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Introduction

Helicobacter pylori and Campylobacter jejuni are represent-
ative members of the epsilon (ε) Proteobacteria. H. pylori 
and C. jejuni infections cause a broad range of human and 
animal diseases. H. pylori is found primarily in humans, 
where it colonises gastric mucosa. H. pylori is the etiologi-
cal agent of dyspepsia, gastritis, duodenal and gastric ulcers, 
mucosa-associated lymphoid tissue lymphoma and gastric 
carcinoma [1–6]. In addition, association between H. pylori 
infection and extra-gastric diseases including iron-deficiency 
anaemia [7, 8], idiopathic thrombocytopenic purpura [9, 10], 
cardiovascular diseases [11], chronic liver disorder [12], 
pancreatic cancer [13], chronic respiratory illness [14], skin 
diseases [15] and diabetes [16] has been reported. The pres-
ence of H. pylori significantly affects the natural microecol-
ogy of the stomach [17]. It is the first bacterium to be clas-
sified as a group I (definite) carcinogen for human gastric 
cancer by the International Agency for Research on Cancer 
[18]. Around 75% of gastric cancer and 90% of duodenal 
ulcer patients had a previous history of H. pylori infection 
[19, 20]. The clinical outcome of H. pylori infection is deter-
mined by a complex interplay between the genetic properties 
of the bacteria and host genetic factors [21], and may be 
influenced by co-infection with other bacterial pathogens 
[22, 23].

The most common mode of transmission is thought to 
be by person-to-person contact, via gastro-oral, oral–faecal, 
and oral–oral routes [24, 25], although the full spectrum 
of H. pylori transmission routes is yet to be determined. 
Multiple socioeconomic, environmental and behavioural 
factors contribute to the acquisition and spread of infec-
tion. These factors include low socioeconomic status [26, 
27], diet [28], use of tobacco [29], a higher number of sib-
lings [30] and a lower educational status of the parents [31, 
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32]. The prevalence of H. pylori infection increases with 
age [33] and is significantly higher in developing countries 
compared to developed countries. About 80% of individuals 
in developing countries harbour this bacterium, compared 
with 15–50% of the population in developed ones [34, 35]. 
For example, a 2011 nationwide study in Australia showed 
that the prevalence of H. pylori was 15% among adults [35]. 
The occurrence of H. pylori infection has been decreasing 
in developed countries [36, 37], largely due to improving 
hygiene practices and higher standards of living. However, 
the relative prevalence in developed countries remains sig-
nificantly higher among people with lower socioeconomic 
status, such as indigenous and migrant populations [35, 38].

Currently, there is no effective vaccine or single drug 
available to treat H. pylori infection. The common therapy 
for the treatment of such infections is a combination of a 
proton pump inhibitor and two or three antibiotics [39, 40]. 
However, the effectiveness of this therapy has significantly 
declined, mainly due to the widespread increase in resistance 
to clarithromycin and metronidazole [41, 42].

Campylobacter jejuni is a zoonotic pathogen that usu-
ally colonises the gut of birds and mammals, but can also 
infect humans, with variable clinical outcomes including 
mild, self-limiting, non-inflammatory diarrhea, severe, 
inflammatory, bloody diarrhea with pyrexia, abdominal 
cramps, inflammatory bowel disease, Barrett’s oesophagus 
and irritable bowel syndrome [43]. C. jejuni infections are 
also associated with acute cholecystitis and celiac disease 
[43]. The sequelae of the infection include neurological and 
autoimmune diseases such as Guillain–Barré syndrome [44], 
Reiter syndrome [45] and reactive arthritis [46].

The prevalence of C. jejuni varies significantly between 
countries. In developed countries, human infections occur 
sporadically and at a low frequency [47, 48]. In developing 
countries, campylobacteriosis is endemic, and asymptomatic 
infections are common [47, 49]. It is believed that contami-
nated poultry is the main source of C. jejuni infection [47, 
50, 51].

Factors that contribute to the pathogenicity and viru-
lence of H. pylori include the cag pathogenicity island 
[52], vacuolating cytotoxin A [53], adhesins (including 
blood-antigen binding protein A [54], sialic acid-binding 
adhesin [55], heat-shock protein 60 [56], adherence-asso-
ciated proteins [57], outer membrane protein HopZ [58], 
N,N′-diacetyllactosediamine-binding adhesin [59] and neu-
trophil-activating protein [60]), duodenal ulcer promoting 
gene [61], urease [62], and γ-glutamyl transpeptidase [63]. 
Furthermore, chemotaxis [64] and flagella-mediated motility 
[64, 65] have been shown to also play an important role in 
the development of a robust infection.

In C. jejuni, a diverse group of virulence factors includ-
ing flagella-mediated motility, chemotaxis, iron acquisition, 
adhesion, invasion of epithelial cells and quorum sensing 

contributes to the development of successful infection [64, 
66, 67]. The role of motility and chemotaxis in C. jejuni 
pathogenesis has been the subject of intensive studies, par-
ticularly since it has been shown that flagellin biosynthesis 
and modification of genes are important for colonisation [68, 
69].

Bacteria use flagella-driven motility to relocate toward 
favourable environments and away from toxic chemicals. 
Flagella-mediated motility allows H. pylori and C. jejuni to 
penetrate the gastric/intestinal mucus and reach the underly-
ing layer of epithelial cells, where they colonise. In addition, 
these bacteria rely on their high motility in the viscous layer 
covering the gastric mucosa of the host to persist despite the 
natural flow of the gastrointestinal mucus [64]. H. pylori 
uses motility to colonise the stomach [70] and to establish 
robust infection [71]. Chemotaxis plays an important role 
in this, as it enables H. pylori to sense, and responds to, 
changes in various conditions, including pH, concentration 
of urea/ammonium and cellular energy status [64]. Deletion 
of motility-associated genes in C. jejuni and H. pylori was 
shown to result in attenuated growth in animal models [71, 
72]. Furthermore, wild-type H. pylori was shown to have a 
significantly lower minimum infectious dose in animal mod-
els than its non-motile or nonchemotactic mutants [71, 73].

Helicobacter and Campylobacter flagella

Helicobacter pylori and C. jejuni possess unipolar and 
bipolar flagella, respectively [66, 74, 75]. The flagellum is 
assembled from ~ 40 different proteins [76, 77] and has three 
components: a membrane-embedded basal body, a hook, and 
a long filament [78, 79]. Interestingly, each H. pylori flagel-
lar filament is covered by a sheath (extension of the outer 
membrane) which is believed to serve as a protective shield 
against the low pH of the human stomach [80]. The basal 
body together with the stator proteins serves as motor that 
turns the extracellular helical-shaped filament at its base. 
Cryo-electron tomography studies revealed that the H. pylori 
basal body possesses a unique periplasmic cage-like struc-
ture [75]. This cage is not present in C. jejuni; however, C. 
jejuni possesses an additional, large periplasmic basal disk at 
a similar position [81]. It was proposed that these additional 
structures serve as a robust scaffold for recruitment of sta-
tor complexes to the motor, an important feature thought to 
be linked to the high motility of H. pylori and C. jejuni in 
viscous environments [75, 81].

The central rod component of the basal body is connected 
via a hook to a helical filament. The flagellar filament is 
composed of two proteins, the major flagellin FlaA and the 
minor flagellin FlaB [82]. The flagellins are exported via the 
type III secretion apparatus within the basal body following 
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translation and post-translational modification in the cyto-
plasm [83].

The role of FlaA and FlaB in the biosynthesis of fully 
functional flagella in C. jejuni and H. pylori has been inves-
tigated [84, 85]. In H. pylori, FlaA (53 kDa) and FlaB 
(54 kDa) show around 56% amino acid sequence identity 
[85]. A mutagenesis study revealed that isogenic H. pylori 
flaA mutants were aflagellated and non-motile, while the 
flaB mutants were flagellated but only partially motile [86, 
87]. The C. jejuni FlaA (60 kDa) and FlaB (60 kDa) are 
more similar to each other (92–95% sequence identity) [82]. 
The C. jejuni flaA mutant had a truncated flagellum and was 
unable to colonise the host [88]. Although the C. jejuni 
flaB gene is not essential for motility [87], its product was 
reported to play an important role in the defence of C. jejuni 
against bacteriophage infection [89]. In 1999, it became evi-
dent that flagellins of Helicobacter and Campylobacter spp. 
are glycosylated [87, 90]. C. jejuni flagellins are among the 
most heavily glycosylated proteins identified to date, with 
the carbohydrate moieties contributing up to ~ 10% of the 
total molecular weight [91–93].

Protein glycosylation

Glycosylation (a covalent addition of sugar moieties) of pro-
teins is a ubiquitous co-translational or post-translational 
modification occurring in all kingdoms of life. More than 
two-thirds of eukaryotic proteins are believed to be glyco-
sylated [94]. Since the discovery of glycoproteins in archaea 
Halobacterium sp. and hypothermophilic bacteria Clostrid-
ium sp. [95, 96], protein glycosylation in microorganisms 
has been studied extensively, yielding insights into the struc-
ture of the oligosaccharide building blocks of the glycan 
moieties and the mechanisms of glycosylation [97].

Classification of glycosylation

The three most common types of protein glycosylation, clas-
sified according to the nature of the atom of the amino acid 
to which the sugar moiety is attached, are (1) N-linked, (2) 
C-linked, and (3) O-linked glycosylation.

N‑linked glycosylation

N-linked glycosylation is a common type of post-transla-
tional modification of secreted or membrane-embedded 
proteins, where a sugar molecule is attached to a nitro-
gen atom (usually the N4 atom of asparagine residues) by 
oligosaccharyltransferase (OTase) [98]. N-glycosylation 
contributes to folding, stability, and function of a wide 
range of proteins that play a role in the regulation of cell 

differentiation, cell signalling and pathogenesis [99–101]. 
In eukaryotes, the assembly of the building blocks of the 
glycan occurs at the endoplasmic reticulum (ER) membrane, 
while in prokaryotes, this process takes place at the plasma 
membrane. Preassembled blocks of 14 sugars, containing 
two N-acetylglucosamine, nine mannose, and three glucose 
residues, are transferred onto the lipid anchor to generate a 
lipid-linked oligosaccharide (LLO). The LLO is then flipped 
from the cytosolic side to the luminal face of the eukaryotic 
ER or to the outer layer of the plasma membrane in prokary-
otes, where it serves as a glycosyl donor for the transfer 
reaction catalysed by OTase [102]. Proteins harbouring the 
conserved sequence Asn-X-Ser/Thr/Cys in eukaryotes [98, 
103] and Asp/Glu-X-Asn-X-Ser/Thr in bacteria [104, 105] 
act as acceptors in the ER lumen or the bacterial extracyto-
plasmic space, respectively [102]. Following the transfer, the 
N-glycan can be modified via terminal glycosylation which 
gives rise to its structural diversity.

C‑linked glycosylation/C‑mannosylation

C-linked glycosylation (also known as C-mannosylation) 
is a relatively rare event that is defined as the covalent 
attachment of mannose by specific mannosyltransferase 
to the indole C2 carbon atom of a tryptophan residue on 
an acceptor protein via a C–C link [106, 107]. This type 
of glycosylation has been reviewed elsewhere [108, 109]. 
C-mannosylation is restricted to mammals and related spe-
cies [110]. The consensus motif for C-linked glycosylation 
is Trp-X-X-Trp or Trp-X-X-Cys/Phe (where X can be any 
residue except proline), and the addition of the mannose 
sugar usually occurs at the first Trp residue [108, 111, 112], 
although in a motif (Trp-X-X-Trp-X-X-Trp) C-mannosyla-
tion can occur on all tryptophan residues [110, 113]. This 
type of post-translational modification plays a role in protein 
folding, stability and cell signalling mechanisms [109, 110].

O‑linked glycosylation

O-glycosylation is a covalent linkage of a sugar to the 
side-chain hydroxyl oxygen of serine, threonine, tyrosine, 
hydroxylysine or hydroxyproline residue [114, 115]. Pro-
line-rich sequences (Thr-Ala-Pro-Pro, Thr-Val-X-Pro, Ser/
Thr-Pro-X-Pro and Thr-Ser-Ala-Pro, where X can be any 
amino acid) are usually preferred for O-glycosylation [114]. 
However, the consensus sequence of O-glycosylation is yet 
to be identified.

O-glycosylation in eukaryotes takes place in the Golgi 
apparatus, ER, and cytoplasm [116–118] and involves the 
sequential addition of nucleotide-activated monosaccharides 
to acceptor proteins [116]. Sugar units can be of a different 
chemical nature, which is the source of diversity of O-linked 
glycan chains. O-linked N-acetylgalactosamine glycans 
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(O-GalNAc) are the most abundant type. They are com-
monly found in, for example, mucins, fetuin, gonadotropins, 
and glycophorins [114, 119]. O-linked glycans incorporating 
N-acetylglucosamine, fucose, xylose, galactose, mannose, 
glucose, and arabinose have also been found [119, 120].

In prokaryotes, O-glycosylation is believed to occur 
in the cytoplasm or inner membrane [116]. Two distinct 
mechanisms of bacterial O-glycosylation have been iden-
tified: OTase-dependent and OTase-independent [115]. As 
the first step of the OTase-dependent O-glycosylation, an 
initiating glycosyltransferase (GT) catalyses the attachment 
of the first nucleotide-activated monosaccharide to the mem-
brane-embedded lipid carrier (undecaprenolphosphate) on 
the cytoplasmic side of the inner membrane of the cell [121]. 
Further individual monosaccharide groups are subsequently 
added one by one by different GTs. Then the undecapre-
nolphosphate-linked glycan is flipped onto the periplasmic 
side of the membrane and transferred onto the acceptor pro-
tein by OTase [121]. The OTase-dependent O-glycosylation 
pathway appears to exist only in Gram-negative bacteria 
[122]. A wide range of structurally and functionally diverse 
membrane-associated proteins, including the components of 
type IV pili, has been reported to be glycosylated through 
this mechanism [115, 123]. OTase-independent O-glyco-
sylation, where nucleotide-activated monosaccharides are 
directly transferred onto acceptor proteins by cytoplasmic 
GTs, has been observed for proteins that are exported to 
the outer membrane (e.g. adhesins, autotransporters) or 
secreted by the basal body [115]. One important function of 
O-glycosylation is to help pathogenic bacteria to evade host 
defence mechanisms [92, 93, 115, 124, 125]. The remain-
ing part of this review focuses on the OTase-independent 
O-glycosylation of flagellins in the representative members 
of ε-Proteobacteria C. jejuni and H. pylori.

Pseudaminic acid biosynthesis pathway

Flagellin modification via O-linked glycosylation has been 
characterised in many bacteria, including H. pylori and C. 

jejuni [91, 115, 126]. C. jejuni FlaA is glycosylated at up 
to 19 sites [93]; C. jejuni FlaB is also glycosylated, but the 
exact number of sites remains to be established [127]. FlaA 
and FlaB in H. pylori are glycosylated at seven and ten sites, 
respectively [92]. H. pylori decorates its flagellins with gly-
cans that contain only one type of sugar, the sialic acid-like 
nonulosonate pseudaminic acid (Pse, 5,7-diacetamido-3,5,-
7,9-tetradeoxy-l-glycero-α-l-manno-2-nonulopyranosonic 
acid) [91]. In contrast, O-linked glycans attached to C. 
jejuni flagellins can contain more than one type of sugar, 
including Pse, legionaminic acid and related derivatives of 
nonulosonate [93] (Fig. 1). The Pse biosynthesis has been 
extensively studied in H. pylori and C. jejuni. Nucleotide-
activated pseudaminic acid is synthesised via six consecu-
tive enzymatic steps, illustrated in Fig. 2 [128, 129], and 
then transferred onto flagellins via O-linked glycosylation.

Step one

The first step of the Pse biosynthesis pathway is cata-
lysed by the uridine-5′-diphosphate N-acetylglucosamine 
(UDP-GlcNAc) 5-inverting 4,6-dehydratase (also known 
as pseudaminic acid biosynthesis protein B, PseB, EC 
4.2.1.115). PseB is a bifunctional enzyme that belongs to 
the short-chain dehydrogenase/reductase (SDR) superfam-
ily and uses nicotinamide adenine dinucleotide phosphate 
(NADP+) as a cofactor [130]. PseB catalyses oxidation at 
the C-4″ atom of the nucleotide sugar UDP-GlcNAc by 
adding a ketone group, and a subsequent reduction at the 
C-6″ atom to generate UDP-2-acetamido-2,6-dideoxy-β-l-
arabino-4-hexulose (UDP-6-deoxy-4-keto-HexNAc) (Fig. 2) 
[130–132]. PseB from H. pylori and C. jejuni share 63% 
amino acid sequence identity and follow the same catalytic 
mechanism [131]. In H. pylori, this enzyme is also involved 
in the alteration of the O-antigen composition in the lipopol-
ysaccharide (LPS) and the modulation of the urease activity, 
in addition to its role in the flagellin glycosylation [133]. 
Inactivation of the pseB gene in H. pylori resulted in an 
aflagellated non-motile phenotype which suggested that 

Fig. 1   Structures of 
pseudaminic acid and legion-
aminic acid
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PseB likely plays an important role in bacterial pathogenesis 
and colonisation [133].

Helicobacter pylori PseB (HpPseB, 333 aa) exists as 
a hexamer both in solution and in crystal [132]. Each 
HpPseB monomer consists of two lobes: an N-terminal 
large lobe (residues 1–174, 208–234, and 265–317) and 
C-terminal small lobe (residues 175–207, 235–264, and 
318–333) (Fig. 3). The N-terminal lobe adopts a Rossmann 
fold with four additional β-strands, while the C-terminal 

lobe harbors three α-helices and two β-strands. Detailed 
structural analysis of the HpPseB/NADP/UDP-N-acetyl-
glucosamine complex revealed that the cofactor binds to 
the Rossmann fold part of the N-terminal lobe, whereas 
the sugar substrate binding site is located in the C-ter-
minal lobe (Fig. 3). Biophysical and mutagenesis stud-
ies confirmed the presence of three catalytic residues 
(D132, K133, and Y141) in HpPseB, one of which (K133, 

Fig. 2   The Pse biosynthesis pathway in H. pylori and C. jejuni [129]
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equivalent to K127 in C. jejuni PseB) is believed to serve 
as both a catalytic acid and base during the reaction [131, 
132].

Step two

The second step of the Pse biosynthetic pathway (Fig. 2), 
axial transfer of an amino group onto the C4 atom of UDP-
6-deoxy-4-keto-HexNAc to produce UDP-4-amino-4,6-
dideoxy-β-l-AltNAc, is catalysed by the UDP-4-amino-4,6-
dideoxy-N-acetyl-β-l-altrosamine transaminase, also known 
as pseudaminic acid biosynthesis protein C, PseC (EC 
2.6.1.92). This enzyme belongs to the pyridoxal 5′-phos-
phate (PLP)-dependent transferase superfamily [128, 134]. 
PseC uses PLP as a cofactor and l-glutamate as an amino 
group donor [134, 135]. Insertional inactivation of the H. 
pylori pseC gene (HP0366) produced a non-motile phe-
notype that did not produce flagella and lacked O-antigen 
[133]. In addition, an isogenic H. pylori pseC mutant showed 
reduced invasion of human gastric epithelial cells. H. pylori 
PseC (HpPseC) shares no homology with any of the genes 
for the biosynthesis of the related nine-carbon sugar, sialic 
acid, in humans and, therefore, it represents a potential target 
for the design of novel anti-H. pylori therapeutics [136].

Biochemical and structural analyses have shown that 
HpPseC exists as a homodimer both in solution and in 
crystal [136]. The HpPseC monomer comprises two 
domains (Fig.  4). The N-terminal domain (residues 
13–245) has a central mixed seven-stranded β-sheet, in 
which the β-strands are arranged in the topological order 

↑β1–↓β7–↑β6–↑β5–↑β4–↑β2–↑β3. The β-sheet is flanked 
on either side by several α-helices. This domain harbors a 
β-hairpin structure (residues 211–225 on ↑β8 and ↓β9) that 
is projected away from one monomer and interacts with the 
second monomer at the dimer interface (Fig. 4) [136]. The 
C-terminal domain (residues 1–12 and 246–374) contains 
an antiparallel β-sheet with the strands arranged in the order 
↑β10–↓β11–↑β12. This β-sheet is sandwiched between three 
α-helices on one side and the edge of the central β-sheet in 
the N-terminal domain on the other side. Two large and deep 
active site cavities are located at the dimer interface, and 
both monomers provide the residues that form the walls of 
these cavities (Fig. 4) [136]. Detailed crystallographic analy-
sis of the HpPseC/PLP and HpPseC/PLP/UDP-4-amino-4,6-
dideoxy-β-l-AltNAc (reaction product) complexes revealed 
that the cofactor PLP binding site is located at the bottom 
of the cavity near the C-terminal edge of the central β-sheet. 

Fig. 3   Cartoon representation of the structure of H. pylori PseB in 
complex with nicotinamide adenine dinucleotide phosphate (NADP+) 
and uridine-diphosphate-N-acetylglucosamine (PDB ID: 2GN6 
[132]). The part of the N-terminal domain that has the Rossmann 
fold is coloured cyan, and the additional four β-strands are coloured 
wheat. The NADP molecule is drawn as black sticks, the substrate is 
drawn using a ball-and-stick representation

Fig. 4   Cartoon representation of the structure of the H. pylori PseC 
dimer (PDB ID: 2FNU [136]). The N- and C-terminal domains of 
one of the two monomers are coloured green and magenta, respec-
tively. The β-hairpin involved in domain swapping is coloured cyan; 
the bound pyridoxamine-5′-phosphate (PMP) cofactor is drawn as 
black sticks; the product UDP-4-amino-4,6-dideoxy-β-l-AltNAc 
(UD1) is shown using a ball-and-stick representation. The star (*) 
indicates domains from the second monomer of the PseC homodimer
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The UDP-sugar binds at a different part of the pocket, con-
nected to the bottom of the PLP binding cavity, and interacts 
with residues from both monomers. Site-directed mutagen-
esis has confirmed the crucial role of K183 (equivalent 
to K181 in C. jejuni PseC) in the catalytic mechanism of 
HpPseC [135, 136].

Step three

The third step of the Pse biosynthesis pathway (Fig. 2) is cat-
alysed by a nucleotide sugar-linked N-acetyltransferase, also 
known as pseudaminic acid biosynthesis protein H (PseH), 
or flagellin modification protein H (FlmH) (EC 2.3.1.202). It 
acetylates at the C4 of the UDP-sugar produced in the previ-
ous step, using acetyl-CoA (AcCoA) as an acetyl donor, and 
produces UDP-2,4-diacetamido-2,4,6-trideoxy-β-l-altrose 
(UDP-6-deoxy-AltdiNAc) [128]. Mutational inactivation 
of the C. jejuni pseH gene resulted in the inhibition of the 
flagellum assembly, thereby rendering bacteria non-motile. 
This finding suggests that PseH plays a crucial role in bac-
terial motility and, likely, virulence [124, 137]. PseH is a 
member of the general control non-repressible 5 (GCN5)-
related N-acetyltransferases (GNAT) superfamily [138], rep-
resentatives of which are present in all kingdoms of life. A 
common feature of the GNAT enzymes is a V-shaped active 
site cavity at the central β-sheet and a P-loop that interacts 
with the pyrophosphate arm of the acetyl-CoA (AcCoA) 
cofactor [138]. Most members of this superfamily follow the 
direct acetyl transfer mechanism that proceeds via formation 
of a tetrahedral intermediate [138].

Helicobacter pylori PseH (HpPseH) (21.4  kDa) is 
dimeric in solution and in crystal [129, 139]. X-ray crystal-
lographic analysis of the PseH/AcCoA complex revealed 
that each monomer has a core β-sheet made up of eight 
β-strands which are arranged in the topological order 
↑β0–↓β1–↑β2–↓β3–↑β4–↑β5–↓β7–↑β6 (Fig. 5) [129]. The 
central β-sheet is flanked by three α-helices on each side. 
The cofactor AcCoA binds at the V-shaped cavity between 
strands β4 and β5, so that its pyrophosphate arm interacts 
with the P-loop between the β4-strand and α4-helix. Analy-
sis of the modelled structure of the PseH/substrate/cofactor 
complex suggested that the nucleotide- and 4-amino-4,6-
dideoxy-β-l-AltNAc-binding pockets are the elements that 
contribute to the substrate specificity most. Furthermore, 
a hydrophobic pocket harbouring the 6′-methyl group of 
the altrose determines preference to the methyl over the 
hydroxyl group [129]. Examination of the conservation of 
the amino acid residues in the enzyme active site suggested 
that PseH follows the common GNAT catalytic mechanism 
that involves direct acetyl transfer from AcCoA without an 
acetylated enzyme intermediate, and that S78 and Y138 
likely act as a general base and acid in the PseH-catalysed 

reaction. The crystal structure of a homolog from C. jejuni 
with a similar fold has also been reported [140].

Step four

The fourth step of the Pse pathway (Fig. 2) is catalysed by 
an inverting nucleotide sugar hydrolase (UDP-6-deoxy-
AltdiNAc hydrolase, PseG, EC 3.6.1.57) that belongs to 
the glycosyltransferase B (GT-B) family [141]. The enzyme 
hydrolyses UDP-6-deoxy-AltdiNAc to generate the free 
sugar 2,4-diacetamido-2,4,6-trideoxy-β-l-altropyranose 
[142]. The enzyme also inverts the stereochemistry at the 
C-1 atom of the substrate [128, 143]. Insertional inactivation 
of the H. pylori pseG (HP0326B) gene abolished flagellin 
production and resulted in a non-motile phenotype [92].

Biochemical and biophysical analyses showed that C. 
jejuni PseG (CjPseG, 282 aa) exists as a monomer both in 
solution and in crystal [142]. Structural analysis of CjPseG 
revealed that it has two domains: N-terminal domain (resi-
dues 1–142) and C-terminal domain (residues 153–282), 
connected by a short α-helix (residues 143–152) [142]. The 
N-terminal domain harbors a parallel β-sheet made up of 
seven β-strands (↑β3–↑β2–↑β1–↑β4–↑β5–↑β6–↑β7), sand-
wiched between two α-helices on one side and three on 
the other (Fig. 6). The C-terminal domain contains a six-
stranded parallel β-sheet, where strands are arranged in the 
order ↑β10–↑β9–↑β8–↑β11–↑β12–↑β13, and sandwiched 

Fig. 5   Cartoon representation of the structure of H. pylori PseH in 
complex with AcCoA (PDB ID: 4RI1 [129]). The motifs that are 
conserved across all GNAT enzymes are coloured as follows: motif 
C—green, motif D—blue, motif A—red, motif B—magenta. Non-
conserved N-terminal and C-terminal regions are coloured wheat. 
The AcCoA cofactor is drawn in black using a stick representation
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between two α-helices on one side and three α-helices on the 
other. X-ray crystallographic analysis of CjPseG in complex 
with UDP revealed that the enzyme active site is located in 
the long cleft at the domain interface, with residues from 
both domains contributing to the ligand binding pocket 
[142]. Detailed analysis of the modelled complex with the 
nucleotide sugar substrate suggested that the UDP-sugar 
adopts a twist-boat conformation at the active site, thereby 
exposing the anomeric bond for the nucleophilic attack via 
an active site water molecule, which facilitates inversion at 
the C-1 atom [142]. The active site has three highly con-
served residues (H17, Y78, and N255) that interact with the 
sugar moiety of the substrate. A mutagenesis study showed 
that H17 is crucial for substrate recognition and serves as a 
catalytic base in the reaction [142].

Mechanistic studies showed that the elimination of the 
nucleotide moiety by CjPseG occurs via a metal-independ-
ent C–O bond cleavage mechanism. In the course of the 
reaction, a catalytic water molecule (hydrogen bonded to 
H17 and main-chain carbonyl of I13) directly attacks the 

anomeric carbon (C-1), followed by cleavage of the C–O 
anomeric bond to remove UDP from the UDP-6-deoxy-
AltdiNAc sugar [143].

Step five

The fifth step of the Pse synthesis pathway, a conden-
sation between phosphoenolpyruvate (PEP) and sugar 
2,4-diacetamido-2,4,6-trideoxy-β-l-altropyranose to gen-
erate pseudaminic acid (Pse), is catalysed by Pse synthase 
(also known as pseudaminic acid biosynthesis protein I, 
PseI, EC 2.5.1.97) (Fig. 2). Inactivation of the pseI gene 
H. pylori (HP0178), or of the homologous gene neuB3 in 
C. jejuni, abolished the synthesis of functional flagella and 
thereby impaired bacterial motility [92, 144]. Biochemical 
analysis of C. jejuni NeuB3 (CjNeuB3) showed that a diva-
lent metal ion is required for its activity [145]. Apart from 
C. jejuni, functional homologues of HpPseI have also been 
found in many other organisms, where they are involved in 
the biosynthesis of sialic acid (NeuAc) by catalysing the 
reaction of a condensation between PEP and N-acetylman-
nosamine (ManNAc) (or ManNAc-6-P in mammalian cells) 
[146].

Biophysical and structural analyses of N. meningitidis 
NeuB (NmNeuB, 349 aa, sharing 30 and 35% sequence 
identity with CjNeuB3 and HpPseI, respectively) showed 
that NmNeuB exists as a homodimer both in solution and 
in crystal [147]. The crystal structure of NmNeuB in com-
plex with PEP and substrate analog N-acetylmannosaminitol 
(rManNAc, an unreactive, reduced form of ManNAc) [148] 
revealed that the NmNeuB monomer contains an N-terminal 
catalytic domain with a (β/α)8 barrel fold (also known as 
triosephosphate isomerase (TIM)-barrel fold)), connected 
via a long linker with the C-terminal antifreeze protein-like 
(AFPL) domain (74 aa) (Fig. 7) [147]. In the homodimer, the 
AFPL domain from one monomer binds over the active site 
in the TIM barrel domain of the opposite monomer, capping 
the active site cavity. This structural architecture is crucial 
for the activity of the enzyme, as the residues from the linker 
region and AFPL domain form part of the active site. This 
feature is common among enzymes with a TIM barrel fold 
[149]. In the crystal structure of the NmNeuB/PEP/rMan-
NAc complex, the substrate analog forms hydrogen bonds 
with highly conserved residues D247, Q55, and Y186. 
Another important conserved residue, R314 on the AFPL 
domain of the second monomer, interacts with the N-acetyl 
group of rManNAc via a water molecule. A combination of 
mutagenesis, biochemical and kinetic analyses have shown 
that R314 plays an important role in the proper positioning 
of the sugar substrate at the active site, and thereby contrib-
utes to the catalysis [150]. The R314A substitution resulted 
in the inactivation of NmNeuB [150].

Fig. 6   Cartoon representation of the structure of C. jejuni PseG 
in complex with uridine-5′-diphosphate (UDP) (PDB ID: 3HBN) 
[142]. The N-terminal domain (red) is connected with the C-terminal 
domain (green) by an α-helix (magenta coloured). The UPD molecule 
is drawn as black sticks
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Kinetic analysis of C. jejuni NeuB3 showed that the 
NeuB3-catalysed reaction follows the Michaelis–Menten 
kinetics, and the condensation reaction occurs by a C–O 
bond cleavage mechanism that proceeds via an oxocarbe-
nium ion and tetrahedral intermediates [145]. The divalent 
cation (Mn2+ or Co2+), which is absolutely required for 
catalysis, acts as an electrophile that activates the carbonyl 
of the aldehyde for an attack by the C-3 carbon of PEP. 
Three conserved glutamate residues in the active site were 
identified as candidates for the role of the catalytic base in 
the reaction [147].

Step six

The final step of the Pse synthesis pathway (Fig. 2), activa-
tion of Pse with cytidine 5′-monophosphate (CMP), is cata-
lysed by the metal-dependent pseudaminic acid cytidyltrans-
ferase, also known as CMP-pseudaminic acid synthetase or 
pseudaminic acid biosynthesis protein F (PseF, EC 2.7.7.81). 
This enzyme belongs to the nucleotide diphosphate sugar 
transferases superfamily [128]. Insertional inactivation 
of the pseF gene in H. pylori (HP0326A) resulted in the 
non-flagellated, non-motile phenotype [92]. A functional 
homolog of PseF found in N. meningitidis catalyses the bio-
synthesis of CMP-N-acetylneuraminic acid (CMP-Neu5Ac), 
and is termed CMP-5-N-acetylneuraminic acid synthetase 
(also known as CMP-Neu5Ac synthetase CNS, EC 2.7.7.43) 
[151].

N. meningitidis CNS (NmCNS) activates 5-N-acetyl-
neuraminic acid (Neu5Ac) by transferring the CMP moi-
ety of CTP to the anomeric OH-group of Neu5Ac in a 
Mg2+-dependent manner. The Neu5Ac is then transferred 

and incorporated into the bacterial cell surface components, 
such as LPS and the polysialic acid capsule, which are 
important virulence factors. Structural analysis of NmCNS 
revealed that it exists as a dimer in the crystal [152]. The 
NmCNS subunit has an α/β-type fold with an ~ 35-resi-
due-long insertion—a β-hairpin (HP) domain—that plays 
an important role in dimerisation [152]. The core hydro-
lase domain has an αβα three-layer sandwich architecture 
which consists of seven β-strands with the topological order 
(↑β3–↑β2–↑β1–↑β4–↓β8–↑β5–↑β9) (Fig. 8). The central 
β-sheet is flanked by four α-helices on one side and three 
on the other. The HP domain protrudes out from the central 
β-sheet and contains two antiparallel β-strands (β6 and β7) 
and two α-helices. The active site of NmCNS is located at 
the interface of the core domain of one monomer and the HP 
domain of the second (Fig. 8). Analysis of the structure of 
the NmCNS active site revealed that it contains a hydropho-
bic pocket formed by Y179, F192, and F193 to aid binding 
of the methyl group of the N-acetyl moiety of Neu5Ac [153]. 
This feature is important for substrate recognition, as alanine 
substitutions at these positions resulted in a significant loss 
of enzymatic activity [153]. Residue K142 in the HP domain 
serves to neutralise the negative charge of the carboxylate 
group of sialic acid by the proper position of R196 via a 
hydrogen-bonding network. Furthermore, residues D211 and 
D209 that coordinate the catalytic Mg2+ ions were shown by 
mutagenesis to play an important role in catalysis. Finally, 
mutations of Q104 at the active site suggested its role in the 
metal-binding site of an intermediate complex.

The CNS enzyme follows an ordered sequential kinetic 
mechanism where the CTP molecule binds to the enzyme 
first, followed by sialic acid [153]. Horsfall and colleagues 

Fig. 7   Cartoon representation of the structure of N. meningitidis 
NeuB in complex with substrate analog N-acetylmannosaminitol 
(rManNAc), phosphoenolpyruvate (PEP) and Mn2+ (PDB ID: 1XUZ 
[147]). The linker region and antifreeze protein-like (AFPL) domain 

are coloured magenta and cyan, respectively. The PEP cofactor is 
drawn as black sticks, whereas the rManNAc is shown using a ball-
and-stick representation; the Mn2+ ion is shown as a blue sphere
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proposed a catalytic mechanism for CNS that involves two 
Mg2+ ions [153]. The role of the Mg2+ ions is to facilitate 
the correct orientation of the substrates and to activate the 
α-phosphate moiety of CTP and the sugar hydroxyl group of 
Neu5Ac. An ordered solvent molecule has been proposed to 
serve as the general base for the reaction [151]. Kinetic anal-
ysis showed that other nucleotides (ATP, GTP, TTP, or UTP) 
cannot replace CTP as a donor of nucleotide monophosphate 
in the NmCNS-catalysed reaction.

Current knowledge on inhibitors targeting Pse 
biosynthesis pathway

The Pse synthesis pathway enzymes are considered promis-
ing targets for the development of novel therapeutics since 
bacterial motility is essential for colonisation and develop-
ment of persistent infection. This section summaries efforts 
to identify inhibitors targeting this pathway and investigate 
their mode of action. Kinetic studies and structure–activity 
relationship analysis revealed that the activated final prod-
uct of the Pse pathway, cytidine 5′-monophosphate (CMP)-
conjugated Pse, can serve as a natural inhibitor of the first 
enzyme (PseB) of the Pse biosynthesis pathway [128]. The 
enzymatic activity of PseB is also inhibited by UDP-α-D-
galactose [130]. Recently, Ménard and colleagues have iden-
tified five additional PseB inhibitors using a combination of 
high-throughput screening and in silico approaches [154]. 

Three out of the five inhibitors were able to penetrate the cell 
membrane and inhibit flagellin production in C. jejuni with 
an IC50 (50% inhibitory concentration) of 14 µM. Interest-
ingly, these inhibitors also showed dose-dependent activity 
against the fourth enzyme of the Pse pathway in H. pylori, 
PseG [154]. Analysis of the binding mode of the inhibi-
tors, predicted using in silico docking, suggested that they 
bind in the active site of PseB and PseG, competing with 
their respective substrates [154]. Since they showed inhibi-
tory activity at concentrations in the micromolar range, it is 
thought that this class of molecules can be developed into 
novel anti-infective agents to combat multidrug-resistant 
bacterial infection.

Although no inhibitors have so far been identified for the 
remaining four enzymes of the Pse biosynthesis pathway 
in H. pylori or C. jejuni, the current knowledge on inhibi-
tors of homologous enzymes from other species may guide 
efforts towards this goal. In a study on the N. meningitidis 
sialic acid synthase (NmNeuB), a structural and functional 
homolog of the fifth enzyme (PseI) of the Pse pathway 
[148], a stable 2-deoxy analog of the putative tetrahedral 
intermediate of the reaction was identified, which inhibits 
the NmNeuB activity with an apparent Ki of 3.1 μM. The 
structure of the NmNeuB/inhibitor/Mn2+ complex revealed 
that the inhibitor binds at the active site in a similar manner 
to the cognate substrate. A study on the CMP-5-N-acetyl-
neuraminic acid synthetase (NmCNS) from N. meningitides 
(a structural and functional homolog of PseF) revealed that 

Fig. 8   Cartoon representation of the structure of the N. meningitidis CNS homodimer in complex with cytidine-5′-diphosphate (CDP) (PDB ID: 
1EYR [151]). The dimerisation hairpin (HP) domain is coloured magenta. The substrate analog CDP is shown using a stick representation
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sulfo-CTP and sulfo-UTP analogs inhibit the NmCNS activ-
ity [155], although no structures of the inhibitor complexes 
are available yet.

Conclusions and therapeutic prospects

Glycoconjugates are widespread in nature and have diverse 
biological functions. Importantly, most of the characterised 
bacterial glycoproteins are linked with virulence factors 
[156]. In fact, many of the glycoproteins produced by bac-
teria contribute directly to cell adhesion, invasion, immune 
activation, or evasion of host defence mechanisms [66, 
157–160].

Flagellar glycosylation is essential for the biosynthesis of 
functional flagella and hence for motility and pathogenesis 
[156, 161]. Inactivation of the glycosylation genes gener-
ated mutants that were either unable to produce flagellins or 
possessed inactive flagella [69, 127]. The structural similar-
ity between the flagellar glycans of GI tract pathogens and 
the host’s sialic acids makes a significant contribution to 
host–pathogen interactions [157]. A recent report showed 
that Pse residues modulate cytokine interleukin 10 expres-
sion, and thereby facilitate bacterial colonisation of the host 
[162].

The glycosylation sites in flagellins showed variation in 
terms of their biological functions. In C. jejuni, some glyco-
sylation sites appear to be indispensable for the assembly of 
the flagellum, while other locations were shown to be crucial 
for autoagglutination and microcolony formation, which is a 
prerequisite to the development of biofilms in the host [69, 
163]. In H. pylori, Pse biosynthesis is essential not only for 
the assembly of functional flagella but also for the produc-
tion of a wide range of virulence factors, including urease 
and LPS [133]. It has been suggested that glycosylation in 
H. pylori could also serve to disguise the antigenic epitopes 
of outer membrane proteins, thereby reducing host immune 
responses and influencing the clinical outcome of H. pylori 
infection [133].

The presence of nonulosonates, such as pseudaminic acid 
and related sugars, on the bacterial cell surface components 
including pilli, LPS O-antigen, and capsular polysaccharide 
[164–166] has attracted considerable attention over recent 
years. Prior to its incorporation in biological macromole-
cules, Pse must be synthesised and activated [128]. Due to 
the unstable nature of the activated nucleotide sugars and 
high cost of synthesis by chemical methods, Pse-synthesis-
ing enzymes are of great interest in the field of biotechnol-
ogy, as an alternative route to cost-efficient production of 
Pse and its analogs. In addition, as highlighted in a recent 
report, bacterial O-glycosylation systems can be exploited 
for the production of bioconjugate vaccines targeting a vari-
ety of pathogens [167].

Pseudaminic acid is found only in bacterial pathogens. 
It is not produced or utilised by humans, nor it is present in 
commensal bacteria that dominate the human gut microbi-
ome [168, 169]. Therefore, the Pse biosynthesis pathway 
represents an attractive target for selective inhibition, and 
further detailed studies of the enzymes from this pathway 
and their validation as targets for novel antimicrobials are 
well warranted in the view of the global spread of resistance 
to the existing antibiotics.
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