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Mitochondrion: a metabolic‑regulatory factory

Mitochondrial studies have gained momentum during the 
last decade. It is likely that this growing attention for mito-
chondrial biology could chiefly be attributed to the fact that 
mitochondria represent actually the physical ‘hub’, where 
many signaling pathways converge in modulating a number 
of critical biological functions, including cell death control, 
metabolism, and even differentiation [1].

Mitochondria are bio-energetic and biosynthetic orga-
nelles that take up substrates from the cytoplasm and use 
them to drive fatty acid oxidation (FAO), glucose oxida-
tive metabolism along the tricarboxylic acid (TCA) cycle, 
and the electron transport chain (ETC). As a result, mito-
chondria produce ATP and synthesize amino acids, lipids, 
nucleotides, and iron sulfur clusters, as well as NADPH [2]. 
In addition, reactive oxygen species (ROS) are generated 
in mitochondria as a byproduct of the ETC. Under normal 
physiological conditions, ROS can activate signal transduc-
tion pathways, including MAPK/ERK kinases and Hypoxia-
Inducible Factor (HIF). Above a threshold value, increased 
ROS production triggers apoptosis [3].

Mitochondria participate in regulating apoptotic pro-
cesses also through modulation of several pro- and antiapop-
totic proteins—including Bcl-2, Bax, and Bak proteins—via 
the release of cytochrome c from the mitochondrial inter-
membrane space. In turn, cytochrome c release activates 
caspase-dependent processes in the cytosol, leading then to 
cell death [4].

Downstream of the above-mentioned alterations, mito-
chondria selectively regulate  Ca2+ release, thus contributing 
to the modulation of a wide array of cellular functions [5]. 
Those findings evidence a tight regulated mitochondria-cell 
cross talk, involving also epigenetic mechanisms through 
which mitochondria can actually modulate gene expression 
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pattern [6] in a cell and tissue-specific-dependent manner, 
thus providing a reliable explanation for tissue-specific 
alterations in mitochondrial diseases [7]. Conversely, an 
imbalance in mitochondrial activity, especially if the oxi-
dative/reductive mitochondrial metabolism is involved, can 
severely impair mitochondria function and contribute to the 
onset of different diseases, including cancer [8].

Melatonin and mitochondria

Melatonin seems to have a special relationship with mito-
chondria. Recent publications in the field principally rely on 
three lines of evidence—the relationship among oxidative 
stress in mitochondria and the scavenging activity of mela-
tonin; the presence of high amount of melatonin in these 
organelles; and the existence of a circadian/seasonal varia-
tions in mitochondria structure and functions—suggesting 
a physiological role of the pineal hormone on mitochondrial 
function [9, 10].

Mitochondria likely synthesize melatonin at high rates, 
as melatonin levels within mitochondria are 100-fold higher 
than that in the plasma [11]. Enzymes for melatonin synthe-
sis have been found in mitochondria obtained from pinealo-
cytes and oocytes [12, 13]. It is worth noting that mitochon-
dria participate also in melatonin catabolism by producing 
N1-acetyl-N2-formyl-5-methoxykynuramin (AFMK). Sev-
eral lines of evidence suggest that melatonin displays a 
protective function in these cells, namely, by counteracting 
oxidative-reductive stresses and improving several functions, 
including synthetic pathways and maturation processes in 
the oocyte [14].

Mitochondria also display circadian rhythms meet the 
fluctuations in energy supply and cellular requirements. 
Mitochondria are indeed involved in continuous remod-
eling processes—including mitochondrial biogenesis, fis-
sion, and fusion—recognized as being part of the so-called 
mitochondrial dynamics [15]. Circadian oscillations of both 
structure and functions in mitochondria are supported by the 
clock proteins Period1 and Period2 (Per1 and Per2), both 
of which are tightly regulated by melatonin. Mitochondrial 
dynamics is significantly impaired in mice lacking Per1/2 
[16], whereas melatonin increases Per1/2 expression both in 
suprachiasmatic nucleus as well as in peripheral cells [17, 
18].

Mitochondrial fission/fusion, a process chiefly responsi-
ble for the generation of ‘young’ mitochondria while elimi-
nating the old/damaged ones, displays a strong association 
with melatonin circadian rhythms in both pinealocytes and 
non-neural cells [19]. Melatonin principally down-regulates 
the translocation to the outer mitochondrial membrane of 
several proteins linked to the fission process (such as the 
mitochondrial fission 1 protein and the dynamin-related 

protein 1), thus reducing fission [20]. Conversely, mela-
tonin enhances fusion processes by modulating mitofusins 
and optic atrophy protein 1. Even if is still unclear if mela-
tonin up- or down-regulated those proteins [21, 22], there 
is no doubt that melatonin plays a relevant role in that pro-
cess. By analogy with autophagy, a similar process has been 
described in mitochondria, i.e., mitophagy. Accordingly, 
mitophagy is mandatory for ensuring mitochondrial turno-
ver and it seems that melatonin positively regulates it [23], 
through the modulation of an AMPK-dependent process 
leading to the inhibition of the mTOR pathway [24].

It is worth noting that melatonin is in higher concentra-
tions in mitochondria, where free radicals are maximally 
generated. This leads to the speculation that melatonin plays 
a special role in antagonizing the oxidative stress occurring 
within mitochondria, thus protecting them from inappropri-
ate ROS concentrations [25]. Furthermore, besides its ability 
in scavenging directly ROS, melatonin increases the SOD 
and catalase activities and induces the expression and activ-
ity of glutathione peroxidase (GPx) and glutathione reduc-
tase (GRd). In addition, melatonin stimulates the rate lim-
iting enzyme in glutathione synthesis—γ-glutamylcysteine 
synthase—thus regulating the redox cycle of glutathione 
[26–28]. Similarly, melatonin reduces the expression and 
activity of the inducible nitric oxide synthase (iNOS) and, 
thereby, decreases the levels of NO and peroxynitrite [29].

The antioxidant activity of melatonin in the mitochon-
dria has been specifically demonstrated in vivo, given that 
melatonin-treated rats showed a significant increase in the 
activities of C-I and C-IV components of the mitochondrial 
respiratory chain measured in isolated mitochondria [30]. 
Moreover, melatonin specifically counteracts the oxidative 
damage induced by ruthenium on mitochondria respiratory 
chain components. Those effects are mirrored by results 
obtained in vitro by treating with melatonin mitochondria 
exposed to oxidative agents. Oxidative stress (induced by 
incubation of mitochondria with t-butyl hydroperoxide) 
depletes the mitochondrial GSH pool and inhibits both GPx 
and GRd activities [31]. Melatonin antagonizes these effects 
by restoring basal levels of GSH and the normal activities of 
both GPx and GRd. It is noteworthy that other well-known 
antioxidant compounds (like N-acetyl cysteine and vita-
mins E and C) were unable to exert any significant effect on 
t-butyl hydroperoxide-induced oxidative stress in mitochon-
dria, while melatonin induces also a significant increase in 
C-I and C-IV components of the mitochondrial respiratory 
chain [32].

The reported effects of melatonin on the mitochondria 
respiratory chain complexes are of utmost physiological 
significance given that melatonin overall improves the res-
piratory chain efficiency during oxidative phosphorylation, 
as reflected by elevated ATP synthesis, in both normal mito-
chondria or in mitochondria exposed to oxidative-damaging 



4017Melatonin, mitochondria, and the cancer cell  

1 3

agents such as cyanide [33, 34]. In these experiments, mito-
chondria actively concentrate melatonin, which maintained 
the respiratory control ratio and the efficiency of oxidative 
phosphorylation and ATP synthesis while increasing the 
activity of the respiratory complexes. In the meantime, mela-
tonin decreased oxygen consumption in the presence of ADP 
as well as the membrane potential. Consequently, melatonin 
inhibits the production of  O2

− and  H2O2. Overall, those data 
highlight the pivotal role of melatonin in safeguarding mito-
chondrial bioenergetics homeostasis (reviewed in [35]).

The widespread activities of melatonin on mitochondria 
have suggested that the neurohormone could also target the 
mitochondrial DNA (mtDNA). Indeed, melatonin prevents 
oxidative degradation of mtDNA in several tissues [36], 
while a direct effect of melatonin on mitochondrial genome 
expression in adipocytes of the Siberian hamster has been 
reported [37]. Furthermore, melatonin increases the expres-
sion of the mRNAs for subunits I, II, and III of complex IV 
in both in vivo and in vitro [38].

Mitochondria and metabolism in cancer

Deregulated mitochondria function contributes significantly 
in hindering cell metabolism, chiefly by shifting glucose 
degradation from an aerobic towards an anaerobic glycolytic 
pathway. In turn, dysregulation of mitochondrial function 
characterized by Krebs cycle defects has been associated 
with over-production of ROS, which may participate in 
oncogenic signaling and tumor progression by irreversible 
modification of DNA and oxidation of proteins [39, 40].

A first hint that mitochondria may play an important role 
in cancer cell biology was reported in the 1920s when it was 
shown that cancer cells constitutively up-regulate glycolytic 
degradation of glucose, even in the presence of abundant 
oxygen. The biochemist Otto Warburg suggested that cancer 
causation might be related to an altered metabolism, i.e., a 
shift in energy production from oxidative phosphorylation 
to glycolysis, even if in presence of normal oxygen levels 
[41]. However, the remarkable progress in molecular biol-
ogy achieved thereafter has left no room for approaches that 
are anything but gene-based. Hence, the “metabolic theory” 
was viewed as a generic “epiphenomenon” and it was rapidly 
discarded. Yet, due to the meaningful insights provided by 
metabolomics and the recent studies on mitochondrial func-
tion in cancer, Warburg’s theory has unexpectedly enjoyed a 
resurrection in the last decade [42]. Accordingly, the meta-
bolic phenotype acquired by transformed cancer cells cannot 
be thought as a ‘simple’ byproduct of cancer development, 
and is now considered a relevant property that can be effi-
ciently exploited for widespread clinical applications [43].

Given that anaerobic conversion of glucose (glycolysis) 
to lactic acid is substantially less efficient than complete 

oxidation to  CO2 and  H2O, tumor cells need to sustain 
elevated ATP production by increasing glucose flux 
through an enhanced conversion of glucose to glucose-
6-phosphate. This characteristic provides the biochemi-
cal rationale for tumor imaging with 2-fluoro-2-deoxy-
d-glucose-positron emission tomography (FDG-PET), a 
technique now widely used in radiological studies. PET 
investigation revealed a significant increased uptake of 
glucose in both primary and metastatic cancers, showing 
a direct correlation between tumor aggressiveness and the 
rate of glucose utilization [44]. These results reinforced 
the relevance of metabolic studies in cancer as they have 
moved the “glycolytic phenotype” from a laboratory odd-
ity to mainstream oncology.

Alterations in cancer metabolism, however, are not only 
relevant for diagnostic purposes, but also in drug discov-
ery. Macromolecule synthesis from glucose and glycogenic 
precursors are critical pathways: by revealing disease spe-
cific metabolic shifts, metabolomic studies could identify 
the key-metabolic steps involved in controlling growth and/
or apoptosis, and thus, acting as potential new targets for 
therapeutic intervention [45].

Proliferating and tumor-derived cells frequently display 
an elevated aerobic glycolysis with an up-regulated expres-
sion of glycolytic enzymes and typically maintain this meta-
bolic phenotype in culture even under normoxic conditions. 
This implies that the interplay existing in normal cells 
between mitochondrial respiration and glycolytic flux, by 
which high  O2 values inhibit the latter process (the so-called 
Pasteur effect) [46], is lost in cancer cells. Glycolysis is inef-
ficient in terms of ATP production, as it generates only two 
ATP molecules per molecule of glucose, whereas complete 
oxidation of one glucose molecule by oxidative phospho-
rylation generates up to 36 ATP molecules. Yet, despite its 
low efficiency in ATP yield per molecule of glucose, aerobic 
glycolysis can generate more ATP than oxidative phospho-
rylation by producing ATP at a faster rate [47]. Therefore, 
an inefficient but faster pathway for ATP production may be 
preferred to meet the high demands of dividing cells.

This mechanism is of strategic relevance under conditions 
of hypoxia or fluctuating oxygen availability in which mito-
chondria cannot generate enough ATP. In those conditions, 
aerobic glycolysis may give cancers a significant growth 
advantage [48]. In turn, high glycolytic fluxes are coupled 
to high lactate levels, mainly produced via the glycolytic 
pathway and partially obtained through the degradation of 
glutamine and serine (glutaminolysis and serinolysis) [49]. 
The conversion of pyruvate to lactate is carried out by lactate 
dehydrogenase (LDH), since the LDH-A isoform is strongly 
up-regulated in cancer tissues. Lactate production is essen-
tial for the recycling of  NAD+ in the absence of functional 
mitochondrial cytoplasmic NADH shuttles, due to reduced 
oxidative phosphorylation.
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An increase in LDH-A levels is essential for prolifer-
ating cells, as LDH-A suppression not only drives cancer 
cells towards a mitochondrial oxidative phenotype, but also 
impairs cancer cell proliferation both in vitro and in vivo 
[50]. Glycolytic activity seems indeed to correlate with the 
degree of tumor malignancy: glycolysis is faster and oxi-
dative phosphorylation is slower in highly undifferentiated 
and fast-growing tumors than in slow-growing cancers or 
in normal cells [51]. This pattern is apparent, namely, in 
breast cancer cells. Non-invasive MCF7 cells have much 
lower aerobic glucose consumption rates when compared to 
the highly invasive MDA-MB231 mammary cancer cell line 
[52]. The high rate of glucose consumption correlates with 
both malignancy growth and response to therapy [53], while 
a high level of lactate (and choline phospholipids metabo-
lites) has been proposed as a predictor of malignant evolu-
tion [54]. Accordingly, cancer cells, which exhibit enzymatic 
deficiencies in their oxidative capacity, are more malignant 
than those that have active oxidative phosphorylation [55].

Glucose degradation into lactate allows the cell to avoid 
oxygen consumption while producing ATP. Wherever oxy-
gen reacts with iron containing proteins, e.g., complexes 
of mitochondrial respiratory chain, ROS, such as the  O2

−, 
peroxide anions, and hydroxyl radicals (·OH), can be gen-
erated. Interaction of ROS with cellular macromolecules 
(DNA, proteins, and lipids) under steady-state conditions 
can lead to oxidative damage if the antioxidant defenses are 
not fully efficient. Hence, one can hypothesize that transi-
tion to aerobic glycolysis serves as a means to minimize 
the production of ROS in cells during the critical phases of 
enhanced biosynthesis and cell division [56].

The consensus view, however, ‘over-production’ of ROS 
is unfavorable for cells, is an overly simplistic statement as 
ROS accomplish several other tasks and may act as second 
messengers in mammalian cells [57]. Notably, several genes 
are activated in response to alterations in ROS concentration 
including those for protein kinases [58], tyrosine kinases, 
and growth factors [59]. Therefore, a perturbed redox state, 
because of prevalent glycolytic metabolism coupled with 
reduced  O2 availability, can affect gene expression as well 
as enzymatic reactions, thus favoring the emergence of 
abnormal phenotypes. Indeed, an imbalance in the redox 
metabolism and mitochondrial respiratory functions has 
been implicated in the etiology and pathology of cancer [60].

An ultimate critical consequence of a high glycolytic phe-
notype is increased tumor cell acid production and conse-
quently increased release of  H+ in the surrounding milieu. 
In turn, acidification of the microenvironment allows can-
cer cell to become more invasive and more competitive 
for space and substrate utilization [61]. In addition, rap-
idly growing cancer cells require enhanced glutaminolytic 
capacities, which are consequently driven towards synthetic 
processes, such as nucleic acid synthesis through oxidative 

and non-oxidative pentose pathways [62]. It has been shown 
that the glycolysis-derived carbons are used mainly for intra-
cellular synthetic reactions, i.e., fatty acids and nucleic acid 
ribose synthesis through glutaminolysis and the non-oxida-
tive pentose-cycle [63] This is an unexpected feature of can-
cer metabolism in that the high level of ‘aerobic glycolysis’ 
was initially thought to be explained solely by the increas-
ing energy demand of tumor cells. Those results provided, 
therefore, a timely reason to revisit an old question—why 
do tumor cells glycolyse?—giving new provocative answers 
and insights [64].

In addition to supporting nucleotide biosynthesis, gly-
colysis is also a source of carbon for lipid precursors [65]. 
Citrate molecules expelled from tumor mitochondria accu-
mulate into the cytosol owing to a defect in the transforma-
tion of citrate into 2-oxoglutarate. This enhanced cytosolic 
release is a prerequisite for de novo tumor lipogenesis [66]. 
In the cytosol, citrate is cleaved by ATP-citrate lyase to 
acetyl-CoA (AcCoA), leading to oxaloacetate (OAA) and 
AcCoA, which is further carboxylated for incorporation into 
fatty acids and cholesterol, an essential molecule required for 
de novo membranogenesis [67]. De novo lipogenesis is an 
absolute requirement for highly proliferating cells as inhibi-
tion of fatty acid synthase activity has been shown to kill 
cancer cells and hinder the growth of tumors in xenograft 
models [68].

Melatonin and mitochondrial respiration

The collective data suggest a critical role of mitochondria in 
regulating glucose and energy metabolism in cancer cells. 
As a result, an in depth investigation of the role of mito-
chondria in cancer could likely reveal novel approaches to 
targeted therapy. Some attempts have been already made 
in targeting glutamine metabolism and aspartate synthesis, 
while metformin, commonly used in the treatment of dia-
betes as an inhibitor of the mitochondrial complex I, has 
shown having anticancer activity [69]. Furthermore, cancer 
can be inhibited or even induced to differentiate by ‘normal-
izing’ the mitochondrial metabolism. Breast cancer cells, 
growing within an embryonic morphogenetic milieu (con-
stituted by protein egg’s extract), were induced to recover 
a ‘normal’ oxidative metabolism [70]. In the treated cancer 
cells, glycolytic fluxes diminished, with a parallel decrease 
in lactate, glutathione, and glutamine levels. Namely, 
MDA-MB231 cell line, characterized by a truly glycolytic 
phenotype, after 72 h of culture in the embryonic environ-
ment, underwent a complete metabolic reversion. A parallel 
change was observed for the mitochondria shape: when cells 
experienced a transition from a glycolytic phenotype into an 
oxidative metabolism, mitochondria lost their ‘condensed’ 
structure evolving into an orthodox conformation [71]. 
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Indeed, reversion of the glycolytic phenotype (by forcing 
cells to grow in a glucose-free, glutamine/pyruvate-contain-
ing medium) induces loss of many cancer stemness features 
and restores sensitivity to drugs, as evidenced by studies on 
pluripotent cancer stem cells [72], where glycolytic pheno-
type, mitochondrial dysfunction, pluripotency, and resist-
ance to apoptosis are tightly inter-connected. In that study, 
normalization of the metabolomic profile was associated 
with profound changes in mitochondria morphology, bio-
genesis, and physiology along the differentiation process, 
culminating with the establishment of a long filamentous, 
polarized, and active network. This finding provides clear 
evidence that both mitochondrial as well as cell membrane 
morphology are critically linked to energy metabolism and 
to cancer development.

The glycolytic phenotype is also associated with resist-
ance to anticancer treatment. It is worth of noting that highly 
glycolytic cancer cells showed to be resistant to both the 
antiproliferative and pro-apoptotic effects of melatonin. 
Indeed, melatonin did not significantly modify the behavior 
of glycolytic embryonal carcinoma cells, whereas cancer 
cells relying preferentially to oxidative phosphorylation for 
ATP synthesis (particularly cells grown up in a galactose 
medium) demonstrated to be significantly modulated by 
melatonin [73]. In addition, low-malignant breast cancer 
MCF-7 cells has been shown to decrease their ATP produc-
tion as well as their viability upon melatonin treatment [74].

The concentration of melatonin required for triggering 
an anticancer effect has been shown to be strictly dependent 
on the energetic supply of the medium in which cells are 
cultured: the more differentiated is the metabolomic finger-
print of the cancer cell, the more active will be melatonin in 
promoting an antiproliferative and/or pro-apoptotic effect. 
A similar association has also been reported between full-
differentiated mitochondrial morphology and melatonin 
potency. Namely, the highest efficacy of melatonin has been 
observed in embryonal cancer cells growing in a galactose 
medium and presenting a more open conformation of the 
mitochondrial permeability transition pore, a condition 
required to destabilize the mitochondrial membrane poten-
tial and to foster the release of cytochrome c [73].

Those data seem to suggest that melatonin may display 
an anticancer effect only in those cancerous cells primarily 
relying on the mitochondrial respiratory chain for ATP pro-
duction. Indeed, in prolactinoma cancer cells overexpressing 
the respiratory complexes (namely, complexes I, III, and IV) 
under β-estradiol stimulation, melatonin induces a strong 
inhibition on the complex I–IV activity while promoting 
an increased release of ROS, thus leading to mitochondrial 
shrinkage and apoptosis [75]. Similarly, an indole derivative 
of melatonin (5,6-dihydroxytryptamine) has been demon-
strated to enhance the mitochondrial complex III, thus ulti-
mately leading to the destruction of mitochondrial function 

[76]. Accordingly, in isolated mitochondria, the main mela-
tonin catabolite 6-hydroxymelatonin (6-OHM) has been 
demonstrated to up-regulate the complex III activity, thus 
leading to increased production of ROS [77]. Mechanisti-
cally, these effects seem to involve specifically some com-
ponent of the complex III, such as Qi and Qn, given that 
antimycin A—a specific inhibitor that binds to both Qi and 
Qn—almost completely antagonizes ROS increase induced 
by melatonin in leukemic cells [78]. Therefore, it has been 
surmised that melatonin could differently modulate the 
activity of complex III in both normal and cancerous cells 
through an allosteric regulation [79]. Furthermore, mela-
tonin and its main metabolite (6-OHM) have been shown to 
induce a relevant cytotoxic effect in breast MCF-7 [80] and 
in leukemic HL-60 cells [81], mechanistically attributable 
to increased release of ROS, including  H2O2.

It is tempting to speculate that differences in cancer cell 
sensitivity to melatonin may also depend on the specific 
metabolomic fingerprint of each cancer cell type. Indeed, 
millimolar concentrations of melatonin decrease S-phase 
population and trigger apoptosis in colon cancer cells, while 
the same concentrations only reduce the proportion of cells 
in G2/M phase in both osteosarcoma and leukemia cells, 
without any effect on cell death [82, 83]. Definitively, these 
data suggest that those effects depend on the overall meta-
bolic and differentiation state of the cancer cells.

The findings reported above indicate that melatonin anti-
cancer activities are strongly dependent of the functioning 
of the respiratory chain, given that only by enhancing the 
activity of respiratory complexes melatonin could induce 
a relevant increase in ROS release and hence a consequent 
up-regulation of apoptosis.

The reported melatonin effect on cancerous cells is oppo-
site to what is reported in normal cells exposed to a num-
ber of experimental stressors, where melatonin prevents the 
mitochondrial transition pore, stabilizes the mitochondrial 
membrane potential and modulates the activity of the mito-
chondrial respiratory chain, overall reducing ROS produc-
tion. In normal cells, melatonin improves the activity of 
complexes I-IV, down-regulates the levels of complex III 
[84], and antagonizes the respiratory chain damage induced 
by rotenone [85]. In these conditions, melatonin decreases 
the oxygen consumption [86] and optimizes the respiratory 
chain functioning [87] by stabilizing the electron transfer, 
preventing the electron leakage [88] and thus increasing the 
respiratory control index [89]. These paradoxical results are 
indeed not surprising, as the anticancer effects displayed by 
melatonin have been already reported to be strictly context 
dependent: they have been observed only in some types of 
cancer cells and not in normal cells [90].

These data are in support for a ‘normalizing’ effect 
exerted by melatonin on glucose degradation through the 
phosphorylating-oxidative pathway. Indeed, a very recent 



4020 S. Proietti et al.

1 3

paper demonstrated that in leiomyosarcoma, both aerobic 
glycolysis and linoleic acid uptake—two metabolic hallmark 
of malignancy—were markedly suppressed after treatment 
with even low pharmacological doses of melatonin [91]. 
Proliferative activity of cancer cells was also significantly 
reduced, while the addition of S20928, a nonselective mela-
tonin antagonist, reversed these melatonin inhibitory effects. 
That finding confirms previous results in which melatonin 
has been shown to induce apoptosis in Ewing sarcoma cells 
with high glycolytic metabolism, while having no effect on 
cancerous cells with normal glucose metabolism, like chon-
drosarcoma [92]. In this study, melatonin has a general effect 
on glucose metabolism, as the pineal hormone induces a 
decrease in glucose uptake, lactate levels, and LDH activ-
ity, further confirming that aerobic glycolysis is essential 
for the survival of Ewing sarcoma cells. In the absence of 
external supply, cells are obliged to obtain glucose from the 
degradation of glycogen. Hence, melatonin inhibition of glu-
cose uptake could likely promote the breakdown of glycogen 
stores observed in Ewing sarcoma cells, possibly due to an 
attempt to obtain energy and maintain cell viability.

The blockage of glycogen breakdown conversely 
enhances the toxicity of melatonin and further enhances 
melatonin-induced apoptosis. Yet, in the above-referred 
study, melatonin effects on glucose metabolism have been 
primarily ascribed to the modulation of hypoxia-inducible 
factor 1 (HIF). Indeed, melatonin inactivates HIF in Ewing 
sarcoma cells, which could account for the decrease in aero-
bic glycolysis. HIF is essential for cancer cells to exhibit 
the Warburg effect, since it increases the activity of the vast 
majority of the enzymes involved in aerobic glycolysis even 
under normoxic conditions [93]. Even if no direct effects on 
mitochondria and, namely, on the activity of the respiratory 
chain have been recorded, a concomitant effect of melatonin 
in this experimental model cannot be discarded. Conclu-
sively, melatonin seems to modulate glucose metabolism 
by acting both on mitochondrial function and on some key 
enzymatic processes involved in regulating glucose metabo-
lism, such as HIF (Fig. 1).

Melatonin effects on the function of mitochondria from 
cancer cells may also depend on the subtle modulation of 
 Ca2+ release. In fact, oscillation of  Ca2+ differs significantly 
in both stem and somatic cells, as well as during cell cycle 
phase progression. Namely,  Ca2+ increases during cell dif-
ferentiation; meanwhile, its values are low in cancer stem 
cells [94]. Accordingly, the effect of melatonin on free  Ca2+ 
was also dissimilar in cancer stem cells and somatic can-
cer cells, respectively [73]. During melatonin treatment, 
cancer stem cells showed a slight increase in  Ca2+ without 
any observable effect on cell viability; in differentiated, low 
glycolytic cancer cells grown on glutamine/pyruvate-con-
taining medium, melatonin arrested cell cycle at S-phase, 
and decreased both cell viability and free  Ca2+ levels. It is 

worth of noting that mitochondria in differentiated cancer 
cells seem to retain with difficulty calcium ions; meanwhile, 
high  Ca2+ levels are required to support mitochondrial matu-
ration [72]. Thus, the melatonin-dependent calcium-releas-
ing effect [95] could play a role in mediating its anticancer 
effects on neoplastic cells with high-oxidizing mitochondrial 
metabolism.

Mitochondria, melatonin, and apoptosis

Mitochondria sustain a privileged role in the apoptotic 
process, namely, within the so-called intrinsic pathway 
[96]. A second mitochondria-derived activator of cas-
pases—such SMACs and Diablo—are released into the 
cytosol following the increase in permeability of the mito-
chondrial membranes. In turn, SMAC binds to inhibitor 
apoptotic proteins (including IAPs, Bcl-2, and Bcl-xl), 
thereby deactivating them. Namely, antiapoptotic proteins 
counteract cytosolic factors such as Bax and Bak, pre-
venting them from opening the mitochondrial outer mem-
brane permeabilization pore [97]. Antiapoptotic factors 
also suppress the activity of caspases, a group of cysteine 
proteases that are ultimately responsible for the cell death 
[98]. In this manner, modulation of mitochondria function 
antagonizes apoptotic activation. In contrast, mitochon-
dria can release cytochrome c in the cytosol through the 
so-called mitochondrial apoptosis-induced channel. Once 
released, the cytochrome c binds to the apoptotic protease 

Fig. 1  Melatonin effects on mitochondria. Melatonin (M)—pro-
duced within the mitochondria and imported from the cytosol—
enhances the disclosure of mitochondrial permeability transition 
pore (MPTP), thus modifying the mitochondrial potential (∆Ψ). 
Melatonin improves the electron transport chain (ETC) and the 
overall Kreb’s cycle activity, leading to enhanced oxidative glucose 
metabolism. Moreover, melatonin modulates reactive oxygen spe-
cies (ROS) production in a context-dependent manner. Similarly, 
melatonin increases or decreases apoptosis (respectively, in cancer 
or normal cells) by influencing antiapoptotic (Bcl-2) or pro-apoptotic 
(caspase-3, Casp3; cytochrome c, Cytc) effectors. Eventually, a direct 
action of melatonin on mitochondrial DNA (mtDNA) activity has 
been proposed
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activating factor-1 (Apaf-1) and further to pro-caspase-9, 
to constitute a complex known as apoptosome responsible 
for the cleavage of caspase-9. Once activated, caspase-9 
activates in turn caspase-3, thus reinforcing the apoptotic 
process. Thereby, a pivotal hub of the machinery involved 
in executing the apoptotic pathway can considered to be 
dependent on mitochondrial permeability.

Melatonin modulates both pro- and antiapoptotic pro-
cesses within the mitochondria according to cell types 
[99]. As previously reported, melatonin-dependent effects 
on apoptosis should be regarded as context dependent: 
melatonin usually inhibits apoptosis in normal cells while 
promoting it in cancerous cells. Mechanistically, how mel-
atonin displays such a paradoxical action is still a matter of 
debate. Differences in cell metabolism, in their enzymatic 
activities, in the intracellular redox status, or in network 
modulation may offer an explanation that has yet to be 
uncovered.

Melatonin activates both the intrinsic and extrinsic apop-
totic pathways in a wide range of cancer cells. While in a 
number of cases, melatonin triggers apoptosis by targeting 
several cytosolic pathways—including calmodulin, p53/
MDM2, and PI3K/Akt/Erk pathways [100]—in other situa-
tions, melatonin seems to influence directly mitochondria-
dependent apoptotic processes by interfering with ROS, 
cytochrome c release, and antiapoptotic proteins (reviewed 
in [101]). Namely, melatonin is able to induce de novo 
synthesis of the apoptosis-inducing factor (AIF) precursor 
protein. After being imported into mitochondria, the mito-
chondrial localizing sequence contained in AIF 67-kDa is 
cleaved, resulting in the accumulation of the mature 57-kDa 
form of the AIF protein. Consequently, activated-AIF is 
translocated into the nucleus, where AIF triggers an early, 
caspase-3-independent type of cell death [102]. This path-
way has a pivotal role in melatonin-induced apoptosis in 
both embryonal carcinoma and low-malignant breast cancer 
cells (MCF-7) [73, 103].

Despite the well-known antioxidant properties sustained 
by melatonin in normal tissues during many metabolic/
hypoxic stresses [104], melatonin increases ROS in several 
cancer cell lines [105, 106]. ROS, in turn, promote apopto-
sis by upregulating several pro-apoptotic effectors [107]. It 
has been argued that differential pro-oxidant or antioxidant 
effects of melatonin in cancerous versus normal cells may 
be dependent on the intracellular and intramitochondrial 
redox status. Indeed, melatonin is likely to enhance ROS 
production in both cases. However, the increase in ROS is 
nullified by the concomitant increase in glutathione induced 
in normal cells by the pineal neurohormone [107]. Yet, as 
cancer cells are generally unable to increase GSH availabil-
ity in response to increased oxidizing stresses, the net result 
of melatonin stimulation is an increase in ROS and thus in 
ROS-mediated cell death [108].

Conclusion

The long-recognized fact that oxidative stress in mitochon-
dria is a hallmark of mitochondrial dysfunction has stimu-
lated the development of mitochondria-targeted antioxidant 
therapies [109]. Based on pre-clinical studies and safety 
in phase 1 clinical trials in humans, phase 2 trials are now 
ongoing for mitochondria-targeted antioxidant molecules 
including MitoQ (ubiquinone mesylate, NCT02597023), the 
peptide SS-31 (d-Arg-2′,6′-dimethyltyrosine-Lys-Phe-NH2, 
NCT02245620), and other compounds [109]. Other mito-
chondrial components, particularly energy exchange systems 
and the pro-apoptotic function of the permeability transi-
tion pore, constitute new potential targets for mitochondrial 
medicine [110].

Blockage of glycolytic metabolism currently constitutes 
a major target to antagonize cancer growth and a number 
of experimental treatments based on those assumptions are 
already tested in pre-clinical studies. These include genetic 
or pharmacological inhibition of glycolytic enzymes or LDH 
[111], as well as the use of non-metabolizable glucose ana-
logues [112, 113] Many of these approaches have already 
demonstrated their usefulness in blocking tumor progression 
and/or in enhancing apoptosis, mainly through increase in 
mitochondrial-based ROS production [114].

Melatonin should be included among the pharmacologi-
cal agents able to modulate mitochondria functions in can-
cer, given that a number of relevant melatonin-dependent 
effects are triggered by targeting mitochondria functions 
[115]. Indeed, melatonin may modulate the mitochondrial 
respiratory chain, thus antagonizing the cancer highly gly-
colytic bioenergetics pathway. Modulation of the ETC, 
altogether with  Ca2+ release and mitochondrial apoptotic 
effectors, may hence enhance spontaneous or drug-induced 
apoptotic processes. The mitochondria-dependent pro-
grammed cell death is likely to involve specifically AIF, a 
key-factor of early-apoptosis. Consequently, the mechanism 
of caspase-3-independent cell death and stimulation of mito-
chondrial differentiation and metabolism, with consequent 
disruption of the Warburg effect, may represent a promising 
new perspective when targeting resistant cancer cells.
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