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problems associated with the increasing number of antibiotic 
resistant pathogenic strains. In this article, we review and 
discuss the above-mentioned issues with the aim of encour-
aging debate on the actions needed for understanding the 
impact of early life antibiotics upon human microbiota and 
health and for developing strategies aimed at minimizing 
this impact.

Keywords  Infant · Microbiota · Antibiotics · Intrapartum-
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Introduction

The gut microbiota is the wide, complex and diverse col-
lection of microorganisms living in the intestine, including 
bacteria, archaea, viruses and unicellular eukaryotes. This 
microbiota has adapted to coexist in a commensal relation-
ship with the host and contributes to the programming of gut 
development and intestinal barrier function, as well as to the 
metabolic and immune homeostasis, being a key determinant 
for health [1, 2]. For this reason, the study of the intestinal 
microbiota has received growing attention during the last 
years.

The recent advances in this area have been largely a 
consequence of the development of methods allowing the 
comprehensive study of complex microbial ecosystems. 
Until the end of the past century, the intestinal microbial 
composition had been mainly studied using culture-based 
methods, but the development of culture-independent tech-
niques and, more recently, the improvement of the massive 
DNA sequencing platforms have made these tools the cur-
rent standard in microbiota research [3, 4]. However, despite 
the efforts for characterizing the human intestinal microbiota 
composition, the large inter-individual variability makes the 
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interpretation of the results difficult and underlines the need 
to determine not just the composition but also the microbiota 
functionality in the interaction with the host. In this sense, 
the use of germ-free (GF) and gnotobiotic animal models 
provide an invaluable experimental tool to understand the 
role of the microbiota establishment on the host health and 
development. GF animals show anatomical and physiologi-
cal features that differ from those of specific pathogen-free 
(SPF) and wild-type animal counterparts [5], underlining the 
importance of the microbiota for the host.

Accumulating evidence indicates that the early life 
cross-talk between the microbiota and the host is essential 
for establishing and maintaining the well-being of the indi-
vidual. This early microbiota seems to provide a stimulus 
required for an adequate development of the gut and immune 
functions [2, 6–10], with effects on distal organs and also 
at systemic level [11–14]. Therefore, any disturbance of the 
neonatal microbiota development process may have impor-
tant implications for infant health and for the risk of disease 
later in life.

Establishment of the intestinal microbiota in early life

Traditionally the fetus has been considered sterile but recent 
studies indicate in utero microbial exposure prior to deliv-
ery. The presence of low levels of bacteria in placenta, 
amniotic fluid, umbilical cord blood or meconium has been 
demonstrated [15–17]. This prenatal microbial exposure 
greatly increases after birth when the newborn is rapidly 
and densely colonized with a complex myriad of microbes. 
The microbial colonization process depends on an interplay 
among different factors including gestational age [18–20], 
mode of delivery [20–23], use of perinatal antibiotics [19, 
24–26] or feeding habits [23, 27]. All these factors contrib-
ute to the establishment and later development of the micro-
biota in the infant [28].

During the initial colonization stages, the microbiota is 
unstable and undergoes microbial succession phenomena. 
The classical pattern initiates with facultative anaerobes, 
such as enterobacteria, which reduce the intestinal environ-
ment creating suitable conditions for the subsequent pro-
liferation of strict anaerobes such as Bifidobacterium [29]. 
Then, other anaerobic populations including Bacteroides 
and different clostridia start to increase, especially after 
weaning. During the first year of life the infant microbiota 
maturates at both compositional and functional level, with 
major changes occurring as a consequence of breastfeed-
ing cessation [23]. During this period, the microbiota of 
the individual increases in α-diversity whilst the β-diversity 
is decreased, indicating that the microbiota becomes more 
complex and homogeneous among individuals along time 
[23].This progression continues until the age of 2–3 years 
when the microbiota resembles that of adults, with some 

bacterial groups already reaching the adult state stability 
[27]; other bacterial groups, however, may require longer 
time to reach the adult steady-state [30] with some differ-
ences still being present at the preadolescent age [31].

Early life microbiota–host interaction: the window 
of opportunity

The timing of colonization seems to be very important as 
underlined by different studies demonstrating that restora-
tion of the microbiota of GF animals in early life, but not 
during adulthood, is able to normalize some of the functions 
that are altered in these GF models [6, 8, 32]. Experimen-
tal models demonstrate that reduced exposure to microbes 
early in life is associated with the increased prevalence of 
diseases such as allergy, IBD or diabetes [33, 34]. Moreover, 
antibiotic-induced alteration of the early microbiota leads 
to an increased susceptibility to allergic diseases [35, 36]. 
Using experimental animals, it has been demonstrated that 
antibiotic-induced disturbance of the early life microbiota 
increased the risk of undesirable long-term effects, whereas 
disturbance during adult life does not [9, 37, 38]. The type 
of antibiotic administered seems to be relevant since depend-
ing on the spectrum of action, different responses can be 
obtained. This suggests the importance of specific bacterial 
populations in terms of induction of the host homeostasis 
[35, 36, 39].

All these studies reveal that the early microbial exposure 
is important for the development of the host and point to the 
existence of a “window of opportunity” for the host micro-
bial programming in the neo(peri)natal period. Therefore, 
any perinatal intervention that modifies the establishment 
and development of the microbiota may have an influence 
on later health. However, the exact time of the “window of 
opportunity” for the establishment of a healthy microbiota is 
not precisely known, still constituting an area of active and 
intense research. The development of microbiome-modu-
lating strategies tailored to correct the potential dysbiosis 
present in early life with the aim of favoring an adequate 
microbiota development, or to avoid its disturbance by the 
administration of medication, would represent a good option 
as a preventive therapy. Among the perinatal factors poten-
tially affecting the microbiota development in the newborn, 
the use of antibiotics represents the most common threat.

Impact of antibiotics upon the establishing microbiota

Use of antibiotics during pregnancy

Pregnancy is characterized by simultaneous endocrine, met-
abolic and immune changes aimed at supporting the correct 
growth and development of the fetus [40]. During pregnancy 
the maternal microbiota suffers drastic changes [41], with 
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those occurring on the vaginal and intestinal microbiota 
being of particular relevance [42]. Maternal antibiotic use 
during pregnancy is known to affect the vaginal microbiota 
[43], which could hamper the later transfer of microbes to 
the baby during delivery. Moreover, recent data suggest that 
during gestation the maternal microbiota plays an impor-
tant role in programing the future immune system of the 
offspring [44]. It has been shown that pregnancy complica-
tions significantly affect the microbial colonization patterns 
of the infant gut, with changes persisting during the first 
year of life [45]. Similarly, antibiotics administered during 
pregnancy affect the microbial environment of the mother 
and may impact the child already in utero, disrupting the 
correct establishment of the nascent microbiota and hence 
the microbial gut colonization. Studies in animal models 
showed a reduced microbiota diversity and/or population 
structure changes in the gut microbiota of offspring from 
mothers treated with antibiotics during pregnancy [46–49]. 
More specifically, the population of lactobacilli seems to 
be reduced, whereas other populations such as Proteobac-
teria, Firmicutes or the Clostridium cluster XIVa have been 
reported to be affected as well [48–50].

Use of antibiotics during delivery

Intrapartum antimicrobial prophylaxis for  prevention 
of  early onset group B Streptococcus infection  Dur-
ing the 70’s decade group B streptococci (GBS) were the 
main infectious agents causing morbidity and mortality 
in the neonatal period in developed countries [51, 52]. At 
that time the mortality rates in newborns suffering GBS 
infection reached 50%, a figure that has been now signifi-
cantly reduced as a result of the advances in neonatal care. 
However, 25–30% of the affected newborns will still suffer 
neurologic consequences [53]. During the 1980’s several 
studies demonstrated that the administration of intravenous 
antibiotics to the mother during birth was able to prevent 
neonatal sepsis by GBS. This prompted the American Col-
lege of Obstetricians and Gynecologists and the Center for 
Disease Control (CDC, USA) to publish in 1996 the first 
recommendations for intrapartum antibiotic prophylaxis 
(IAP) which were recognized by the American Academy 
of Pediatrics a year later [51]. Prior to the introduction of 
the IAP the incidence of early neonatal GBS infection was 
of 2–3 cases per 1000 newborns in the USA and between 
0.2 and 4 cases per 1000 in Europe. From the mid-nineties, 
coinciding with the introduction of the IAP, the incidence of 
GBS infection dropped to 0.3–0.4 cases per 1000 newborns 
in most developed countries [52, 53].

The main risk factor for GBS early neonatal infection is 
the maternal, vaginal or rectal, colonization by GBS, which 
is present in between 10 and 30% of women [51]. Women 
colonized by GBS show 25-times higher risk of having a 

child with early systemic GBS infection than non-colonized 
mothers [51]. The risk of early onset GBS infection is also 
increased in preterm neonates, especially in those with low-
birth weight (< 2500 g) [54]. In the absence of any preven-
tive measure 1–2% of the newborns colonized during birth 
will develop infection in the first 7 days of life. There are 
two approaches for selecting candidates to receive IAP: (1) 
based on the presence of risk factors (prematurity, prolonged 
rupture of membranes, intrapartum fever) or (2) based on 
GBS colonization demonstrated by antepartum screening 
[51, 52]. Some retrospective studies have compared both 
strategies and concluded that IAP administration to GBS 
carriers was twice as effective as the strategy based on risk 
factors. These prompted the CDC to recommend universal 
screening between weeks 35 and 37 of pregnancy to opti-
mize the identification of women who should receive IAP 
[51]. This strategy has been implemented in most European 
countries, although other countries decided to use the risk-
factors based strategy.

Under the strategy of universal screening for GBS, IAP 
is indicated in all women with a vaginal or rectal positive 
culture for GBS, those in which GBS is detected in urine 
during pregnancy, all pregnant women who have had a child 
with neonatal GBS infection, and in all deliveries for which 
culture results are not available results and at least one of 
the following risk factors is present: less than 37 weeks of 
gestation, membranes ruptured for more than 18 h or intra-
partum fever [53]. The antibiotic of choice is intravenous 
penicillin or, alternatively, vancomycin for women allergic 
to β-lactam antibiotics.

When the risk factors based protocol is followed, IAP is 
given to women who have had a previous child with inva-
sive disease by GBS, GBS bacteriuria during pregnancy, 
preterm labor, ruptured membranes for over 18 h or intra-
partum fever, although in some countries preterm labor and 
premature rupture of membranes have been excluded from 
the list [53]. The use of the “risk factor” strategy reflects the 
belief that, given the current low incidence of perinatal GBS 
infection, the introduction of universal screening would not 
affect the infection rates but it would increase maternal and 
fetal exposure to antibiotics, with the subsequent adverse 
effects [53, 55].

In developed countries IAP is used in over 30% of total 
deliveries [56] representing the main cause of antibiotic 
exposure during the perinatal period. In spite of this 
extended use and although the available studies suggest a 
reduction of early onset GBS infection, some authors have 
indicated that these studies present a high risk of methodo-
logical bias and that further confirmation on the effective-
ness of IAP would be needed [57]. Moreover, the potential 
adverse effects of antibiotic treatment, and the interest in 
reducing antibiotics use globally, have raised the attention 
to alternative approaches to. Several studies have shown 
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that early postnatal antibiotic exposure disturbs the natural 
establishment of the intestinal microbiota in the newborn 
with potential negative influence in later health [58, 59]. 
Similarly, recent studies have reported that IAP affects 
the later microbiota development in the newborn [19, 60, 
61]. Epidemiological evidence points out to a reduced 
vertical transmission of vaginal lactobacilli from mothers 
to babies following IAP [60, 62]. Some of the microbial 
groups that have been reported to be affected include the 
genera Bacteroides and Clostridium, as well as the family 
Enterobacteriaceae [19, 60]. These results underline the 
interest in a rational use of IAP, restricting it to those situ-
ations where a beneficial effect has been demonstrated, and 
point to the need for strategies to minimize the impact of 
IAP upon the establishing microbiota. This consideration 
is especially relevant since some studies have suggested 
incomplete recovery of the gut microbiota after antibiotics 
administration to infants [63].

Antibiotics in  cesarean section delivery  In developed 
countries another important cause of antibiotic exposure 
during or immediately after delivery is cesarean section 
(CS), which occurs in about 20% of deliveries although 
with a large variability among countries. The WHO indi-
cates that, at the population level, CS rates higher than 
10% of total deliveries are not associated with signifi-
cant reductions in maternal and newborn mortality [64], 
suggesting that in many cases CS may be unnecessary. 
Women undergoing CS have a 5- to 20-fold greater risk 
of infection as compared to those undergoing vaginal 
delivery, and consequently antibiotic prophylaxis is exten-
sively applied in CS [65]. Nevertheless, some open ques-
tions remain about the potential adverse effects of these 
antibiotics for the woman and the infant. Babies born by 
C-section display an altered gut microbiota establishment 
process as compared with babies born by vaginal deliv-
ery [21, 22]. The keystone paper by Backhed et  al. [23] 
demonstrates that mother-to-infant transfer of the micro-
biota is hampered in CS delivered babies, including that 
of important intestinal anaerobes such as Bifidobacterium 
or Bacteroides. Bokulich and coworkers [58] demon-
strated that the mode of delivery had a stronger effect than 
repeated infant antibiotic treatment in the establishment 
of the gut microbiota. However, given their extensive use 
in the medical practice, the exposure to antibiotics in CS 
deliveries can be an important confounding factor in the 
study of the gut microbiota establishment, being difficult 
to isolate the CS-effects from those attributable to IAP or 
to postpartum antibiotics. To this regard, several reports 
have indicated reduced levels of microorganisms such 
as Bacteroides or Bifidobacterium, and increased levels 
of certain Firmicutes or Proteobacteria, in CS delivered 
babies [20, 22, 23, 66] and similar changes on the micro-

biota composition have been observed as a consequence 
of perinatal antibiotics [19, 24].

The large evidence substantiating the alteration of the 
neonatal microbiota in CS delivered babies has prompted 
researchers to propose the deliberated inoculation of these 
infants with their mothers’ vaginal microbiota as a way to 
promote microbiota development [67].

Use of antibiotics during the postnatal period

Antibiotics are the early life medication most frequently 
administered in neonatal intensive care units (NICUs) [68], 
with premature babies being the group receiving more 
empiric antibiotic treatments during the first days of life 
[69]. Factors like premature rupture of membranes or fears 
about occult intrauterine infection, that could precipitate 
spontaneous premature labor or chorioamnionitis, prompt 
the initiation of empiric antibiotic administration in preterm 
neonates, even though in practice the incidence of early 
onset sepsis is low [70, 71]. Premature babies are known 
to harbor an altered gut microbiota, with higher number of 
potential pathogens, lower levels of beneficial microorgan-
isms and reduced bacterial diversity than healthy full-term 
infants [18, 19]. There is not currently enough information 
to discriminate which part of these alterations is attributable 
to prematurity itself and which one to concomitant factors 
such as the antibiotic treatment. However, different stud-
ies have demonstrated that exposure to antibiotics during 
microbiome ontogeny may precede long-term disruptions. 
Moreover, early empiric antibiotic use has been associated 
with an increased risk of necrotizing enterocolitis (NEC), 
sepsis and death in premature babies [72].

The extensive exposure to antibiotics is not restricted to 
preterm babies and the hospital setting; overall more than 
half of the infants have been treated with antibiotics dur-
ing the first months of age [73]. One of the effects of these 
antibiotic treatments is the perturbation of the correct devel-
opment of the infant intestinal microbiota and, as a result, 
the disruption of a proper development of the gut, immune, 
metabolic and brain systems [9, 36, 38]. Moreover, after the 
initial antibiotic-induced perturbation the later full recovery 
of a health-associated microbiota cannot be ensured. In this 
regard, it has been shown that the caecal microbiota of mice 
treated with cefoperazone continues to be different from the 
control group even 6 weeks after finishing the treatment 
[9, 74]. Different human studies have reported reductions 
on Bifidobacterium levels and increases in enterobacteria 
in babies who received antibiotic treatments [19, 24, 75]. 
Observational studies with babies also revealed incomplete 
recovery of the gut microbiota some months after cessation 
of the antibiotic treatment [24, 75].

Breastfeeding constitutes another potential vehicle for 
antibiotic-mediated effects on the infant microbiota [76]. 
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Antibiotic consumption by the mother may affect the breast-
fed infant microbiota by two different ways; by altering the 
microbiota of the milk the infant is receiving and/or by 
transferring the antibiotic to the infant gut. In this regard, 
it is well known that maternal antibiotics alter the breast 
milk microbiota [77] and that some antibiotics may cross 
the placenta [78].

In spite of the effects stated above, it is important to 
understand that, in many circumstances, treatment with anti-
biotics is the most prudent medical option. Mortality due to 
early life infection has been drastically reduced during the 
last decades, in good part due to antibiotic treatments. How-
ever, given our increasing understanding on the importance 
of the early life microbiota, it could be wise to avoid the 
administration of antibiotics when there is not a clear indica-
tion of use, to optimize the spectrum of the antibiotics used, 
the duration of the treatment and the route of administration, 
as well as to develop strategies for limiting their impact on 
the microbiota.

Effect of early life antibiotics in disease‑risk

As indicated previously the early microbiota establishment 
process and its further development is determined by several 
factors. The use of antibiotics influences microbiota–host 
crosstalk during the critical neonatal period, therefore, being 
one of the factors that may have profound consequences for 
later health [25, 79].

In relation with the hygiene hypothesis, different epide-
miological studies have reported a link between early anti-
biotics exposure and allergic disease later in life [80, 81]. 
It has been repeatedly shown that even prenatal antibiotics 
exposition may be associated with the occurrence of asthma 
during childhood [82, 83]. Moreover, not all antibiotics show 
the same effects; maternal use of penicillin or chlorampheni-
col, but not of others, shows an association with later infant 
asthma [83]. However, the presence of potential confound-
ing factors, such as underlying infections, point out to the 
need for caution when drawing firm conclusions from these 
epidemiological studies [84].

In recent years, different animal studies, mainly compar-
ing germ-free versus colonized animals, have demonstrated 
mechanisms linking the early life microbiota with the later 
development of allergic diseases [8, 85]. The use of germ-
free models has provided valuable mechanistic information. 
However, caution should be taken when extrapolating these 
data since these animals totally lack the normal microbial 
antigenic stimulation, whilst in conventional animals, despite 
the potential differences in microbiota composition, the main 
antigenic stimuli are still present in every individual. In this 
context the use of conventional animal models of neonatal 
exposure to antibiotics provides an alternative tool more 

closely resembling the normal situation. Using such models 
Russell and coworkers [35] found that antibiotic-induced 
changes in the early life microbiota, but not at a later age, 
increase the susceptibility to asthma. Similar studies have 
also shown that early life antibiotic treatment hampers the 
proper development of immune responses [36, 86].

Obesity has also been related to early life antibiotics 
administration [87]. Animal studies have demonstrated that 
antibiotic-induced alterations in the early life microbiota, 
despite the later microbiota restoration, may have long-
lasting metabolic consequences with an increase in body fat 
and weight gain [9, 88]. Epidemiological studies, have also 
reported an association between exposure to antibiotics dur-
ing the first months of life and increased body mass during 
later childhood [89–91]. Although the studies focusing on 
specific antibiotics are still scarce, the available data suggest 
that broad-spectrum antibiotics have a larger impact [90]. 
Some data are also available on the effect of prenatal antibi-
otics exposure as related to childhood obesity [42], indicat-
ing an increased risk of obesity in children from mothers 
that received antibiotics during the second or third trimester. 
Some evidence on a higher risk for diabetes after early life 
antibiotic-induced microbiota alteration is also available 
from animal studies [38, 92].

It is important to underline that, in developed countries, 
by the end of the first year of life more than half of the infants 
have been exposed to antibiotics. This is despite the current 
efforts and measures to restrict antibiotic use, and there-
fore, this antibiotic exposure has likely been even higher in 
previous decades when such measures were not in place. 
Thus, it is reasonable to think that in the 1970’s–1980’s in 
most developed countries almost all infants were exposed to 
antibiotics during early life. This suggests that during these 
years the early life microbiota of almost a whole generation 
of individuals may have been affected. This opens ques-
tions of enormous importance on the true role of early life 
antibiotic-induced microbiota alterations on the currently 
observed increased incidence of metabolic and autoimmune 
disorders.

Antibiotics and the human gut resistome: 
a pending task

Surprisingly almost no data is available on the impact of 
early life antibiotics in the harboring of antibiotic resistance 
genes by the gut microbiota [93]. This may constitute an 
important issue in view of the increasing problems with anti-
microbial resistances. The human gut resistome is defined 
as the collection of all genes from the gut microbiome that 
potentially encode for resistance to antibiotics [94, 95]. The 
enrichment of the reservoir of antibiotic resistance genes 
(ARG) may increase the risk of transfer towards potential 
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pathogens, compromising the clinical management of infec-
tions. Furthermore, it is known from in vitro studies that 
when microbial communities are exposed to constant anti-
biotics challenge, they acquire multidrug resistance [96]. 
Although the way to acquire antibiotic resistance in vivo is 
less understood, it has been shown that antibiotic therapy 
helps to select resistant members of the microbial commu-
nity or those microorganisms capable of acquiring ARG 
[97]. It is important to consider that ARG may encompass 
alternative functions in the cell and are not simply for avoid-
ing the effect of antibiotics [95, 98]. The recent advance 
and the cost affordability of DNA sequencing techniques, 
enabling the exploration of the human microbiome and its 
resistome, have raised the interest in deciphering the estab-
lishment and evolution of the human resistome at the begin-
ning of life and the impact on health later on.

Some available data suggest that the initial acquisition 
of antibiotic resistance is independent of infant’s exposure 
and is more likely impacted by maternal and environmen-
tal microbes during and after delivery [99–101]. The gut 
resistome begins to develop in the intrauterine environ-
ment or at birth even in the absence of selective pressure 
[102, 103], and the transmission of ARG from mother to 
infant seems to start before delivery [99, 104]. It is gener-
ally accepted that early exposure to some external factors 
could also contribute to driven the development of the infant 
evolving resistome. Among these factors are the family 
environment, hospital and neonatal units, early treatment of 
infants with antibiotics, intrapartum antibiotic administra-
tion, and antibiotic treatment to mothers (before and/or after 
delivery). However, studies assessing which factors, and to 
which extent, affect the establishment and prevalence of the 
infant resistome, are still very scarce. In this way, a recent 
longitudinal study revealed that chromosomally located 
ARG increased following antibiotic exposure but decreased 
afterwards, whereas ARG associated to mobile genetic ele-
ments remain high [105].

The prevalence of resistance genes fluctuates over the 
course of the first few months of life, probably reflecting 
changes in the establishing intestinal microbial structure 
and, hence, in the bacterial populations harboring such genes 
[106]. The most prevalent ARG found in the neonatal micro-
biota are those encoding resistance to erythromycin, tetra-
cycline, aminoglycosides and beta-lactams [102, 103, 106]. 
Some differences have been evidenced somehow between 
the resistome of infants and adults. Versluis and coworkers 
[98] reported that in infants, but not in adult’s microbiota, 
the expression of tetracycline resistance genes was predomi-
nant over the expression of genes coding for resistance to 
other antibiotics. In addition, Moore et al. [104] found that 
chloramphenicol resistance determinants were prevalent in 
a population of healthy infants during the first year of life 
and in their mothers; however, whereas multidrug efflux 

pumps (rarely found in mothers) were the primary effec-
tors of chloramphenicol resistance in infants, acetyltrans-
ferases were more common in mothers, appearing also in 
almost all infants at later times. The proven presence in the 
microbiota of healthy children of mobile genetic elements 
close to ARG, or even next to multidrug resistance islands, 
as well as the apparent persistence of some mobile genetic 
elements in these microbiotas, point to the potential hori-
zontal transferability and dissemination among the infant gut 
microbial community of such resistances [99, 107]. Whereas 
the possibility that the infant gut resistome could constitute 
a mobile reservoir of ARG is a matter of current concern 
[102, 107], several studies indicate that antibiotic resistant 
microbial populations in the early microbiota may be partly 
replaced later on by more susceptible lineages [104, 106]. 
Nevertheless, it should be taken into account that ARG car-
ried in mobile elements seems to be more persistent in the 
resistome than chromosomally encoded ARG [105].

More multi-factor studies are needed to unravel the real 
contribution of antibiotics administration, including the pre-
cise time and way of administration, in the establishment of 
the infant microbiota and its resistome and the persistence 
of alterations along time. Long-term observational studies 
with cohorts composed by a large number of individuals 
will help to determine to what extent the alterations in the 
microbiota composition and functionality occurring in the 
perinatal period are maintained or normalized over time. 
Whether the nascent gut resistome can represent a threat to 
human health (with reference to the carrier individual, the 
community and/or the future offspring) and the alternative 
roles that such antibiotic resistances may play in the gut 
microbial community, warrant future research.

Conclusions

The establishment and development of the intestinal micro-
biota in the early neonatal period constitutes one of the most 
critical and determinant steps for the later health of the indi-
vidual. Therefore, it is urgent to decipher and understand 
the factors determining the microbiota establishment in the 
neonate, among which the infant exposure to antibiotics 
may represent an important factor. The evidence discussed 
in this article clearly shows the impact of early life antibiot-
ics exposure on the developing gut microbiota. These results 
should open the debate on the need for immediate action to 
minimize, or limit, the impact of early life antibiotics on 
the microbiota establishment process, while we decipher 
and fully understand the role of early microbiota on human 
health.
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