-alpha domains with four helices in the  POUS 
and three helices in the  POUHD. Helices 2 and 3 of the 
 POUS adopt a helix-turn-helix (HTH) fold and bind DNA 
using amino acid–DNA base interactions nearly identical 
to HTH prototypes found in repressor proteins of the bac-
teriophages 434 and λ [111, 115]. The four amino acids 
used to make base specific contacts are conserved in the 
POU family and in phage repressors indicating that the 
fold is evolutionarily ancient. Analogously, helices 2 and 
3 of the  POUHD form a HTH unit. For both the  POUS and 
the  POUHD, helix 3 is inserted into the major groove of 
the DNA and contributes most of the residues involved in 
base-specific interactions (Fig. 3a–e). The overall fold of 

the  POUHD and residues engaged in base-specific contacts 
are very similar to classical homeodomains including the 
invariant Asn51 typically making a bi-dentate H-bonds 
with an adenine in the recognition sequence. Cys50 of the 
 POUHD is a sequence variation characteristic for the POU 
family (Fig. 3b). The  POUHD contains an extended Arg-
Lys rich N-terminal arm mediating minor groove contacts. 
Surprisingly, the  POUHD and the  POUS are not making any 
direct protein–protein contacts when binding the canonical 
octamer DNA and the two domains lie on opposite sides of 
the DNA. This suggested that both units are in fact inde-
pendently acting domains with autonomous DNA binding 
activity. Consistently, the isolated  POUS and  POUHD can 
bind DNA sequence-specifically with the POUs select-
ing a [A/G]TAATNA and the  POUHD a GAA TAT [T/G]
C) consensus [109]. However, the affinity of the separated 
domains for these elements is lower than that of the intact 
POU for the full octamer. In the context of an intact POU-
bound octameric DNA, the POUs binds the ATGC half-
site and the  POUHD the AAAT half-site [109, 115]. In 
particular, the  POUS has only a moderate affinity for DNA 
by itself, but is highly sequence-specific. Further studies 
showed that two-nucleotide spacers between ATGC and 
AAAT half-sites are permitted [116]. Despite the lack of 
direct interactions,  POUS and  POUHD mutually influence 
each other’s DNA binding by a mechanism termed DNA 
mediated cooperativity. Here, allosteric changes to the 
structure of the DNA indirectly facilitate the recruitment 
of partner factors. This mechanism has been reported for a 
range of dimeric TF associations [117–119] and the POU 
TFs present an intriguing example of this binding mode 
for covalently coupled domains [120]. Consistently, high-
throughput protein-binding-microarrays (PBMs) verified 
the full octamer as well as the  POUHD half-site as being 
part of the binding landscape of Pit1 and Oct1 even in 
the context of the bipartite POU [121, 122]. The authors 
highlighted Oct1 as an example of a TF that is able to 
associate with DNA in multiple binding modes leading 
to primary, secondary and tertiary DNA binding motifs. 
TFs with several structural units such as the POU appear 
to be particularly well suited to accommodate alterna-
tive DNA sequences. NMR studies led to an interesting 
proposal of how the modular make-up of the POU TFs 
facilitates their search for functional target sites in the 
genome. These studies demonstrated that the  POUS and 
the  POUHD of Oct1 could bind non-consecutive DNA ele-
ments independently and thereby tether unlinked DNA 
molecules [123]. This observation inspired a model where 
the POU scans the genome with the more tightly bound 
 POUHD remaining DNA associated whilst the detached 
 POUS acts as a molecular antenna and samples proximal 
binding sites. If suitable alternative sites are encountered 
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Fig. 3  Structural basis for monomeric and dimeric DNA recognition. 
a Structure of the Oct1-POU bound as monomer to octamer DNA 
(PDB ID: 1OCT [115]). The POU-specific  (POUS) domain is colored 
green, the POU-homeodomain  (POUHD) orange and the linker 
magenta. b Sequence logo representing the  POUS (upper panel) and 
the  POUHD (lower panel) of all 15 mouse POU proteins generated 
using weblogo (http ://webl ogo.berk eley .edu/). DNA contact residues, 
interaction interfaces on MORE and PORE DNA and selected phos-
phorylation sites are indicated. The two asterisks mark the residue 

22 of the  POUHD shown to switch the function of Oct1/2 and Brn3a/
Brn3b and the residue 59 of the  POUHD switching the preference of 
Oct4/Oct6 for MORE DNA, respectively [227, 229]. c Sequences 
of the hypervariable linker connecting the  POUS and the  POUHD. 
d Oct4 homodimer on PORE DNA element (3L1P [186]) and e of 
Oct6 bound to MORE DNA (2XSD, [131]. The POU-specific  (POUS) 
and the POU-homeodomain  (POUHD) are colored as in a with lighter 
shades for molecule 1 (M1) and darker shades for molecule 2 (M2) of 
the POU homodimers. N and C termini are marked

http://weblogo.berkeley.edu/
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a process termed intersegment transfer via intermolecular 
translocation ensues.

DNA dependent partnerships

POU TFs engage in protein interaction networks that likely 
change in the context of the bound DNA sequences lead-
ing to the recognition of variable sequence signature in 

chromatin (Fig. 4a–c). These interactions are expected to 
be critical for the cell-context specific function of POU TFs. 
The protein interactions are not restricted to the nuclear 
compartment but also influence other important processes 
such as intracellular transport and targeted degradation. Here 
we focus on the protein interactions that are supported by 
dedicated biochemical experiments or structural analysis and 
influence DNA recognition and target gene selection.

Fig. 4  DNA motifs from genome-wide studies. Position weight 
matrices (PWMs) resembling a the octamer, b MORE and c canoni-
cal/compressed SoxOct elements. PWMs were downloaded from the 
HOMER database (http ://home r.ucsd .edu/home r/inde x.html ) originat-
ing from ChIP-seq studies for Oct2 (GSE21512); Oct4 (GSE11431); 
Oct6, Brn1, Brn2 (GSE35496); Pit1 (GSE58009); canonical SoxOct 

(GSE11431); compressed SoxOct (GSE44553). Cartoons depict the 
expected configurations of POUs bound to these sequences. Cartoons 
for the PORE and SoxOct + 3 bp configuration are shown as refer-
ence but the corresponding PWMs are not represented in the data-
base. Selected genes regulated by variant SoxOct elements are listed. 
The Sox2-HMG is brown and the Sox17-HMG red

http://homer.ucsd.edu/homer/index.html
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Homotypic dimerization

We refer to homotypic interactions for homodimers or het-
erodimers between paralogous POU TFs. POU factors are 
a relatively rare example of proteins forming facultative 
DNA dependent dimers in a versatile range of configura-
tions mediated by their DNA binding domain. Other TF 
families such as basic helix–loop–helix factors (bHLH, 
i.e., Myc, Ascl1) or leucine zipper form obligate DNA 
independent dimers. In early studies cooperative homodi-
meric binding of Oct1 and Oct2 was observed on composite 
sequences with a low-affinity heptameric sequence preced-
ing the classical octamer separated by a 2 bp spacer (CTC 
ATG AATATG CAA AT) [124–126]. If the heptamer was 
replaced by a second octamer in the reverse orientation 
cooperative dimerization persisted [125]. Using random 
oligonucleotide selection, Brn2 of the POU III class, was 
found to bind a sequence with flexible spacing between the 
palindromic half-sites [127]. Brn2 as well as Brn3a (Pou4f1, 
in [127] termed Brn-3.0) were found to homodimerise on 
this sequence in a highly cooperative fashion. A structural 
basis for the homotypic POU dimerization was first pro-
vided for Pit1 bound to a PitD DNA element (ATG TAT ATA 
CAT ) [128]. In an effort to test whether the configuration 
of Pit1 can also be adopted by octamer binding POU TFs, 
Tomilin et al. converted this element into a perfect palin-
drome by introducing nucleotides favored by the  POUS on 
octamer DNA [129]. This led to the identification of the 
More palindromic Oct factor Recognition Element (MORE) 
with a consensus ATG(C/A)AT(A/T)0–2AT(G/T)CAT that 
resembles both PitD as well as the sequence preferred by 
Brn2 [127–130]. On MORE DNA, cooperative forma-
tion of homodimer and heterodimers are formed by Oct1, 
Oct2, Oct4 and Oct6 and a half-site spacing up to 2 base-
pairs is tolerated [129]. Structural studies confirmed that 
the binding mode of Oct1 [130] and Oct6 [131] to MORE 
is very similar to Pit1/PitD [128, 132]. Closer inspection 
of the above-mentioned composite heptamer/octamer ele-
ment revealed that it in fact also represents a degenerate 
MORE variant (ATGaATA TGC Aa, positions deviating from 
the MORE consensus in small caps) [129]. Further, POU 
TFs form homodimers on an imperfect palindrome termed 
PORE (Palindromic Octamer Recognition Element, ATT 
TGA AAT GCA AAT) discovered in the enhancer region of 
the Osteopontin gene [133]. Effective Oct4 dimerization on 
the PORE is necessary for transactivation. Crystallographic 
analysis revealed that Oct1 binds MORE and PORE DNA 
in markedly different configurations [130]. On PORE DNA, 
the POU subdomains of one molecule bind major grooves 
on opposite sides of the DNA. By contrast, on MORE DNA 
the POU rearranges such that the two domains bind adjacent 
major grooves on the same face of the DNA (Fig. 3d, e). 
As a consequence, alternative protein contact interfaces of 

the  POUS and the  POUHD mediate the dimeric interactions 
(Fig. 3b). The functional importance of the MORE motifs 
in gene regulation in a chromatin context has recently been 
supported by ChIP-seq analysis for Pit1 [134] and class III 
TFs [135] (Fig. 4b). However, the PORE has been recovered 
only once with moderate enrichment levels in a re-analysis 
of ChIP-seq data of mouse embryonic stem cells (ESCs) 
[136] suggesting that the bona fide PORE consensus is 
rarely utilized in a chromatin context. Nevertheless, PORE-
like dimer configurations could well be a common mode of 
chromatin engagement by POU factors as non-DNA bind-
ing co-factors can compensate for the degeneration of the 
PORE consensus. A particularly intriguing example of how 
sequence requirements of the POU for its DNA target ele-
ments can be relieved, is provided by the B cell specific 
co-factor OBF1 (OcaB, Bob1). OBF1 forms a complex with 
POU dimers bound to PORE DNA reducing the dissociation 
rate leading to a profound stabilization of the DNA bound 
complex [137]. Strikingly, mutations to the POU protein 
and to the PORE DNA recognition element that normally 
obstruct dimeric binding can be reversed by OBF1 lead-
ing to protein–DNA complexes indistinguishable from the 
wild-type situation. Apparently, OBF1 alleviates sequence 
requirements in both the POU domain as well as in the DNA 
recognition elements including its actual sequence and the 
half-site spacing. This mechanism adds an additional layer 
of control and permits the recognition of target genes con-
trolled by DNA elements that strongly diverge from consen-
sus POU recognition sequences that would not be bound in 
the absence of the co-factor.

To identify structural elements that set POU factors 
biochemically and functionally apart, models to quantify 
homodimer cooperativity factors [138] were used to com-
pare POU homodimerisation on a canonical MORE element 
(ATG AAT ATT CAT ) for factors from POU classes I (Pit1), 
II (Oct1), III (Brn2 and Oct6), V (Oct4) and VI (Brn5) [87]. 
Whilst all tested POU TFs are able to form homodimers 
on the MORE, the extent of the cooperativity is substan-
tially different. All tested somatic POU TFs (Pit1, Oct1, 
Brn2, Oct6 and Brn5) homodimerise on the MORE with 
a stronger cooperativity factors than the pluripotency fac-
tor Oct4. By structural analysis, the basis for this difference 
could be worked out. A single amino acid at the C-terminal 
position 59 of the  POUHD (corresponding to position 151 
of the Oct4 POU) interacts with a hydrophobic pocket of 
the  POUS located at the opposite face of the DNA (Fig. 3b). 
Oct4 encodes a polar serine but Oct6 a hydrophobic methio-
nine at this position [87, 130, 131]. When these residues 
are swapped, the resulting  Oct6M59S shows a reduction in 
cooperativity on MORE whereas  Oct4S59M now homodi-
merises very efficiently reminiscent to wild-type Oct6. The 
 Oct6M59S mutation in combination with further modification 
can convert Oct6 into a pluripotency reprogramming factor 
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[87]. This suggests that the ability to associate on MORE 
DNA in a cooperative manner evolved to functionally dis-
tinguish POU family members and in particular Oct4. Con-
sistently,  POUHD residue 59 is part of a distinctive dipeptide 
that defines the branches of the POU family suggesting it 
could be under positive selection leading to family specific 
functionality [30].

High-throughput SELEX (systematic evolution of ligands 
by exponential enrichment) reiterated the complexity of 
DNA recognition by POU TFs [139, 140]. Many of the pro-
filed POU factors were found to share partially overlapping 
sites that can be arranged in a tiled pattern with overlapping 
half-site and alternative spacing. These studies recovered a 
number of motifs resembling the canonical octamer as well 
as the dimerization promoting MORE elements. Yet, a num-
ber of the reported elements suggest potentially novel bind-
ing configuration for which the stoichiometry is not obvious. 
Collectively, homotypic POU dimers critically contribute to 
the function of these proteins and such binding configura-
tions are more common than initially assumed.

Heterotypic dimerization

The most prominent and intensely studied heterodimer part-
ners of the POU family are from the Sry-related box (Sox) 
family. The Sox family consists of 20 members and pos-
sesses a high mobility group (HMG, 79 amino acids) DNA 
binding domain associating with a CAT TGT C consensus via 
the minor groove of the DNA [141–146]. A DNA-depend-
ent interaction between Oct4 and Sox2 was first described 
for an enhancer in the last exon of the Fgf4 gene [61, 147, 
148]. Transactivation relies on Sox2/Oct4 dimerization on a 
composite DNA element with a 3 base-pair spacer between 
Sox and octamer sites (CTT TGT TtggATG CTA AT, spacer 
nucleotides in small cap). The Sox2/Oct4 dimer functions 
non-redundantly, as paralogous POU and Sox family mem-
bers could not activate Fgf4 [61, 147]. Subsequently, co-
operative binding of Oct4 and Sox2 on composite SoxOct 
elements was found to regulate Utf1 [149], Lefty1 [150], 
Fbx15 [151], Nanog [152, 153] as well as to auto-regulate 
Sox2 [154] and Oct4 [155, 156]. However, in all these cases 
the 3 bp spacer found in the Fgf4 enhancer was eliminated 
leading to a more compact composite element.

Microarray and deep sequencing enabled the genome-
wide profiling of POU TFs and pluripotent cells were 
intensely scrutinized using these technologies with the con-
sequence that Oct4 is the best studied family member. Ini-
tially, Oct4 binding to transcription start site (TSS) upstream 
regions was profiled in human ESCs using DNA microarrays 
(ChIP-on-ChIP) [157]. This study revealed a high degree of 
co-occupancy of Sox2, Oct4 and Nanog. A year later Oct4 
binding was profiled in mouse ESCs using the chromatin 
immunoprecipitation paired-end ditag method and de novo 

motif discovery revealed the composite SoxOct motif as the 
most enriched sequence signature [158]. This suggested 
that DNA dependent heterodimerisation of Oct4 with Sox2 
on the enhancers of pluripotency genes is a very frequent 
event. The advent of the more comprehensive chromatin 
immunoprecipitation followed by deep sequencing (ChIP-
seq) technique again led to the identification of a composite 
DNA element composed of the Sox half site juxtaposed by 
the Octamer element (CAT TGT CAT GCA AAT, henceforth 
termed canonical SoxOct motif). This sequence signature 
was found to be the most enriched de novo motif not just for 
Sox2 and Oct4 but also for Nanog, Smad1 and p300 data-
sets [159] (Fig. 4c). Clearly, Sox2/Oct4 heterodimers play 
essential roles to assemble regulatory complexes that regu-
late 100s if not 1000s of genes conferring the pluripotent 
phenotype. The SoxOct element was also the top motif in 
ChIP-seq studies using human ESCs [160]. Nevertheless, the 
cistrome of Oct4 is poorly conserved in mouse and human 
indicating a high degree of rewiring of cis-regulatory net-
works in mammalian evolution mainly driven by transpos-
able elements [160]. The notion that the cooperative forma-
tion of Sox2/Oct4 heterodimers is essential for pluripotency 
was reinforced with rationally designed mutants that do not 
affect the monomeric DNA binding of Sox2 or Oct4 but 
disrupt DNA dependent heterodimerisation. Both, mutations 
disrupting dimerization on the canonical SoxOct elements 
introduced to Sox2 [161, 162] or to Oct4 [87] prevent pluri-
potency reprogramming. Mutations interfering with Sox2/
Oct4 heterodimerisation on the Fgf4-like sequence with 3-bp 
spacer reduce reprogramming efficiency but do not com-
pletely disrupt the process [162].

The genome-wide profiling of Oct4 binding at differ-
ent stages of pluripotency reprogramming in mouse cells 
showed that the genome engagement of Oct4 is highly 
dynamic [163, 164]. These studies indicate that Oct4 is not 
hitting its binding site in pluripotency enhancers ‘on-target’ 
but initially binds mostly somatic enhancers and switches 
to pluripotency enhancers at later stages of the 1–2 week 
procedure. Only a small proportion of sites are constitutively 
bound. The correlation of Oct4 binding with histone marks 
revealed that enhancer activation happens in a stepwise man-
ner whereby Oct4 binding is preceded by H3K4me1 (prim-
ing mark) and followed by H3K27ac (activation mark) [163]. 
The activation of early engaged and constitutively bound 
pluripotency enhancers require Oct4, Sox2, Klf4 (OSK) 
to work in concert with somatic TFs (Runx1, Fra1, Cebpa, 
Cebpb) that are replaced by pluripotency related TFs later 
on [164]. On the contrary, the co-binding of Sox2/Oct4 and 
Esrrb facilitates the activation of late bound pluripotency 
enhancers [164]. These studies indicate that intricate stage 
specific heterotypic partnerships of Oct4 enable differenti-
ated cells to attain pluripotency. A single molecule imaging 
study proposed that chromatin engagement of Sox2 and Oct4 
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is hierarchically ordered with Sox2 binding first assisting 
the subsequent recruitment of Oct4 [165]. This suggests 
that Sox2 facilitates the target selection whilst Oct4 pre-
dominantly functions to stabilize the heterodimer complex 
extending its residence time [165]. As these observations 
were made in 3T3 cells it is unclear whether a similar mech-
anism applies to pluripotency reprogramming and whether 
the binding hierarchy is different for closed versus open 
chromatin.

A high throughput consecutive affinity-purification-
SELEX (CAP-SELEX) approach enabled the profiling of 
TF dimerization using target sequences with 40 randomized 
base pairs in a scalable manner [166]. This way, a number 
of co-motifs for POU TFs could be identified including the 
canonical SoxOct composite motif. Additional heterodi-
mers were predicted for Oct1/POU2F1 with GSC2, TBX21, 
EOMES, ELK1, ETV1, SOX15, HOXB13 and SOX2. The 
OCT1/GSC2 dimer showed a strictly constrained arrange-
ment of the two half sites with regard to spacing and order of 
the TFs. It will be interesting to probe whether these dimers 
also occur in the context of chromatin and mediate POU 
functions.

Is there a SoxOct partner code?

The Sox2/Oct4 heterodimer is one of the most prominent 
examples of heterotypic TF partnerships for its relevance in 
the gene regulatory network inducing and maintaining pluri-
potency. The abundance and the strict physical constraint 
of this complex lead to its repeated discovery in enhancer 
sequences. A series of additional Sox/Oct heterodimers were 
reported giving rise to the notion that there could be a Sox/
Oct partner code at the heart of gene regulatory networks in 
early development [167–169]. A Sox/Oct partner code pre-
sumes two possible scenarios. First, alternative heterodimers 
prefer different composite DNA motifs and hence select 
specific sets of target genes. Monomeric factors lack the 
sequence selectivity and affinity to target functionally rel-
evant gene sets. Second, alternative dimers may retain simi-
lar preference for DNA target sites. Yet, molecular events 
and functional outcome of a binding event may change by 
turning an activating regulatory complex into a repressive 
one by means of direct competition. For example, a Sox10/
Oct6 dimer was reported to selectively synergize in glial 
cells [170, 171]. Yet, the DNA sequence requirements for 
this partnership could not be worked out. In NPCs, Brn2 and 
Sox2 partner on a non-canonical SoxOct composite element 
to drive the expression of the Nestin gene [172]. However, 
genome wide studies did not support a broad application 
of this dimer configuration. The model of a switch of Sox2 
from Oct4 to the neural class III POU factors is particularly 
appealing as Sox2 functions prominently in both pluripo-
tent as well as neural lineages. Indeed, a switch from Oct4 

to Brn1/2 on identical enhancer locations was suggested to 
maintain Sox2 expression in pluripotent and neural cells 
[173]. The partnership of Sox2 and class III POU TFs was 
further explored in genome-wide studies. Initially, Brn2 
and Sox2 were reported to co-bind the canonical SoxOct 
element with Sox2 in NPCs reminiscent to the Sox2/Oct4 
heterodimer in ESCs [174]. The differentiation of ESCs to 
NPCs led to the co-recruitment of Sox2/Brn2 to NPC-spe-
cific enhancers. Conversely, overexpression of Oct4 in NPCs 
led to generation of iPSCs presumably by re-directing Sox2 
from neural to pluripotency enhancers [88, 89]. Whilst these 
studies indicated that the DNA sequence signature facilitat-
ing SoxOct heterodimerisation in ESCs versus NPC/NSCs 
is indistinguishable with the canonical SoxOct motif at its 
core, the set of bound genes is very different. Consistently, 
Sox2/Oct4 and Sox2/POUIII dimers (Oct6, Brn2 and Brn4) 
showed an indistinguishable cooperativity pattern when 
324 composite DNA sequences were profiled in a recent 
cooperativity-by-sequencing (Coop-seq) study [175]. Simi-
larly, EMSA measurements showed that the cooperativity 
constant for Sox2/Oct4 dimerisation was only about twofold 
higher than for Sox2/Oct6 dimerization on canonical SoxOct 
DNA [87]. This poses the question as to the molecular basis 
for the selection of unique gene sets by Sox2/Oct4 versus 
Sox2/POUIII complexes. A variation to the SoxOct element 
in the  POUHD bound portion found in the Utf1 (ATG CTA 
GA) sequence had been attributed to this difference as only 
Sox2/Oct4 but not Sox2/Oct6 could effectively dimerize on 
this sequence [176]. However, genome-wide analysis could 
so far not detect obvious difference at this position. Mis-
tri et al. also profiled the binding of Oct6, Brn1 and Brn2 
in mouse NPCs [135]. Contrary to Lodato et al., here the 
homodimerisation promoting MORE was identified as the 
preferred motif for all three class III POU factors. In support 
of this finding, motif scanning with the MORE using data 
from Lodato et al. could detect the MORE in a large fraction 
of Brn2 binding sites [87, 135]. Analogously, re-analysis of 
Brn2 ChIP-seq data during the reprogramming of MEFs to 
neurons showed a strong enrichment of the MORE [85, 87]. 
Collectively, a picture emerges that differential binding to 
MORE sequences appears to contribute more strongly to the 
selection of unique sets of target genes by Oct4 and class III 
POUs whereas the capacity to dimerise with Sox2 on canon-
ical SoxOct is shared. In another study, novel configurations 
of SoxOct elements were searched for in the enhancers of 
ESCs and a variation of the canonical SoxOct was discov-
ered to show a modest level of enrichment [161]. Here, a 
single nucleotide separating Sox and Oct half-sites is elimi-
nated and this sequence was hence designated ‘compressed’ 
SoxOct element (CAT TGT ATG CAA AT). Surprisingly, Sox2 
and Oct4 are unable to co-bind this sequence whilst Sox17 
and Oct4 dimerize very efficiently on it [161, 175, 177]. 
ChIP-seq verified the functional relevance of the compressed 
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SoxOct motif after the overexpression of Sox17 in ESCs as 
well as after the retinoic acid induced endodermal differen-
tiation of embryonic carcinoma cells [178]. By structural 
analysis, the molecular basis for the differential propensi-
ties of Sox2/Oct4 and Sox17/Oct4 dimers to differentially 
select canonical or compressed DNA elements could be elu-
cidated. Residue 57 of helix 3 of the HMG box encodes a 
basic lysine in Sox2 but an acidic glutamate in Sox17 [141]. 
Grafting this residue into Sox17 to generate the engineered 
Sox17EK produced a protein that cooperates more strongly 
than Sox2 with Oct4 on the canonical SoxOct element. By 
contrast, Sox17EK loses the capacity to dimerize with Oct4 
on the compressed element in vitro and in the context of 
chromatin [161, 178, 179]. The functional relevance of this 
finding was further tested in pluripotency reprogramming. 
Only Sox1, Sox3 and Sox15 can replace Sox2 in this experi-
ment but Sox17 and other Sox family members cannot [86, 
180]. Strikingly, Sox17EK and the analogous Sox7EK now 
acquire the capacity to generate iPSCs in mouse and human 
cells and substantially outperform wild-type Sox2 [161, 
180]. Consistently, Sox17EK is able to support the self-
renewal of ESCs depleted of Sox2 whilst Sox2KE loses this 
capacity [181]. This provides a compelling example how the 
subtle features of single amino acids in trans and of single 
nucleotides in cis define gene regulatory networks during 
embryogenesis. Moreover, this insight provides a molecular 
mechanism for the context dependent switch of the regula-
tory activity of Oct4. Relatedly, Sox17 has recently been 
found to be a key regulator of the differentiation of pri-
mordial germ cells (PGCs) from naïve pluripotent cells in 
human, but not mouse [182]. As Oct4 is expressed in pluri-
potent cells as well as PGC it will be of interest to explore 
whether an analogous Sox/Oct partner switch that relies on 
canonical and compressed motifs guides the redistribution 
from pluripotency to PGC enhancers.

Collectively, Sox factors evolved molecular interfaces 
allowing their selective association with POU TFs in the 
context of alternative composite DNA sequences, two of 
which (canonical and compressed SoxOct DNA elements) 
are widespread in developmental enhancers. By contrast, 
whether or not POU TFs evolved similarly selective inter-
faces is presently unclear.

Binding to methylated DNA

DNA methylation changes profoundly during the conversion 
of MEFs to iPSCs and the DNA-methylation level was ini-
tially reported to be negatively correlated with Oct4 binding 
[163]. Another study reported that Oct4 binding is independ-
ent of the DNA-methylation status at early stages of repro-
gramming, whereas at late stages Oct4 binding coincides 
with unmethylated DNA at pluripotency enhancers [183]. 
To directly examine the impact of cytosine methylation on 

DNA by TFs the high-throughput methylation-sensitive 
SELEX was developed [140]. It is generally thought that 
DNA methylation serves as a barrier to TF DNA interac-
tions and that the remodelling of CpG methylation is essen-
tial for cell fate transition. Indeed, a large fraction of the 
profiled TFs showed sensitivity to enzymatically intro-
duced methyl moieties at CpG dinucleotides. However, for 
a subset of TFs, DNA methylation facilitates rather than 
blocks binding. In particular, many homeodomain contain-
ing TFs show a preference for methylated DNA including 
Oct4. This study identified a tertiary Oct4 motif comprised 
of a palindrome consisting of two  POUS half-sites ATGC 
GCAT. SELEX enrichment of this element is increased upon 
methylation suggesting that Oct4 preferentially targets it in 
the methylated state. The preference of Oct4 to bind this 
element in its methylated form was validated using ChIP-
seq combined with whole-genome bisulfite sequencing in 
mouse embryonic stem cells where the DNA de-methylating 
enzymes Tet1-2 were knocked-out leading to an accumula-
tion of methylated DNA. Interestingly, as the ability to bind 
methylated CpG DNA is largely restricted to TFs involved 
in embryonic development such as homeodomain TFs, the 
potency to bind methylated DNA may underlie their ability 
for epigenetic remodeling leading to cell fate switching.

The role of the linker

The length of the linker varies for different POU TFs 
(Fig. 3c). Structures of higher order POU/DNA complexes 
demonstrated a striking flexibility to accommodate alterna-
tive DNA sequences and to adopt very different conforma-
tions induced by the DNA (Fig. 3d, e). This versatility is 
enabled by the variable and structurally flexible linker that 
allows for the spatial reorganization of two domains endow-
ing POU TFs with the ability to adopt diverse quaternary 
structures. The linker was not visible in earlier structures 
[115, 128, 130, 131, 142, 184]. However, the linker could 
be modeled for Brn5-POU bound to a non-octamer DNA 
sequence derived from the corticotrophin-releasing hormone 
promoter [185]. The relative orientation of the  POUS and 
 POUHD is flipped in Brn2 in comparison to the arrange-
ment seen for Oct1 on the octamer element. Here, the linker 
extends the helix 4 of the  POUS by 7.5 Å. The extended helix 
is followed by a sharp turn and an additional short helix. 
Similarly, a large part of the linker was visible in  Oct4POU 
structure on PORE DNA element whilst it was invisible in 
the Oct1/PORE complex [186]. The linker of Oct4 forms an 
additional alpha-helix with amino acids unique to Oct4 but 
conserved amongst its orthologues. This finding led to the 
conclusion that  Oct4link contributes to the distinct role of 
Oct4 in pluripotency reprogramming presumably by recruit-
ing specific co-activators [186]. Consistently mutations to 
the linker were found to affect the induction of pluripotency 
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[186–188]. Similarly, when the Oct4 linker is replaced by the 
Oct6 linker the resulting  Oct4linkOct6 loses the competency 
to generate iPSCs [186]. However, given the poor sequence 
conservation the definition of the linker is ambiguous. More 
recently the boundaries of the linker were redefined tak-
ing structural information into account. The new definition 
removed an additional charge from the chimeric  Oct4linkOct6 
protein where the linker borders the  POUHD  (Oct4linkOct6: 
QGKRKKR, Oct6 derived residues underlined) and ena-
bled iPSCs generation [87] whilst a version containing this 
additional charge was impaired  (Oct4linkOct6: QGRKRKKR) 
[186]. Collectively, diversity in DNA recognition by POU 
TFs is largely achieved by modifications to the linker and to 
residues mediating the intra and intermolecular cooperativ-
ity. It is these regions that set POU protein apart and allow 
them to assemble into versatile dimeric configurations to 
bind alternative DNA elements to regulate non-redundant 
sets of genes leading to different regulatory outcomes.

Pioneering activity: a unique competency 
of Oct4?

During development the chromatin states and associated 
gene expression programs are successively changed until 
terminally differentiated cells are formed. Reprogramming 
experiments by forced TF expression have shown that a lim-
ited set of factors is capable of inducing the remodeling of 
chromatin even of terminally differentiated cells leading to 
changed gene expression programs and cell state conversions. 
It has been proposed that only a selected set of TFs that could 
access closed chromatin compacted by nucleosomes and 
higher order chromosomal assemblies is capable of this feat. 
These molecules were termed ‘pioneer TFs’ because they are 
required for the initial engagement of closed chromatin lead-
ing to the subsequent recruitment of non-pioneering TFs that 
would not be able to access these sites themselves [189]. The 
pioneer TF concept was proposed initially from studies on 
FoxA1 during the differentiation of mouse endodermal tissue 
to mature hepatocytes [190]. FoxA1 initially engages closed 
chromatin followed by the recruitment of companion TFs and 
gene activation. FoxA1 was also found to be able to book-
mark highly compact chromatin during mitosis [191]. The 
DNA binding domain of FoxA1 and other forkhead TFs is of 
the winged–helix type [192]. This fold closely resembles the 
structure of the linker histone H1 [193, 194]. H1 has a major 
role in the compaction of histone octamers and the formation 
of higher order nucleosomal structures such as the 30 nm fiber 
[195, 196]. This similarity is attributed to the ability of FoxA1 
to open nucleosomal arrays compacted by H1 as it can directly 
compete with H1 [197]. However, more recently additional 
TFs have been reported to possess pioneering activity includ-
ing Oct4. The integration of micrococcal nuclease sequencing 

(MNAse-seq) and ChIP-seq data showed that Oct4 in com-
bination with Klf4 and Sox2 binds DNA that was initially 
covered by nucleosomes at the onset of pluripotency repro-
gramming of human cells which is thought to be causative for 
rapid opening (Fig. 5a) [198]. Data were later supported by 
binding assays with in vitro reconstituted nucleosomes show-
ing that Oct4, Sox2 and Klf4 bind nucleosome associated 
DNA with similar affinity as free DNA [199]. Motif discov-
ery suggested that rather than binding full motifs, Oct4 only 
binds shortened degenerate versions of its classical binding 
sequence corresponding to  POUS and  POUHD half-sites. Soufi 
et al. reasoned this is because in the context of the full octamer 
Oct4 binds DNA with its sub-domains arranged on opposite 
faces (Fig. 3a). As this would lead to steric interference with 
histone proteins, only individual half-sites can be exposed and 
are accessible on the nucleosome surface. It will be interest-
ing to test this model structurally or using binding assays with 
nucleosome associated DNA having different motif compo-
sitions. Regardless, structural similarity to the linker histone 
does not appear to be a defining feature of pioneer TFs. An 
extensive analysis by the Plath laboratory of the epigenetic 
changes during reprogramming of mouse embryonic fibro-
blasts to induced pluripotent stem cells came to a different 
conclusion as to the pioneering activity of Oct4 [164]. Here, is 
was reported that Oct4 and its companion reprogramming TFs 
predominantly bind pre-opened chromatin of somatic enhanc-
ers and promoters promiscuously at early reprogramming 
stages leading to the silencing of somatic genes. By contrast, 
pluripotency enhancers are bound and opened dynamically 
in a step-wise fashion in cooperation with somatic TFs rather 
than by a directed pioneering process starting immediately at 
the onset of reprogramming. Further, the starting chromatin 
state was suggested not to be predictive for the pluripotency 
enhancers the TFs will eventually target. In this view, repro-
gramming TFs do not actively trigger chromatin opening but 
rather passively follow and bind pluripotency enhancers after 
they were opened by an unexplained mechanism. It was con-
cluded that there could be species-specific differences in the 
reprogramming process in mouse and human. A related study 
by the laboratory of Jacob Hanna performed a high-resolu-
tion assessment of the epigenetic dynamics of pluripotency 
reprogramming in mouse [200]. The cells reprogram near-
deterministically within 8 days because of the depletion of 
the reprogramming barriers Mbd3 and Gatad2a of the NuRD 
complex. In this study, 74% of enhancers bound by OSK at day 
1 are closed in MEFs. However, full DNA motifs rather than 
half motifs were discovered in these presumably nucleosome 
covered regions. Likewise, two additional studies conducted 
using mouse cells, emphasized that Sox2 and Oct4 have the 
ability to target compacted chromatin rather than preferring 
locations pre-opened in MEFs. First, a study by the Jose Polo’s 
laboratory used FACS (Fluorescence-activated cell sorting) to 
separate cells successfully progressing to pluripotency from 
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Fig. 5  Molecular basis for context-dependent functions. a Accord-
ing to current models Oct4 is be able to bind nucleosomal DNA and 
induce opening whilst Brn2 can only bind chromatin pre-opened by 
factors such as Ascl1 [85, 198, 199]. The colored rectangles denote 
cognate binding sites. b Pit1 bound as homodimer to a compact bind-
ing site in the Prolactin (Prl) results in transcriptional activation 
whilst the introduction of a TT spacer (marked in red) in the growth 
hormone (GH) promoter results in the recruitment of the NCoR co-
repressor [132]. c Binding of Oct1 as homodimer to the PORE ele-
ment recruits OBF1 to activate transcription whilst the homodimeric 
configuration on MORE impairs OBF1 recruitment and reduces the 
transcriptional response [129, 130]. d–g Single amino acid exchanges 
can switch functions of closely related paralogs. d Interchanging 
position 22 of the  POUHD between Oct1 and Oct2 equips Oct2 with 
the capacity to recruit VP-16 and regulate transcription reminiscent to 

Oct1 [227, 228]. e An analogous exchange between Brn3a and Brn3b 
was reported to switch them from transcriptional activators to repres-
sors on certain response elements [229]. f Oct4 co-binds with Sox2 
to canonical SoxOct elements to control the transcription of pluripo-
tency related genes but in the presence of Sox17, Oct4 is re-distrib-
uted to enhancers earmarked by compressed SoxOct elements to regu-
lated extra-embryonic endoderm (XEN) genes [178]. Point mutations 
at the Oct4 interaction interface of Sox2 or Sox17 change binding 
and function of the resulting DNA dependent heterodimers. g Oct4 
prefers heterodimerisation with Sox2 on canonical SoxOct elements 
whereas Oct6 prefers to form a homodimers on MORE elements. A 
single amino acid swap between Oct4 and Oct6 changes the binding 
preferences of the two proteins [87]. Solid green arrows represent 
context-dependent activities of wild type proteins; asterisks mark 
mutations and dashed arrows represent newly acquired functions
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cells that fail. The authors find that 75% of Oct4, Sox2 bind-
ing occurs at sites that are closed in MEFs but are opened 
at day 3 of reprogramming implying an active role of Sox2/
Oct4 in the opening process [183]. Likewise, using a highly 
efficient chemically defined reprogramming system, Li and 
colleagues used time course ATAC-seq to show that the major-
ity of somatic enhancers open in MEF are devoid of Sox and 
POU binding motifs whereas a large proportion of sites that 
undergo a closed-to-open transition contain matches to these 
motifs [201]. Collectively, these studies support a model where 
Oct4, Sox2 and Klf4 actively induce epigenetic switching of 
pluripotency enhancers and directly induce chromatin opening 
consistent with the pioneering model. Nevertheless, the dis-
crepancies in the interpretations from these complementarity 
studies should be resolved, which could be due to the different 
reprogramming systems or because of alternative data analy-
sis strategies. Likewise, the cis-regulatory codes dictating the 
engagement of closed versus open chromatin remain unclear 
and require further investigations.

The pioneering question was also addressed for Brn2 
(class III POU) during the highly efficient conversion of 
fibroblasts to mature neurons as part of the Brn2, Ascl1, 
Myt1l (BAM) cocktail [85] (Fig. 2c, d). Genomic binding 
analysis suggested that the HLH TF Ascl1 binds neural 
enhancers immediately after its forcible introduction into 
MEFs and was hence termed ‘on-target’ pioneer [85]. In 
contrast, Brn2 shows little chromatin engagement at the 
beginning of reprogramming and associates with relevant 
binding sites only after Ascl1 opened them. Thus, intrigu-
ingly, despite profound structural similarity, Oct4 is believed 
to function as pioneer but Brn2 is not (Fig. 5a). A careful 
analysis of the nucleosome binding and opening of Oct4 
versus Brn2 should be carried out to test this model and to 
search for the molecular features endowing Oct4, but not 
Brn2, with pioneering capacity. It is possible that modified 
preference to DNA target sequence influence the ability to 
bind and remodel nucleosomes even of closely related fac-
tors. Alternatively, there may not be a clear-cut separation 
between pioneer and non-pioneer TFs. Further, whether 
ATP-dependent remodeling complexes are required for the 
opening process is currently debated [202, 203]. In conclu-
sion, the molecular mechanism as to how POU TFs engage 
and remodel chromatin to direct changes of cell states awaits 
further mechanistic interrogation.

Different DNA binding modes direct 
alternative regulatory outcomes

Rather than forming rigid and structurally inert ‘enhan-
ceosomes’ [204], POU factors are more likely to engage 
in flexible and dynamically changing partnerships in the 
context of different cis-regulatory regions. This versatility 

probably underlies context-dependent regulatory outcomes 
entailing the activation or repression of nearby genes but 
also include more complex epigenetic processes that do not 
lead to obvious effects on gene expression such as the main-
tenance of a ‘bivalent’ chromatin state. A consensus view is 
that most TFs regulate their target genes by triggering the 
formation of a loop between enhancers and promoters medi-
ated by large molecular machineries such as the mediator 
facilitated by cohesion [205, 206]. Bivalent chromatin refers 
to the co-occurrence of ‘repressive’ H3K27me3 and ‘active’ 
H3K4me3 chromatin modifications which are particularly 
prominent at gene promoters of developmental genes in 
pluripotent cells [159, 207–209]. Proteomic studies indicated 
that Oct4 interacts with the machineries depositing the acti-
vation mark H3K4me3 as well as the depletion of repressive 
mark H3K27me3 probably assisted by WDR5 (H3K4me3 
reader) and UTX (H3K27 demethylase) [210–212]. Working 
out how DNA sequences allosterically affect the recruitment 
of these various complexes is crucial to reveal the molecular 
underpinnings for the context dependent functions of POU 
TFs. Alternative binding modes occur on the level of binary 
and ternary POU/DNA complexes encompassing homo-
typic and heterotypic interactions. Switched binding con-
figurations were demonstrated by structures of Oct1 [130], 
Oct6 [131] and Pit1 [128, 132] on PORE or MORE DNA 
leading to strikingly different homodimeric assemblies. In 
contrast to binary POU/DNA complexes on octamer DNA 
that lack protein–protein interactions, such contacts exist on 
the ternary PORE and MORE. This raised the question as 
to whether different DNA binding modes lead to different 
regulatory outcomes.

During the development of the pituitary gland Pit1 regu-
lates both a lactotrop and a somatotrop programs from a 
common primordium by activating the growth hormone 
or prolactin genes, respectively [132]. The prolactin (Prl-
1P) element resembles a degenerate MORE without spacer 
whilst the growth hormone element (GH-1) possesses a ver-
sion with 2 base pair spacer. When the spacer is deleted 
from a reporter, expression is detected in lactotropes rather 
than somatotropes reminiscent to wild-type Prl-1P [132]. 
The context specific activation of the growth hormone in 
somatotrope cells but not in lactotropes was suggested to 
be mediated by differential recruitment of N-CoR (nuclear 
corepressor complex), which is sensitive to half-site spacing 
(Fig. 5b). Analogously, Oct1 dimers on PORE were shown 
to interact with the coactivator OBF-1 but this interaction 
does not occur when Oct1 is bound to the MORE because 
Oct1 residues required for OBF-1 recruitment are unavail-
able on the MORE as they shape the homodimer interface 
(Fig. 5c) [129]. Collectively, the assembly of subdomains 
on composite DNA elements as well as the spacing between 
half-sites critically influences cofactor recruitment and the 
transcriptional consequences of a binding event.
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An interesting concept is that the preference for DNA 
sequences, target gene selection and the regulatory out-
come of POU TFs can be influenced by post-translational 
modifications. This could allow a single POU TF to exe-
cute different regulatory programs in the same cell with-
out epigenetic changes or the need for new co-factors but 
simply in response to intracellular signaling. POU factors 
are subjected to a variety of post-translational modifications 
including phosphorylation [213–218], O-GlcNAcylation 
[219–221], SUMOylation [222, 223] and ubiquitinylation 
[220, 224, 225]. Phosphorylation of the Oct4-POUS was 
suggested to more severely affect transcription from genes 
controlled by the PORE compared to MORE and SoxOct 
dependent targets [226]. In another study, cellular stress 
induced Oct1 phosphorylation at Ser385 of the  POUHD 
was found to be deleterious for monomeric binding to the 
octamer but favors the association with promoter proximal 
MOREs [214]. Additionally, mutations of several potential 
phosphorylation sites including the sites corresponding to 
Oct1/Ser385 in Oct4 resulted in the complete abolishment 
of its reprogramming activity [187].

Outlook

In this review, we attempted to provide an in depth summary 
of our present understanding, how the ability of POU fac-
tors to bind DNA and chromatin in different configurations 
and with different partner factors relates to their capacity 
to reprogram cell states. We particularly emphasised the 
differences between paralogous POU genes and the unique 
ability of Oct4 to direct pluripotency reprogramming. The 
POU family is a particularly captivating group of TFs for 
their astonishing plasticity to bind a large set of composite 
DNA sequences either as homodimers or heterodimers. This 
plasticity likely dictates the selection of specific gene sets, 
the nature of the regulatory outcomes following binding, 
and changes to chromatin dynamics. This in turn determines 
context specific roles in embryonic development and during 
cellular reprogramming. Classical sequence comparison and 
mutagenesis studies revealed that even very subtle changes 
to the POU domain could have a tremendous functional 
impact. For example, residue 22 at helix 1 of the  POUHD 
was found to be the sole determinant for differential gene 
regulation by Oct1 versus Oct2 and Brn3b versus Brn3a in 
some systems (Fig. 5d, e). The mere swap of this residue 
between Oct2 and Oct1 bestows Oct2 with the ability to 
recruit the VP16 co-activator to positively regulate tran-
scription [227, 228]. Analogously, an isoleucine at this posi-
tion is essential for the repressor function of Brn3b whilst 
a valine as found in Brn3a leads to transactivation [229]. 
Interchanging this residue swaps the regulatory activity of 
Brn3a and Brn3b. Residue 22 is solvent exposed and thus 

does not affect DNA binding and the dimeric configuration. 
Likewise, single amino acid swaps between Sox2 and Sox17 
as well as between Oct4 and Oct6 can rebalance the associa-
tion with heterotypic or homotypic partner proteins, thus 
switching their activities in pluripotency reprogramming 
(Fig. 5f, g) [87, 161]. These insights reinforce the notion 
that the structural properties that functionally discriminate 
POU TFs are predominantly provided by their DNA bind-
ing domains. Yet, overall sequence function relationships, 
both on the level of the trans acting POU factors and the 
cis DNA elements they are targeting, remain only poorly 
understood. Deep mutational scanning [230], with a focus 
on sites that were shown to set POU paralogs functionally 
and biochemically apart, provides a powerful approach to 
systematically define the key amino acids that led to the bio-
chemical and functional diversification of POU TFs. More-
over, the side-by-side profiling of the epigenetic changes 
accompanying pluripotency and lineage reprogramming 
driven by paralogous POU factors provide a means to study 
the functional consequences of sequence diversifications. 
The POU domain not only mediates DNA recognition but 
also the DNA dependent partnership with other TFs as well 
as the selective recruitment of co-activators and repressors, 
which we are only beginning to work out. A number of pro-
teomics studies have begun to address this problem with 
a focus on Oct4 in embryonic stem cells [231–233] and 
started to reveal the underpinnings of the cross-talk of Oct4 
with epigenetic modifiers and the transcriptional machin-
ery. However, these various studies revealed a surprisingly 
limited overlap for the identified sets of interaction partners 
in embryonic stem cells [231–233]. Future studies should 
contrast the interactomes of paralogous POU factors and 
define how the context of DNA binding sites changes the 
recruitment of co-activators. Here, studying the reliance of 
partner recruitment on the various DNA elements targeted 
by POU TFs (SoxOct, MORE, PORE) could reveal impor-
tant insights as to the context specific regulatory programs 
directed by POU TFs. Ideally, such experiments should be 
carried out in the context of native chromatin. Future work 
should also address whether different binding modalities can 
switch regulatory responses. For example, delayed versus 
immediate transcriptional responses could be reliant on the 
DNA-bound configuration of POU TFs. Likewise, transient 
and sustained transcriptional responses could be modulated 
in this manner. The utilization of high throughput enhancer 
reporter assay such as STARR-seq (self-transcribing active 
regulatory region sequencing) [234] provides a method to 
study these questions systematically.

A molecular interpretation of genomic, epigenetic and 
functional data is impeded because the available structural 
information of POU TFs is currently limited to their DNA 
binding domains bound to a small set of DNA binding sites 
as monomers, homodimers or heterodimers. Structures of 
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full-length POU proteins or higher order regulatory com-
plexes are not available. Obtaining such structures may 
remain challenging in the years to come because of the 
large extent of structurally disordered portions outside of 
the POU domain and the highly dynamic and DNA context 
dependent assembly of TF complexes. Such complexes can 
likely be assembled only in vitro, once the DNA sequence 
requirements and the protein–protein interaction surfaces 
have been further refined. Biochemical and genomic assays 
demonstrated that POU factors could bind nucleosomes with 
high affinity [199]. The cis-regulatory context that facilitates 
binding of POU factors to nucleosome bound DNA, which 
is considered to be the first step eventually leading to an 
increase in the accessibility of such genomic regions, is not 
resolved so far. Structures of TF nucleosome complex are not 
available at present, thus precluding a molecular understand-
ing of the pioneering process. However, advances to study 
higher order nucleosomal complexes by electron microscopy 
could put the goal of revealing the structural basis for TF: 
nucleosome recognition and pioneering activity within reach 
[195, 196, 235]. As a result of a more detailed dissection of 
the sequence-function relationships for POU factors and the 
structural basis for DNA, co-factor and chromatin recogni-
tion; efforts to switch or enhance reprogramming activities 
of POU factors could be invigorated. As a consequence, we 
expect structurally informed protein engineering to further 
advance reprogramming technologies by the design of arti-
ficial TFs based on the versatile scaffold of POU TFs [236].
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