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GSH	� Glutathione
HbA1C	� Glycated hemoglobin
IRS-1	� Insulin receptor substrate 1
IL	� Interleukin
mTOR	� Mammalian target of rapamycin
MS	� Metabolic syndrome
mPTP	� Mitochondrial permeability transition pore
NAD+	� Nicotinamide adenine dinucleotide+
NO	� Nitric oxide
RNS	� Reactive nitrogen species
ROS	� Reactive oxygen species
SNPs	� Single-nucleotide polymorphisms
TNF	� Tumor necrosis factor

Introduction

A number of risk factors for cardiovascular disease includ-
ing hyperinsulinemia, glucose intolerance, dyslipidemia, 
obesity, and elevated blood pressure (BP) are collectively 
known as metabolic syndrome (MS). MS prevalence ranges 
from 15 to 30% depending on the world region considered 
[1, 2]. A 1.5- to 2.5-fold increase in cardiovascular mortality 
occurs when MS is present, representing one of the major 
public health problems nowadays.

The link of MS and mitochondrial dysfunction has 
been suspected since long. Mitochondrial activity is mod-
ulated by the availability of energy in cells and the dis-
ruption of key regulators of metabolism not only affects 
the activity of mitochondria but also their dynamics and 
turnover [3, 4]. Mitochondrial dysfunction is associated 
with the functional decline found in tissues and organs 
during many age-related diseases such as MS and diabe-
tes. Recently, a study carried out in nondiabetic partici-
pants from the Baltimore Longitudinal Study of Aging 
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has associated impaired mitochondrial capacity with 
greater insulin resistance [5].

MS is preventable. The excessive fat accumulation, 
either in white adipose tissue or other organs, is the con-
sequence of hypertrophy and hyperplasia of white adi-
pocytes in a context of positive energy balance. Without 
question, poor diet, lack of exercise, and chronic insulin 
resistance are major contributing factors to excessive fat 
accumulation [6, 7]. The abnormal nutritional balance 
is controlled mainly at the hypothalamic level by a com-
plex circuitry of orexigenic and anorexigenic signals and 
by an endogenous clock that sets a circadian rhythm of 
appetite–satiety, a function highly affected by modern life 
habits.

In the last decade, there has been a considerable 
increase in our understanding of the cellular and molecu-
lar factors that contribute to MS development. One basic 
function that appears to be heavily influenced by (and 
influences) obesity and metabolic disease is the internal 
timing system [8–10]. The correlation between increased 
occurrence of obesity and the ubiquity of modern social 
habits, such as light at night, unusual meal timing, irregu-
lar sleep/wake schedules, and traveling between differ-
ent time zones, all encompassed by a “24/7” lifestyle, 
strongly suggests that impairment of sleep and the cir-
cadian system is involved in the etiology of MS. Several 
clinical surveys have shown increased prevalence of MS 
in night-shift workers, indicating that artificial lighting 
may contribute to the increased prevalence of metabolic 
disorders [11–14]. Thus, both animal and human data 
have clearly proved that circadian and sleep disruption 
leads to insulin resistance and MS. In a study performed 
with 593 type 2 diabetes mellitus patients, sleep debt was 
associated with long-term metabolic disruption, which 
may promote the progression of the disease. For every 
30 min of weekday sleep debt, the risk of obesity and 
insulin resistance at 12 months increased by 18 and 41%, 
respectively [15]. Collectively, these findings indicate the 
need for improving sleep quality to prevent the develop-
ment of obesity and insulin resistance as well as its pro-
gression to diabetes.

As a chronobiotic/cytoprotective agent, melatonin has a 
special place in prevention and treatment of MS [16, 17]. 
Melatonin improves sleep efficiency and has antioxidant 
and anti-inflammatory properties, partly for its role as a 
metabolic regulator and mitochondrial protector [18–20]. 
This review summarizes what is known about a putative 
therapeutic role of melatonin concerning MS prevention 
and treatment. Medical literature was identified by search-
ing databases including (MEDLINE and EMBASE), bib-
liographies from the published literature and clinical trial 
registries/databases. Searches were last updated on April 
30, 2017.

Mitochondria, inflammation, and the metabolic 
syndrome

Low degree inflammation in white adipose tissue leads to 
impaired glucose tolerance, insulin resistance, and diabetes 
[21, 22] (Fig. 1). Tumor necrosis factor (TNF)-α, interleukin 
(IL)-1β and IL-6, leptin, and resistin give rise to a vicious 
circle leading to fat deposition. Occurrence of inflammation 
in obesity is also supported by the increase in C-reactive 
protein and other inflammatory biomarkers [23, 24].

Early MS is characterized by the increased systemic 
markers of lipid oxidation, such as oxidized low-density 
lipoproteins and isoprostanes, which contribute to the devel-
opment of insulin resistance [3–5]. In the mitochondria, lipid 
peroxidation particularly affects cardiolipin, a phospholipid 
located at the level of inner mitochondrial membrane, which 
is required for several mitochondrial bioenergetic processes 
as well as in mitochondrial-dependent steps of apoptosis 
(e.g., it prevents the opening of the mitochondrial perme-
ability transition pore (mPTP). Alterations in cardiolipin 
structure, content, and acyl chain composition have been 
associated with mitochondrial dysfunction in various tissues 
under a variety of pathophysiological conditions [25].

Among mitochondrial regulators, the mammalian target 
of rapamycin (mTOR), which is activated by high calorie 
intake or high levels of amino acids, plays an important 
role [26]. The signaling pathway triggered by mTOR com-
petes against other regulators of the cell metabolism such 
as adenosine monophosphate kinase (AMPK) and sirtuins, 
and nicotinamide adenine dinucleotide+ (NAD+)-dependent 
deacetylases that induce more efficient energy consumption 
in situations of low intake, starvation, or calorie restriction 
[27].

In obesity, promotion of fat mass is given by proinflam-
matory cytokines acting via paracrine mechanisms [28–30]. 
In obese patients, proinflammatory molecules derived from 
adipose tissue diminish after weight loss [31]. Thus, source 
as well as a target for proinflammatory cytokines are given 
by fat cells. When white adipose tissue mass increases by 
adipocyte hypertrophy, the large-size adipocytes develop a 
secretory dysfunction characterized by overproduction (syn-
thesis and release) of adipocytokines that decrease tissue 
sensitivity to insulin, promote oxidative stress, and display 
proinflammatory effects (leptin, resistin, TNF-α, plasmino-
gen activator inhibitor-1, IL-1, and IL-6). In addition, lower 
amounts of adiponectin (an insulin-sensitizing adipokine) 
are released by adipocytes (Fig. 1). Consequently, obesity 
is the result of a multifactorial combination of genetic back-
ground, metabolic, endocrine, inflammatory, and circadian 
dysfunctions, whose long-term maintenance is favored by 
behavioral disorders [32].

Even in the absence of physiological stress or acute infec-
tion, levels of inflammatory mediators increase with age. 
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This leads to the age-related decline in physiological func-
tions entailing inflammatory damage of cellular proteins, 
lipids, and DNA. The term “inflammaging” was introduced 
to underscore the importance of inflammation in senescence 
and its role in the development of age-related diseases such 
as MS [33–36]. It entails the slowly progressing, persistent 
type of oxidative stress resulting from the increased produc-
tion of reactive oxygen species (ROS) and reactive nitro-
gen species (RNS) and consequent mitochondrial damage 
[36–38].

Melatonin and mitochondria

This subject is covered in depth by other reviews in this 
issue. Melatonin is a powerful scavenger of ROS and RNS, 
and naturally acts on mitochondria, the site with the high-
est ROS/RNS production into the cell. Melatonin improves 
glutathione (GSH) redox cycling and increases GSH content 

by stimulating its synthesis in the cytoplasm, mitochondria 
depending on the GSH uptake from cytoplasm to maintain 
the GSH redox cycling [39]. Finally, melatonin exerts impor-
tant antiapoptotic effects and most of the apoptotic signals 
originate from the mitochondria (for ref. see [20, 40, 41].

Melatonin plays an important role in antioxidant defense 
via the regulation of enzymes involved in the redox pathway 
and directly through the nonenzymatic, radical scavenger 
effect that melatonin and some of its metabolites, notably 
N1-acetyl-N2-formyl-5-methoxykynuramine and N1-acetyl-
5-methoxykynuramine, have to scavenge ROS, RNS and 
organic radicals [42, 43]. Safeguarding of respiratory 
electron flux, reduction of oxidant formation by lowering 
electron leakage, and inhibition of mPTP events are among 
the most important effects on melatonin in mitochondria. 
Melatonin was reported to protect the mitochondria from 
oxidative damage in part by preventing cardiolipin oxida-
tion [25, 44].

NORMAL ADIPOSE TISSIE

OBESE ADIPOSE TISSUE

Excessive food intake
Expansion of adipose tissue
Macrophage infiltration

↑ Inflammation
↑ Oxidation of lipids
↑ Steatosis
↑ Insulin resistance
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↑ Gluconeogenesis
↑ Glucose output
↑ VLDL production

↑ Glycemia                   Dyslipemia
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Fig. 1   MS is the consequence of obesity-induced changes in adipo-
cytokine secretion that lead to the development of systemic insulin 
resistance, type 2 and 3 diabetes mellitus, and cardiovascular disor-
ders. Overnutrition that results from a combination of increased food 
intake and reduced energy expenditure leads to adipose tissue expan-
sion, increased adipocyte size and number, and increased macrophage 

infiltration that, together, lead to increased free fatty acid release, dys-
regulated secretion from adipocytes of a variety of adipocytokines, 
including adiponectin, leptin, and resistin, and increased release from 
resident macrophages of the inflammatory cytokines (TNF-α, IL-6). 
Dysregulated secretion of these adipokines elicits a variety of adverse 
effects on numerous tissues
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Melatonin can also act on mitochondrial biogenesis via 
sirtuins. Sirtuins promote longevity in numerous organisms. 
The seven mammalian subforms, sirtuin 1 to sirtuin 7, are 
involved in mitochondrial function. Sirtuins also stimulate 
mitochondrial biogenesis [45]. Several studies have reported 
upregulation of sirtuin 1 by melatonin (for ref. see [46, 47]).

Melatonin and inflammation

Counteraction of inflammaging by melatonin occurs at dif-
ferent levels. One of them includes the correction of meta-
bolic dysregulation preventing insulin resistance [48–50]. 

Among the several regulatory pathways modulated by mela-
tonin treatment (Table 1), the impaired serine phosphoryla-
tion of insulin receptor substrate 1 (IRS-1) and concomitant 
an upregulation of IRS-1 expression may be crucial [51]. 
Both melatonin and melatonergic agonists (e.g., piromela-
tine) do counteract the blockade of such a key step in insulin 
signal transduction [48, 50, 52].

Melatonin also prevents processes that promote inflam-
mation including formation of peroxynitrite and tyrosine 
nitration by peroxynitrite-derived free radicals [19]. All 
these changes trigger low-grade inflammation in various 
organs.

Table 1   Effects of melatonin in animal models of MS

Observation Reference(s)

Reduced body weight increase and circulating glucose, leptin, and triglycerides in high-fat-fed rats [53]
Decreased weight gain and plasma insulin and leptin levels in middle-aged rats fed with a high caloric liquid diet [54]
Normalized glucose tolerance and insulin sensitivity in mice fed with a high-fat diet [55]
Decreased hyperadiposity in oophorectomized rats [56–58]
Decreased hyperadiposity in olanzapine-treated rats [59]
Reduced body weight gain in goldfish [60]
Normalized body weight increase, glucose tolerance, and insulin sensitivity in rats fed with a high-fat diet (an effect mimicked by 

the melatonin analog piromelatine)
[52]

Reduced body weight increase and normalized levels and 24 h rhythmicity in circulating insulin, glucose, leptin, adiponectin, 
triglycerides, and cholesterol

[61]

Anti-inflammatory activity in pancreas and liver of senescence-accelerated prone mice (SAMP8) [62, 63]
Decreased body weight gain, visceral adiposity, blood insulin, and triglyceride levels and TBARS in rats receiving a high calorie [64]
Counteracted body weight increase and dyslipidemia and decreased blood pressure (BP) in Zucker diabetic fatty rats [65]
Improved MS caused by a high fructose intake without affecting food intake in rats [66–70]
Normalized BP in spontaneously hypertensive rats (an effect mimicked by the melatonin analog piromelatine) [71]
Improved MS caused by modifying light/dark regimens in rats [72]
Ameliorated fatty liver in high-fat-fed rats [73]
When administered during reperfusion, prevented ventricular arrhythmias in hearts from spontaneously hypertensive rats and 

fructose-fed rats
[74]

Counteracted low-grade inflammation and oxidative stress in Zucker diabetic fatty rats [75]
Counteracted abnormally high blood levels of glucose and triglycerides, polyphagia, and polydipsia in streptozotocin diabetic rats [76, 77]
Normalized metabolic and reproductive disturbances in rat´s polycystic ovary syndrome [78]
Normalized clinical and biochemical parameters of mild inflammation in diet-induced MS in rats [79]
Normalized hypothalamic gene expression of signals regulating feeding behavior in high-fat fed rats [80]
Counteracted obesity and abnormal adipokine patterns and metabolism in obese (ob/ob) mice [81]
Nephroprotective activity in Zucker diabetic fatty rats via inhibition of NADPH oxidase [82]
Diabetes prevention in high carbohydrate diet-fed rats [83]
Counteracted abnormal fasting blood glucose, total cholesterol, LDL levels and MDA levels, and ameliorated vascular responses 

and endothelial dysfunction in diabetic rats
[84]

Augmented tolerance to myocardial ischemia/reperfusion injury in the offspring via restoring cardiac IRS-1/Akt signaling when 
given to the rat diabetic mother during pregnancy

[85]

Given alone or in combination with metformin improved adiposity, circadian activity, insulin sensitivity, and islet cell failure in 
rats with diet-induced obesity subjected to circadian disruption

[86]

Via modulation of the MAPK-JNK/P38 signaling pathway, improved nonalcoholic fatty liver disease in obese mice [87]
In rats subjected to bile duct ligation, counteracted liver apoptosis, and endoplasmic reticulum stress, and mitochondrial dysfunc-

tion
[88]

Decreases body weight, liver steatosis, and low-grade inflammation, and improves insulin resistance and gut microbiota in high-
fat diet-fed mice

[89]
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A third area relevant to inflammaging is that related to 
melatonin immunological effects. Melatonin’s multiple func-
tions entail both proinflammatory and anti-inflammatory 
actions (“melatonin buffer action” in the immune system) 
[19, 38, 90]. Melatonin down-regulated proinflammatory 
cytokines (TNF-α, IL-1β, and IL-6), and up-regulated anti-
inflammatory cytokines (e.g., IL-10) in the liver of aged, 
ovariectomized female rats (an animal model of MS) [91]. In 
the senescence-accelerated mouse strain SAMP8, decreased 
levels of TNF-α and IL-1β and increased levels of IL-10 
were observed after melatonin treatment in liver [62], pan-
creas [92], and heart [93].

Peripheral oscillators exist in cells relevant to MS, such as 
pancreatic β-cells [94], hepatocytes, adipocytes, cardiomyo-
cytes [95], and leukocytes [96, 97]. In all these cell types, 
melatonin modulates factors involved in metabolic sensing 
of the circadian apparatus like peroxisome proliferator-acti-
vated receptor-γ coactivator-1α, peroxisome proliferator-
activated receptor-γ, phosphoinositide 3-kinase, protein 
kinase B, and the accessory oscillator components AMPK, 
nicotinamide phosphoribosyl transferase, and sirtuin 1 [38, 
98]. Melatonin reduced proinflammatory factors by sup-
pressing the expression of nuclear factor-κB via recruitment 
of a histone deacetylase to its promoter [99]. Other aspects 
of epigenetic modulation by melatonin via circadian oscil-
lators have been summarized by [100].

Evidence of melatonin therapeutic value in metabolic 
syndrome: animal studies

Obesity, type 2 diabetes, and hepatic steatosis ameliorate 
after melatonin to rats [101, 102]. Melatonin administration 
normalizes most observed alterations in experimental hyper-
adiposity concomitantly with improvement of the altered 
biochemical proinflammatory profile (Table 1).

In streptozotocin-induced type 1 diabetic rats, regenera-
tion and proliferation of β-cells in the pancreas leading to 
a decrease in blood glucose were observed after melatonin 
treatment [103], while pinealectomy resulted in hyperinsu-
linemia and fatty liver [104].

Melatonin treatment improved insulin sensitivity and 
lipid metabolism in type 2 diabetic rats [105] and increased 
hepatic glycogen content in the liver [106]. In diabetic mice, 
melatonin normalized insulin sensitivity and ameliorated 
hepatic steatosis [107].

Melatonin treatment is effective in reversing hyperadi-
posity in animal models of MS (Table 1). This occurs in the 
absence of significant differences in food intake, presumably 
via increased activity of the sympathetic nervous system 
innervating white and brown fat [108]. Melatonin was shown 
to augment the number and activity of brown adipocytes in 
mammals [109]. Therefore, the gathered experimental data 
support that melatonin effectively counteracts the disrupting 

effects seen in diet-induced obesity in animals, in particular, 
insulin resistance, dyslipidemia, and obesity.

However, it must be noted that most experimental 
research has been carried out in nocturnal species like rats 
and mice, which are nocturnal animals, and therefore, care 
needs to be taken when extrapolating data to humans. In both 
humans and rodents, melatonin levels rise during the even-
ing, peak in the middle-to-latter half of the night and decline 
by morning. However, the dark phase is a time of energy 
expenditure in rodents, coincident with a peak in insulin 
sensitivity, while in humans, the dark phase is a time of 
energy deficit or fasting, with elevated glycogen breakdown 
and gluconeogenesis and decreased insulin sensitivity. These 
divergences may be even more profound, because melatonin 
does not only affect physiological functions directly, but also 
modulates phasing and amplitudes of the circadian master 
clock and various peripheral circadian oscillators.

Evidence of melatonin therapeutic value 
in the metabolic syndrome: clinical studies

Table 2 summarizes the results of clinical studies on mela-
tonin activity relevant to human MS. Type 2 diabetic patients 
have low circulating levels of melatonin [110] with a con-
currently and expected upregulation of mRNA expres-
sion of melatonin membrane receptor [111]. Furthermore, 
allelic variants for melatonin receptors were associated with 
increased levels of fasting blood glucose and/or increased 
risk of type 2 diabetes [112–114] and with polycystic ovary 
syndrome [115]. These findings strongly bind melatonin to 
glucose homeostasis in blood.

Low circulating melatonin levels are found in coronary 
artery disease [128–131] and this trait was associated with 
the nondipper pattern of BP in elderly hypertensive indi-
viduals [132]. Conversely, the administration of melatonin 
decreased nocturnal BP in hypertensives [135–138] and 
normalized age-dependent disturbances of cardiovascular 
rhythms [139]. A controlled release preparation of 2 mg 
of melatonin (Circadin®, Neurim) is effective and safe in 
treating nocturnal hypertension as demonstrated by a meta-
analysis of randomized controlled trials [162]. Cardiovas-
cular protection in MS by melatonin could be related to the 
antihypertensive and anti-remodeling effects of the meth-
oxyindole through its antioxidant and scavenging proper-
ties, preserving the availability of nitric oxide and having 
sympathoplegic effects.

As in experimental animal studies, melatonin administra-
tion ameliorates lipid profiles in MS patients. For example, 
melatonin (1 mg/kg for 30 days) augmented high-density 
lipoprotein-cholesterol levels in peri- and postmenopausal 
women [163]. A reduced intestinal absorption of choles-
terol [164] or an inhibited cholesterol biosynthesis [165] 
may explain the hypolipidemic effects of melatonin.
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Melatonin treatment prevented the catecholamine-
induced hypercoagulability in acute stress that may contrib-
ute to the growth of thrombus following rupture of coronary 
plaque [140]. Inhibition of platelet aggregation by melatonin 
is also probably involved in this protective effect on athero-
thrombotic risk in MS [141–143].

The potential therapeutic value of melatonin in MS is 
supported by several studies including obese patients [144, 
145], bipolar and schizophrenic patients treated with the 

second-generation antipsychotics [146–148], and elder 
hypertensive patients [149], and improves enzymatic pro-
file in patients with nonalcoholic liver steatosis [151, 152]. 
In type 2 diabetic patients, the combined administration 
of melatonin and zinc acetate improved glycemic control 
when used alone or in combination with metformin [153]. 
In healthy women included in the Nurses’ Health Study 
cohort, an inverse relationship between urinary 6-sulfa-
toxy melatonin excretion and insulin levels and insulin 

Table 2   Clinical observations on melatonin relevance in MS

Findings Reference(s)

Low plasma melatonin levels in type 2 diabetic patients [110, 116–120]
Low plasma melatonin levels in pregnant women with hypertensive or glucose metabolic disorder complications [121]
Increased number of melatonin receptors in type 2 diabetic patients [111]
Melatonin receptor gene polymorphism associated with high risk of type 2 diabetes [112, 122–127]
Genetics of melatonin receptor type 2 is associated with left ventricular function in hypertensive patients and with increased 

risk of impaired fasting glucose in youth with obesity
[113, 114]

Family association study between melatonin receptor gene polymorphisms and polycystic ovary syndrome [115]
Low melatonin production in coronary disease independently of β-adrenoceptor blocker treatment [128–131]
Among elderly hypertensive individuals, nocturnal urinary melatonin excretion is inversely associated with the nondipper pat-

tern
[132]

Melatonin treatment decreases nocturnal BP in type 1 adolescent diabetics [133, 134]
Melatonin treatment decreases high nocturnal BP in hypertensives [135–138]
Melatonin administration attenuates age-dependent disturbances of cardiovascular rhythms [139]
Melatonin treatment prevents catecholamine-induced hypercoagulability in normal volunteers [140]
Melatonin inhibits human platelet aggregation in vivo and in vitro [141–143]
Melatonin treatment ameliorates MS in obese patients [144, 145]
Melatonin treatment improves MS after treatment of bipolar and schizophrenic patients with the second-generation antipsychot-

ics
[146–148]

Melatonin administration normalizes MS in elder hypertensive patients [149]
Short-term use of prolonged-release melatonin improves sleep maintenance in type 2 diabetic patients with insomnia without 

affecting glucose and lipid metabolism. Long-term prolonged-release melatonin administration has a beneficial effect on 
HbA1c, suggesting improved glycemic control

[150]

Melatonin treatment improves enzymatic profile in patients with nonalcoholic liver esteatosis [151, 152]
The combination of melatonin and zinc acetate, when used alone or in combination with metformin improved glycemic control 

in type 2 diabetic patients
[153]

Melatonin treatment ameliorated oxidative stress and inflammatory parameters of obese women [154]
Acute melatonin administration in healthy women impairs glucose tolerance [155]
The combined administration of melatonin and fluoxetine was effective to treat mood, sleep, and obesity in postmenopausal 

women
[156]

Increased MTNR1B expression occurred in human islets from risk G-allele carriers. Melatonin treatment in a human recall-by-
genotype study reduced insulin secretion and raised glucose levels more extensively in risk G-allele carriers, indicating that 
an increased melatonin signaling may be a risk factor for type 2 diabetes

[157]

Reduced fat mass and increased lean mass in response to 1 year of melatonin treatment in postmenopausal women [158]
Evaluation of the efficacy and safety of melatonin for the reduction of reperfusion injury in patients undergoing revasculariza-

tion for ST-elevation myocardial infarction indicated that intracoronary melatonin administration (median time >3.3 h earlier) 
was not associated with a reduction in infarct size

[159]

In a post-hoc analysis of the previously reported trial to assess whether the effect of melatonin was affected by the timing of 
reperfusion, the main finding was that melatonin, when given <2.5 h after symptom onset, did reduce infarct size significantly 
by approximately 40%

[160]

A prospective nested case-control study of participants from the Nurses’ Health Study cohorts I and II indicated that a lower 
melatonin secretion was significantly associated with a higher risk of myocardial infarct in women with augmented body 
mass index

[161]
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resistance was documented [166]. Collectively, data in 
Table 2 support that melatonin therapy can be beneficial 
for patients with MS. However, more studies are needed 
to identify the appropriate time/duration of treatment/dose 
relationship administration of melatonin.

It must be noted that several results deny the capacity 
of melatonin to improve glucose tolerance and to reduce 
insulin resistance in humans. Melatonin administra-
tion decreased glucose tolerance, already in nondiabetic 
young individuals [166], an observation confirmed by 
other recent studies [155, 167]. In vitro, melatonin inhib-
its insulin secretion, an effect that is logical in humans 
if one presumes that melatonin suppresses insulin during 
the night to sensitize the pancreatic β-cells in preparation 
for breakfast, but is more difficult to explain in night-time 
eating rodents.

Additional information concerning a glucose tolerance-
reducing property of melatonin in humans came from the 
detection of melatonin receptor polymorphisms. To date, 
several single-nucleotide polymorphisms (SNPs) located 
near or inside the gene encoding MTNR1B with an asso-
ciation with type 2 diabetes mellitus have been identified 
in Asian (Indian, Sri Lankan, Chinese, Korean, and Japa-
nese) and European ethnicities [112, 122–127]. Among 
these SNPs, rs10830963 appears the most strongly asso-
ciated with an increase in fasting plasma glucose, glucose 
area under the curve, and glycated hemoglobin (HbA1C), 
and a decrease in pancreatic β-cell function, basal insulin 
secretion, and plasma insulin [168]. This G-allele that car-
ries the SNP rs10830963 is prodiabetic and is overexpressed 
in pancreatic β-cells, causing a more intense decrease in 
cyclic adenosine monophosphate (cAMP) upon melatonin 
stimulation and consequently suppressing more strongly the 
cAMP-dependent secretion of insulin [169]. It appears to 
affect β-cell function directly and is associated with a defec-
tive early insulin response and a decreased β-cell glucose 
sensitivity [169–171]. In clinical studies, the presence of the 
G-allele worsens the decrease in glucose tolerance induced 
by melatonin [172].

The rs10830963 G-allele may have a greater risk on the 
transition from normal glucose tolerance to prediabetes than 
on prediabetes to type 2 diabetes mellitus and is thought 
to have an important influence on glucose levels from 
childhood onwards [173]. Individuals older than 45 years 
of age, who are carrying the rs10830963 G-allele, show a 
higher expression of MTNR1B in pancreatic islets [169]. 
This has been reported in diabetic rats as well as diabetic 
humans. It is not known whether this is a physiological 
adaptive response to reduced melatonin levels or whether 
it is part of the pathology of diabetes. It has been proposed 
that an increase in MT2 receptor expression could increase 

the inhibitory downstream signaling leading to an overall 
decrease in insulin release in type 2 diabetes mellitus [169].

Increased MTNR1B expression occurred in human 
islets from risk G-allele carriers. Melatonin treatment 
reduced insulin secretion and raised glucose levels more 
extensively in risk G-allele carriers, indicating that an 
increased melatonin signaling may be a risk factor for type 
2 diabetes [157]. Since the presence of the G-allele was 
shown to worsen the reduction in glucose tolerance by 
melatonin [172], strategies of blocking melatonergic sign-
aling in patients with diabetes have been proposed [174].

However, it must be noted that a reduction in insulin 
secretion is not necessarily associated with insulin resist-
ance in the target organs, clearly improved by melatonin 
in most studies. In addition, other MT2 receptor variants 
with entirely different properties have been found to be 
also associated with type 2 diabetes. Some of them are 
entirely dysfunctional because of their incapability of 
binding melatonin, and others were found to be unable 
to interact with Gi proteins [175, 176]. Thus, the absence 
of melatonin signaling is presumably also diabetogenic.

A further important aspect concerns the contrasting 
findings of impairments of insulin secretion by the overex-
pressed MT2 G-allele and the observed reduced melatonin 
levels in patients with diabetes [110, 116–120]. The reduc-
tion in melatonin levels should presumably be considered 
as a primary change that is associated with the initiation 
and/or progression of the disease. In fact, the decrease in 
melatonin has been regarded as a risk factor for type 2 
diabetes.

In young adults, the expression levels of the G-allele 
showed a higher variability, but were not statistically dif-
ferent from those of noncarriers, whereas a strong increase 
in G-allele expression was observed in individuals above 
45 years [169]. Based on these findings, Hardeland recently 
proposed an aging-related deterioration of the circadian 
system, which may lead to losses of rhythm amplitudes, 
presumably also in the pancreatic β-cell oscillators, and 
additionally to decreases in nocturnal melatonin secretion 
[47]. This suggestion gives rise to the interesting question 
on whether exogenous melatonin administered to carriers 
of the G-allele or to other adults before the age of 40 years 
might protect the circadian system from losses in ampli-
tudes and, thus, prevent or delay the development of type 
2 diabetes. Another important point to consider in human 
studies is the discrimination of core symptoms (glucose 
homeostasis) from diabetes-associated pathologies, includ-
ing those derived from an enhanced oxidative stress like 
liver steatosis, cardiovascular disease, retinopathy, nephrop-
athy, or osteoporosis. In most of these associated patholo-
gies, melatonin has a demonstrated therapeutic efficacy.
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Conclusions

Clinical management of type 2 diabetes includes rigorous 
lifestyle modifications, insulin therapy, drug treatments that 
promote insulin sensitization (such as metformin) and insu-
lin secretion (such as glibenclamide), novel glucagon-like 
peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibi-
tors, and sodium glucose cotransporter 2 inhibitors [177]. 
These approaches are designed to manage the symptoms 
of insulin resistance/β-cell dysfunction and are either used 
alone or in combination. Many drug therapies for diabetes 
are costly and, in some cases, have been associated with 
adverse events, including possible pancreatitis, hypoglyce-
mia, and osteoporosis [178]. Thus, there remains a need for 
new and cost-effective pharmacotherapies for diabetes that 
have limited additional health risks.

Obesity is a preventable disease, but its prevalence is con-
tinuously increasing worldwide, and because it is frequently 
associated with other cardiovascular risk factors and high 
mortality, obesity has become an important public health 
problem and a heavy socioeconomic burden for the overall 
society. Environmental factors or stressors of the so-called 
contemporary “24/7” societies have pronounced effects on 
metabolism producing circadian clock disruption. Further-
more, people whose work involves irregular time schedules 
and forced exposure to bright light at night (night/shift 
workers) show significant disruptions in sleep architecture, 
and increased prevalence of MS. These lines of evidence 
indicate that the system fails to adjust properly to environ-
mental and/or stressor changes disrupting overall metabolic 
homeostasis.

The combination of the chronobiotic effect of melatonin 
with its cytoprotective properties may be an innovative strat-
egy in MS. Type 2 diabetes mellitus and its concomitant 
oxyradical-mediated damage, inflammation, microvascular 
disease, and atherothrombotic risk are prevented by mela-
tonin. For example, evaluation of the efficacy and safety of 
melatonin for the reduction of reperfusion injury in patients 
undergoing revascularization for ST-elevation myocardial 
infarction indicated that intracoronary melatonin adminis-
tration, when given <2.5 h after symptom onset, did reduce 
infarct size significantly by approximately 40% [160]. Mela-
tonin has a high safety profile and shows a reduced toxicity, 
thus differing from most many pharmaceutical agents used 
in MS patients [179].

As melatonin is a short-lived molecule that has a limited 
duration of action (half-life from 0.54 to 0.67 h), analogs 
with a high affinity for melatonin receptors and a longer 
duration of action have synthesized to treat circadian 
disorders.

It remains to be established to what extent the new mela-
tonergic agents approved by the US Food and Drug Admin-
istration or the European Medicines Agency (ramelteon, 

agomelatine, and tasimelteon) share a same protective 
activity as melatonin in MS [180]: for example, ramelteon, 
when given daily in drinking water (8 mg/kg) for 8 weeks to 
spontaneously hypertensive male Wistar–Kyoto rats signifi-
cantly attenuated systolic BP and body weight gain [181]. 
Likewise, piromelatine, an investigational melatonergic ago-
nist, has been shown to be more effective than melatonin to 
improve experimental MS [52, 71, 182].
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