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this area. Collectively, the information compiled here will 
serve as a comprehensive reference for the actions of mela-
tonin in IR injury identified to date and will hopefully aid 
in the design of future research and increase the potential of 
melatonin as a therapeutic agent.
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Introduction

Ischemia/reperfusion (IR) injury occurs when the blood sup-
ply to the tissue is blocked for minutes to hours (ischemia) 
and then restored (reperfusion) [1]. Ischemia elicits tissue 
anoxia which is the basis of ischemic injury and primes the 
tissue for subsequent reperfusion damage. IR injury affects 
many organs and tissues including brain [2, 3], heart [4, 5], 
liver [6, 7], lung [7, 8], kidney [9, 10], skeletal muscles [11, 
12], testes tissue [13], and endothelial tissue [14] contribut-
ing to morbidity and mortality worldwide [15, 16]. Numer-
ous efforts have attempted to search for proper agents for 
the treatment of IR injury every year. Notably, melatonin is 
the particularly promising one among various candidates.

Melatonin, an ancient molecular existing in various 
organism, is validated to be a potent antioxidant and exerts 
beneficial effects on many pathological conditions [17], 
including diabetes [18, 19], depression [20, 21], infection 
[22, 23], neurodegeneration [24, 25], and metabolic syn-
drome [26, 27]. The roles of melatonin on IR injury get 
much attention in recent years and multiple novel mecha-
nisms have been revealed [28, 29]. Melatonin is highly con-
centrated in mitochondria and its roles on mitochondria have 
been widely explored in previous studies [30–32]. Mitochon-
drion, an organelle for ATP production and a decider for 
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cell fate, has been verified to play crucial roles in IR injury 
and the protection of mitochondrion can inhibit IR injury 
in multiple organs [33–35]. Similar to studies about other 
pathophysiological processes, melatonin’s protective actions 
on IR injury are mainly achieved by inhibiting mitochondrial 
dysfunction [32, 36, 37]. Melatonin has been shown to ame-
liorate IR-induced disturbance in mitochondrial redox state, 
membrane structure, biogenesis, dynamics, and mitophagy 
and has attracted attention as an appealing therapeutic strat-
egy [17, 30, 32].

The focus of this review is to summarize the latest 
research progress regarding the roles of melatonin in IR 
injury. First, we introduce the mechanisms underlying mito-
chondrial dysfunction in IR and melatonin’s protection of 
mitochondria under this condition. Thereafter, the protec-
tive effects of melatonin against IR injury in various organs 
and tissues, including brain, heart, liver, and others are pre-
sented. Finally, we explore several potential future directions 
of research in this area. Collectively, the information com-
piled here will serve as a comprehensive reference for the 
actions of melatonin in IR injury identified to date and will 

hopefully aid in the design of future research and increase 
the potential of melatonin as therapeutic agent.

Mitochondrial dysfunction induced by IR

Mitochondrial dysfunction has been validated to be a 
crucial event in IR injury by numerous studies [38]. The 
period of ischemia primes the tissue for subsequent dam-
age upon reperfusion which leads to a burst of free radical 
from mitochondria [39]. The excessive free radical directly 
causes oxidative damage to mitochondrial respiratory chain 
and metabolism enzymes further leading to more electron 
leakage and free radical production [40, 41]. Moreover, free 
radical is also validated to damage mitochondrial membrane 
structure [42] and increase mitochondrial permeability 
transition pore (MPTP) opening [43], resulting in loss of 
membrane potential and more free radical production [41]. 
The increased mitochondrial permeability also increases 
pro-apoptosis factors’ release to cytoplasm [44] (Fig. 1). 
Moreover, IR-induced damages also impair mitochondrial 

Fig. 1  The mechanisms underlying mitochondrial dysfunction in 
IR and melatonin’s protection of mitochondria under this condition. 
IR leads to electron leakage and excessive free radical production in 
mitochondria. The excessive free radical directly causes oxidative 
damage to mitochondrial respiratory chain and EME further leading 
to a burst of electron leakage and free radical production. Moreover, 
free radical also damages mitochondrial membrane structure (TOM 
complex reduction and mitochondrial membrane lipid peroxidation) 
and increases MPTP opening, resulting in membrane potential loss 
and pro-apoptosis factor release. Apart from directly scavenging free 
radical, melatonin also activates STAT3, a transcription factor for 
antioxidant enzymes, by activating SAFE pathway and JAK2. Mela-
tonin activates AMPK–PGC-1α–SIRT3 axis to reduce mitochondrial 

oxidative stress and enhances its biogenesis. By activating PGC-1α, 
melatonin also upregulates TOM complex, the entry gate for the 
majority of precursor proteins that are imported into the mitochon-
dria. As a result, melatonin exerts protective effects on diverse organs 
enduring IR injury. Red arrows damaging processes. Green arrows 
promotion or amelioration. Blue arrows inhibitory effects (AMPK 
adenosine monophosphate-activated protein kinase, EME energy 
metabolism enzymes, IR ischemia/reperfusion, JAK2 Janus kinase 
2, MPTP mitochondrial permeability transition pore, SAFE survivor 
activating factor enhancement, SIRT3 silent information regulator 
3, STAT3 signal transducer and activator of transcription 3, PGC-1α 
peroxisome proliferator-activated receptor-gamma coactivator-1α, 
TOM translocases in the outer membrane)
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dynamics and mitophagy thereby affecting quality control of 
mitochondrial network [45, 46]. Eventually, mitochondrial 
dysfunction leads to increased apoptosis and exacerbates IR-
induced injury in various organs and tissues.

Melatonin protects mitochondria from IR injury

From the above brief clarification, we note that it is of great 
importance to break the vicious circle between free radi-
cal and mitochondrial injury during IR process. Notably, 
melatonin is an ideal candidate. First of all, as a potent-
free radical scavenger, melatonin is highly concentrated in 
mitochondria, indicating its capacity to resist mitochondrial 
oxidative injury [32, 47]. Apart from directly scavenging 
free radical, melatonin also exerts antioxidant activity by 
upregulating antioxidant enzymes and downregulating pro-
oxidant enzymes [48–50]. Besides, melatonin has been 
documented to upregulate the activity of all four complexes 
in respiratory chain under IR conditions [51, 52] which 
may reduce the production of free radical. At decreased 
level of oxidative stress, lipid peroxidation is repressed and 
the mitochondrial membrane structure is well preserved by 
melatonin [36]. Moreover, melatonin is also documented to 
regulate mitochondrial membrane permeability by modulat-
ing the translocases in the outer membrane (TOM) complex 
[28] and MPTP activity [53]. As a result, melatonin well 
preserves mitochondrial membrane potential and inhibits 
release of pro-apoptosis proteins including cytochrome c 
[54] and high-temperature requirement protein A 2 (HtrA2) 
[55]. Apart from above actions, melatonin was also vali-
dated to maintain a healthy mitochondrial network by 
regulating mitochondrial biogenesis [51], dynamics, and 
mitophagy [56]. Eventually, melatonin restores mitochon-
drial and organ function under IR conditions. Mechanisti-
cally, nuclear melatonin receptor RORα [57] and multiple 
pathways are revealed to be involved in the protection of 
melatonin, including silent information regulator 1 (SIRT1) 
[2], Janus kinase 2 (JAK2)/signal transducer and activator 
of transcription 3 (STAT3) [58], survivor activating factor 
enhancement (SAFE) [29], and adenosine monophosphate-
activated protein kinase (AMPK) [51], which will be clari-
fied later (Fig. 1). The activation or block of these targets 
could promote or repress the protective effect of melatonin 
on mitochondria.

Protection of melatonin against IR injury 
in nervous system

The ischemic insult in the nervous system is accompanied 
by multiple physiopathological events, including reac-
tive oxygen species (ROS) burst,  Ca2+ dyshomeostasis, 

mitochondrial dysfunction, proinflammatory mediator 
release, excitotoxicity, and eventually programmed neu-
ronal cell death [59, 60]. Melatonin was validated to be 
protective against ischemic injury in nervous system. In 
oxygen–glucose deprivation (OGD)-treated primary cer-
ebrocortical neurons, melatonin inhibits loss of mitochon-
drial membrane potential, release of mitochondrial factors, 
and activation of caspase-1 and -3, thereby attenuating 
OGD-induced apoptosis [61]. After hypoxic exposure, 
the retinal ganglion cell showed mitochondrial dysfunc-
tion and increased oxidative stress. Melatonin treatment 
preserves mitochondrial function as indicated by a reduc-
tion in cytochrome c leakage into the cytosol [62]. The 
in vivo study revealed that melatonin decreases infarct size 
and improves neurological scores after permanent middle 
cerebral artery occlusion (MCAO) in mice, which is also 
associated with reduced cytochrome c release and cas-
pase-3 activation in ischemic tissue [61].

Subsequent reperfusion exacerbates ischemia-induced 
injury in nervous system. The in vitro study revealed that 
melatonin application during reoxygenation inhibits the 
hypoxia/reoxygenation-induced loss of the mitochondrial 
membrane potential, release of mitochondrial cytochrome 
c and activation of caspase-3 [63]. Multiple in vivo studies 
also validated the protective role of melatonin after reperfu-
sion. Fukaya and colleagues conducted a series of studies 
about the protective effect of melatonin on fetal brain IR 
injury. Their results showed that melatonin pre- or post-
treatment effectively reverses IR-induced reductions in the 
respiratory control index (RCI) (a marker of mitochondrial 
respiratory activity) and in the ADP/oxygen ratio and also 
reduces the elevation in concentration of thiobarbituric acid-
reactive substances in the mitochondria of fetal brain [37, 
64, 65]. Melatonin also preserves mitochondrial function 
and ameliorates neuronal cell injury of newborn rats after 
hypoxia–ischemia/reperfusion [66, 67]. Similar protective 
effects were also observed in brain of adult animals. The 
mitochondrial complex I and IV activities were impaired 
with transient MCAO while melatonin administration 
restored them. Moreover, melatonin treatment after MCAO 
significantly inhibits inducible nitric oxide synthase (NOS) 
activity and attenuated expression of the inducible isoform, 
resulting in decreased total NOS activity and tissue nitrite 
levels [52]. Also in MCAO rats, melatonin regulates mito-
chondrial membrane permeability by inhibiting MPTP open-
ing after IR, leading to decreased cytochrome c release and 
less caspase-3 activation in infarct area [53]. Our study on 
IR injury of adult mice brain revealed that melatonin con-
fers a cerebral-protective effect through the activation of 
SIRT1 signaling which is associated with a well-preserved 
mitochondrial membrane potential, mitochondrial complex 
I activity, and mitochondrial cytochrome c level [2]. As a 
result, melatonin treatment diminishes the loss of neurons, 
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decreases the infarct volume, lowers brain edema, and 
increases neurological scores after cerebral IR.

Apart from melatonin, melatonin’s precursor or metabo-
lite also exerts neuroprotective effects under ischemia and 
IR conditions. N-Acetylserotonin, an immediate precursor of 
melatonin, inhibits cell death induced by OGD or  H2O2 in 
primary cerebrocortical neurons, primary hippocampal neu-
rons and organotypic hippocampal slice in vitro, meanwhile 
reduces hypoxia/ischemia injury in the MCAO mouse model 
of cerebral ischemia in vivo. Notably, the neuroprotective 
effects of N-acetylserotonin are also associated with its 
actions on MPTP opening, mitochondrial fragmentation, and 
subsequent pro-apoptosis factor release [68]. 6-Hydroxylme-
latonin, a normal metabolite of melatonin in vivo, is shown 
to scavenge ROS, maintain mitochondrial transmembrane 
potential, and inhibit lactate dehydrogenase and cytochrome 
c release, and caspase-3 activity during IR [69]. However, 
unlike melatonin, melatonin’s precursor or metabolite cannot 
provide neuroprotection through the activation of melatonin 
receptors. Moreover, unlike free melatonin, the nanocapsu-
lated melatonin is more slowly degraded by light and cleared 
by the circulating blood, which exhibits higher potential to 
rescue neuronal cells and mitochondria during cerebral IR 
insult [70].

Protection of melatonin against myocardial IR 
injury

Myocardial ischemia leads to cardiomyocyte anoxia, which 
is detrimental to the survival and function of these cells. In 
isoproterenol (ISO)-induced myocardial ischemia rat model, 
melatonin treatment reduces ischemia-induced mitochon-
drial dysfunction and rescues cardiac tissue [71]. The fur-
ther study revealed that ISO induces myocardial ischemia 
and increases mitochondrial oxidative stress, leading to 
decreased activity of key enzymes of the Kreb’s cycle and 
the respiratory chain. Melatonin inhibits above changes 
and enhances the antioxidant enzymes activity, preserv-
ing mitochondrial redox potential [36]. The modulation of 
mitochondrial membrane permeability is also involved in 
melatonin’s protective effects during ischemia. The TOM 
complex located in the outer membrane of mitochondria is 
the entry gate for the majority of precursor proteins that are 
imported into the mitochondria [72]. TOM70 is an impor-
tant receptor in TOM machinery and ischemic/hypoxic insult 
reduced TOM70 expression in cardiomyocytes which par-
tially accounts for increased mitochondrial fragmentation 
and ROS overload. Melatonin was demonstrated to promote 
TOM70 expression by activating peroxisome proliferator-
activated receptor-gamma coactivator-1α (PGC-1α) and 
ameliorate ischemic injury which is absent in TOM70-defi-
cient mice [28]. Moreover, in the long run, the improved 

mitochondrial function by melatonin is able to mitigate 
adverse left ventricle remodeling after myocardial infarc-
tion [73].

Ischemic injury is usually accompanied by subsequent 
reperfusion injury. Reperfusion was reported to signifi-
cantly alter multiple mitochondrial parameters, includ-
ing mitochondrial oxygen consumption rates, complex I 
and complex III activity,  H2O2 production as well as the 
degree of lipid peroxidation [74]. Melatonin has been dem-
onstrated to possess protective effect against myocardial IR 
injury through mitochondria-dependent mechanism. The 
STAT3 is a transcription factor of the manganese superox-
ide dismutase (MnSOD) gene and interacts with MnSOD 
protein to increase its antioxidant activity, which plays cru-
cial roles in mitochondrial antioxidant defense [75, 76]. 
In cultured neonatal rat cardiomyocytes and isolated rat 
hearts, melatonin pretreatment attenuates IR-induced mito-
chondrial oxidative damage via the activation of the JAK2/
STAT3 signaling pathway [58]. Moreover, melatonin can 
also activate mitochondrial STAT3 through SAFE path-
way to reduced myocardial IR injury [29]. The regulation 
of mitochondrial membrane permeability is also involved 
in the protective actions of melatonin. The MPTP open-
ing in the first few minutes of reperfusion is known to be 
a critical determinant of myocardial IR injury, contribut-
ing up to 50% of the final myocardial infarct size [77]. 
Also in isolated perfused rat hearts, melatonin desensitizes 
mitochondria from reperfused hearts to MPTP opening as 
demonstrated by their higher resistance to  Ca2+, thereby 
improving the functional recovery and reducing myocardial 
injury after IR [4]. Moreover, when IR is combined with 
diabetes, melatonin preserves mitochondrial function by 
reducing mitochondrial oxidative stress and enhances its 
biogenesis, mainly by activating AMPK–PGC-1α–silent 
information regulator 3 (SIRT3) axis [51]. Apart from 
adult rat, melatonin was also documented to protect dia-
betic mother–offspring from myocardial IR injury. Diabetic 
mother–offspring exhibited augmented infarct size, cardiac 
dysfunction, and myocardial apoptosis in response to IR, in 
association with exaggerated activation of mitochondria- 
and endoplasmic reticulum (ER) stress-mediated apopto-
sis pathways and oxidative stress. The maternal melatonin 
application can improve the tolerance to myocardial IR 
injury in their offspring via restoring cardiac insulin recep-
tor substrate 1/Akt signaling [78].

Melatonin receptors play important roles in the car-
diac protection of melatonin. Melatonin receptors include 
membrane melatonin receptor 1, melatonin receptor 2, 
and nuclear RZR/ROR receptors. In a study of hypoxia/
reoxygenation model of H9c2 cells, melatonin recep-
tor agonist Neu-p11 offers protection for mitochondria, 
inhibits cell apoptosis, and improves the morphology 
and rhythm of myocardial cells [79]. Melatonin could 
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promote PGC-1α/TOM70 expression in ischemic myo-
cardium but not when combined with melatonin recep-
tor antagonist luzindole [28]. Moreover, RORα plays 
important roles in melatonin-exerted cardioprotection, 
in particular against myocardial IR injury. RORα defi-
ciency promotes IR-induced mitochondrial impairments 
resulting in significantly increased myocardial infarct 
size, myocardial apoptosis and exacerbated contractile 
dysfunction [57].

Notably, cardiac mitochondria are considered as 
two distinct populations: subsarcolemmal mitochon-
dria (SSM) located immediately underneath the plasma 
membrane and interfibrillar mitochondria (IFM) situated 
among the myofibrils [34]. SSM are more susceptible 
to calcium overload-mediated cytochrome c release and 
damage having a more rapid progression of ischemic 
injury than in IFM [34, 80]. However, this different 
response to ischemia and IR injury was neglected by 
above studies. Therefore, further studies can pay some 
attention to such issue for better clarification of mela-
tonin’s roles.

Protection of melatonin against hepatic IR injury

Liver is one of the most frequently affected organs by IR 
injury and the protection by melatonin administration is 
highly evaluated [81]. Melatonin application after hepatic 
IR was shown to increase the energy charge and decrease 
the levels of plasma nitrite, tumor necrosis factor-α, 
aspartate aminotransferase, alanine aminotransferase, 
lipid peroxidation products, and inducible nitric oxide 
synthase, resulting in elevated 7-day survival rates in 
the end [82]. The maintenance of mitochondrial func-
tion is involved in such protective effects of melatonin. 
Melatonin was shown to restore mitochondria respiratory 
function as indicated by the preserved RCI, ADP/O and 
State 3 respiration [6]. In addition, melatonin treatment 
is able to decrease ROS production [83], increase mito-
chondrial glutathione peroxidase activity, and attenuate 
mitochondrial lipid peroxidation after IR [6]. Moreover, 
melatonin attenuates the extent of the mitochondrial per-
meability transition after hepatic IR as indicated by the 
decreased rate of mitochondrial swelling and cytochrome 
c release [54, 84]. Dynamin-related protein 1 (Drp1) is 
involved in mitochondrial outer membranes fission, a 
process that helps to maintain mitochondrial morphology 
and to reduce the accumulation of functional and struc-
tural defects in mitochondria [85]. In hepatic IR injury 
mouse model, melatonin was documented to ameliorate 
mitochondrial morphology and attenuate IR injury via 
restoring Drp1.

Protection of melatonin against IR injury in other 
organs and tissues

IR injury of skeletal muscles is a common pathophysiol-
ogy during peripheral vascular injury and surgeries [11], 
which usually induces significant necrosis and apoptosis in 
the skeletal muscle cells. Mitochondrial dysfunction, such 
as the depolarization of mitochondrial membrane potential 
and the release of the proapoptotic protein, is induced by 
IR in skeletal muscle and melatonin significantly inhibited 
above changes [86]. Testicular IR injury is usually induced 
by torsion/detorsion, which causes an enhanced ROS forma-
tion and contributes to the pathophysiology of tissue dam-
age [87, 88]. The melatonin treatment improves testicular 
histological appearance after IR, attenuates cell apoptosis, 
promotes cell proliferation, and increases testosterone in 
testis tissue, partially via the inhibition of mitochondrial 
degeneration [89]. Moreover, melatonin was also shown to 
protect placenta from IR injury. Maternally administered 
melatonin inhibits IR-induced changes in placental RCI and 
fetal growth restriction [90].

Different from other tissues, nitrosative stress is more 
common in endothelial tissue during OGD [91, 92]. OGD 
in endothelial cells was shown to promote peroxynitrite 
formation which further initiates the release of mitochon-
drial HtrA2 [55]. The mitochondrial protease HtrA2 is an 
acknowledged mitochondrial proapoptotic protein which 
participates in caspase-dependent apoptosis when released 
into the cytoplasm [93]. As a potent antioxidant, melatonin 
application provides significant protection against OGD-
induced peroxynitrite formation and mitochondrial HtrA2 
release, thereby attenuating ischemic-like injury in endothe-
lial cells [55].

Tissue regeneration is a promising approach for IR injury 
treatment and stem cells are of great interest to achieve it 
[94, 95]. Apart from direct beneficial effect, melatonin was 
demonstrated to improve stem cell therapy efficacy on IR 
injuries [8]. Melatonin promotes the survival of engrafted 
mesenchymal stem cells under hypoxia and serum depriva-
tion condition partially through the preservation of mito-
chondrial membrane potential [96]. In the rat model of small 
bowel IR injury, combined melatonin–adipose-derived mes-
enchymal stem cell treatment was shown to increase mito-
chondrial cytochrome c content, an indicator of mitochon-
drial integrity, in intestinal mucosal cells, offering beneficial 
effect against small bowel IR injury [97].

Further perspectives

Among the many recent findings on melatonin, the inter-
action between melatonin and other important cellular 
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processes of IR injury and the regulatory roles of mela-
tonin in kidney IR injury may hint at possible research 
opportunities.

We have discussed the free radical-induced mitochondrial 
damage and the melatonin’s protective effect under IR con-
ditions. Actually, in addition to redox state, mitochondrial 
dynamics and mitophagy also play important roles in IR 
injury [45, 46]. The dynamic processes of mitochondrial 
fusion and fission allow for damaged mitochondria to be 
segregated and facilitate the equilibration of mitochondrial 
components such as DNA, proteins, and metabolites [45]. 
Melatonin’s roles on mitochondrial dynamics are drawing 
more attention in recent years and have been explored in 
multiple conditions, including cadmium-induced neuro-
toxicity [98], 1-methyl-4-phenylpyridinium-induced Par-
kinson’s disease model [99], lipotoxicity-mediated hepatic 
stellate cell activation [100], and methamphetamine-induced 
neurotoxicity [101]. Moreover, the free radical-damaged 
mitochondria can be selectively removed from the inte-
grated network via an autophagy-related process, termed 
mitophagy. Melatonin exerts its roles on mitophagy under 
conditions including liver fibrosis [102], liver cancer [103], 
and traumatic brain injury [104]. Mitochondrial dynamics 
and mitophagy are very important for mitochondrial qual-
ity control while the roles of melatonin in such processes 
have not been well clarified under IR conditions. A recent 
study by Zhou and colleagues demonstrated that IR injury 
activates Drp1-dependent mitochondrial fission, which 
subsequently induces voltage-dependent anion channel 1 
(VDAC1) oligomerization, hexokinase 2 (HK2) liberation, 
MPTP opening, PINK1/Parkin upregulation, and ultimately 
mitophagy-mediated cardiac microcirculation endothe-
lial cell death. Melatonin activates AMPKα and inhibits 
mitochondrial fission–VDAC1–HK2–MPTP–mitophagy 
axis, thereby protecting cardiac microvasculature against 
IR injury [56]. However, the regulatory roles of melatonin 
on mitochondrial dynamics and mitophagy in cardiomyo-
cytes, or in brain, kidney, lung, and liver have not been fully 
explored, which deserves much attention in the future.

ER is an important intracellular membranous organelle 
which is responsible for protein folding and trafficking, lipid 
synthesis, and the maintenance of calcium homeostasis [105, 
106]. ER stress, which is caused by a buildup of misfolded 
proteins, has been implicated in a series of pathophysiolog-
ical processes [107]. Melatonin’s roles on ER stress have 
been studied in multiple conditions [106, 108–112], espe-
cially in myocardial [57, 78, 113] and cerebral [60, 114] 
IR injuries. Moreover, a previous study revealed that ER 
stress is able to promote mitochondrial damage under the 
condition of bacterial infection [115]. However, it has been 
not validated if melatonin exerts its beneficial roles on IR 
injury via modulating ER stress–mitochondrial damage axis 
in multiple organs and tissues.

Kidney IR injury occurs in multiple clinical conditions, 
being a great problem complicating the course and out-
come [116]. Similarly, mitochondrial oxidative damage 
is a significant contributor to the early phases of kidney 
IR injury and mitochondria-targeted antioxidants were 
validated to be potential protectors for renal dysfunction 
caused by IR injury [117]. Melatonin has been demon-
strated to preserve renal ultrastructural integrity after IR 
injury in the male rat, as indicated by decreased serum 
creatinine level, urine protein-to-creatinine ratio, podocyte 
injury score, kidney injury score, indicators of glomerular 
damage, renal tubular-damage, and glomerular integrity 
[9]. However, the mitochondrial protective effect has not 
been well investigated in melatonin’s protection of kidney 
IR injury, which deserves much attention.

Conclusion

Mitochondrial dysfunction is deeply involved in IR injury 
of various organs and tissues. Excessive free radical 
induced by ischemia and subsequent reperfusion directly 
damages multiple mitochondrial components including 
respiratory chain, metabolism enzymes, and mitochon-
drial membrane structure. Such damages result in mito-
chondrial malfunction, ATP shortage, and pro-apoptosis 
factor release. Moreover, the damaged mitochondria 
have impaired mitochondrial dynamics and mitophagy 
which are crucial for quality control of mitochondrial net-
work [45, 46]. The above mitochondrial changes lead to 
increased apoptosis and exacerbate IR-induced injury in 
organs and tissues (Fig. 1).

Melatonin, an endogenous indolamine related to circadian 
rhythms, is a potent agent that could be for use in the treat-
ment of IR injury. The application of melatonin ameliorates 
IR-induced disturbance in mitochondrial redox state, mem-
brane structure, biogenesis, dynamics, and mitophagy and 
has attracted attention as an appealing therapeutic strategy. 
The impressive efficacy and safety of melatonin herald it 
as a promising agent for the treatment of IR injury. It also 
deserves our attention that the interaction between melatonin 
and other important cellular processes of IR injury and the 
regulatory roles of melatonin in kidney IR injury may hint 
at possible research opportunities in the future.
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