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Abstract Primary cilia are solitary, microtubule-based

protrusions of the cell surface that play fundamental roles

as photosensors, mechanosensors and biochemical sensors.

Primary cilia dysfunction results in a long list of devel-

opmental and degenerative disorders that combine to give

rise to a large spectrum of human diseases affecting almost

any major body organ. Depending on the cell type, primary

ciliogenesis is initiated intracellularly, as in fibroblasts, or

at the cell surface, as in renal polarized epithelial cells. In

this review, we have focused on the routes of primary

ciliogenesis placing particular emphasis on the recently

described pathway in renal polarized epithelial cells by

which the midbody remnant resulting from a previous cell

division event enables the centrosome for initiation of

primary cilium assembly. The protein machinery impli-

cated in primary cilium formation in epithelial cells,

including the machinery best known for its involvement in

establishing cell polarity and polarized membrane traf-

ficking, is also discussed.
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Abbreviations

aPKC Atypical protein kinase C

BBS Bardet–Biedl syndrome

GEF Guanine nucleotide exchange factor

GPCR G protein-coupled receptor

Hh Hedgehog

IFT Intraflagellar transport

JBTS Joubert syndrome

MDCK Madin–Darby canine kidney

MKS Meckel syndrome

MEF Mouse embryonic fibroblast

NPHP Nephronophthisis

PDGF Platelet-derived growth factor

RPE Retinal pigment epithelial

Smo Smoothened

Types and general functions of cilia

Cilia are highly conserved microtubule-based membrane

extensions that protrude from the cell surface [1–3]. They

are organized around a central microtubular scaffold, ter-

med the axoneme, which derives from the centrosome and

is surrounded by the ciliary membrane. Cilia are classified

as 9 ? 2 and 9 ? 0, according to the number of micro-

tubules associated with the axoneme. The numbers indicate

the number of peripheral doublets (nine) and the presence

(two) or absence (zero) of central microtubule singlets. In

the case of 9 ? 2 cilia, protein complexes known as radial

spokes connect the central pair and the outer doublets.

Mammalian cilia have also customarily been divided into

two categories: motile and nonmotile cilia. Motile cilia

contain outer and inner arms formed by the motor protein

dynein in each microtubule doublet. 9 ? 2 cilia are usually

called flagella when they are motile and long ([10 lm).

Nonmotile cilia lack dynein arms and can adopt the 9 ? 2

or 9 ? 0 configuration (Fig. 1a).
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Cilia whose function is to move mucus or other fluids

(Fig. 1b), such as multiciliated cells of conducting airways,

ependymal cells and the fallopian tubes [4], and those

involved in cell motility, such as the single flagellum of

spermatozoa and trypanosomes [5, 6] or the two flagella of

the green algae Chlamydomonas, contain motile 9 ? 2 cilia

with dynein arms [7]. Nonmotile 9 ? 2 cilia without dynein

arms are found in some sensory cells, such as mammalian

olfactory neurons, which have 10–30 cilia, and the hair cells

of the inner ear whose cilia, known as kinocilia, are

involved in mechanotransduction (Fig. 1a, b) [8]. 9 ? 2

cilia vary in length ranging from 3 to 10 lm in multiciliated

cells, from 50 to 150 lm for sperm flagella and to 200 lm in

the case of olfactory cilia.

Cells in the ventral node, which is an embryonic cavity at

the midline filled with extra-embryonic fluid, contain a sin-

glemotile cilium, referred to as the nodal cilium, which has a

9 ? 0 pattern and contains dynein arms (Fig. 1a, b). Nodal

cilia rotate to generate unidirectional leftward fluid flow,

which is essential for breaking the left–right symmetry of

internal organs in vertebrates during embryogenesis [9, 10].

Cells of almost all mammalian tissues have a single copy

of a nonmotile cilium, referred to as the primary cilium,

which has a 9 ? 0 structure and no dynein arms (Fig. 1a, b).

Fig. 1 Types of cilium.

a Schematic of distinct types of

cilium as seen in cross-

section. b Examples of cell

types harboring each type of

cilium. c Examples of disorders

associated with the dysfunction

of the distinct types of cilium
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The primary cilium typically attains a length of 3–10 lmand

is found in quiescent and differentiated cells [11]. This

review will focus on primary cilia, with particular emphasis

on the biogenesis of the primary cilium of polarized

epithelial cells, and on the machinery underlying the process

of primary ciliogenesis specific to these cells.

Primary cilium function

The role of the primary cilium is well known in photore-

ceptor cells, in which the cilium adopts a specialized

structure that concentrates visual pigments for photon

absorption [12]. Although the primary cilium was first

described more than a century ago [13], its function in all

other cells has been an enigma for a long time. Nowadays,

in addition to photosensors, a fundamental role has been

established for primary cilia as mechanosensors and bio-

chemical sensors [3, 14, 15].

Mechanosensation refers to the physical sensation of

flow, pressure, touch or vibration. Much of our under-

standing of the mechanosensory functions associated with

cilia derives from studies of renal epithelial cells, in which

the force of luminal fluid flow is sensed by primary cilia

[16]. Polycystin-2 is a transient receptor potential family

Ca2? channel that associates with polycystin-1 at the cil-

iary membrane. Mutations of polycystin-1 and polycystin-2

both cause autosomal dominant polycystic kidney disease

[17]. The primary cilia of epithelial Madin–Darby canine

kidney (MDCK) cells become deflected through a combi-

nation of bending and pivoting [18]. Ciliary bending and

pivoting can both trigger membrane channels, and are able

to induce Ca2? influx through the action of polycystin-2

[18]. It has been reported that, upon shear stress, cilia

import extracellular Ca2?, raising their ciliary concentra-

tion [19–22]. Increased Ca2? ciliary levels have been

proposed to act as a second messenger to regulate multiple

downstream processes in primary cilia [15, 22–25]. How-

ever, although the role of Ca2? in mechanotransduction

had been generally accepted, it has recently been chal-

lenged on the grounds that cilia-specific Ca2? influxes have

not been observed in physiological or even highly supra-

physiological levels of fluid flow in primary cilia of

cultured kidney epithelial cells, the thick limb of the

ascending kidney tubule, crown cells of the embryonic

node, hair cells, and several cell lines [26]. Therefore, the

induction of Ca2? flow as the mechanism of primary cilia

in transducing mechanosensation is being reexamined [27].

Primary cilia act as biochemical sensors when they

respond to hormones or other soluble factors capable of

triggering a number of signaling cascades. Primary cilia

transduce environmental stimuli through surface receptors

specifically localized on the ciliary membrane, and regulate

signaling pathways important for development, cell prolif-

eration, differentiation, survival and migration [3, 14, 15].

Hedgehog (Hh) proteins regulate the development of a wide

range of metazoan embryonic and adult structures, and dis-

ruption of Hh signaling pathways results in human disease

[28, 29]. In response to Hh, its receptor, Patched, which

normally resides in the primary cilium, leaves the cilium,

and Smoothened (Smo), which is normally excluded, enters

the cilium, and the downstream effectors of the Hh pathway

assemble for signaling [30, 31]. Platelet-derived growth

factor (PDGF)-a signaling, which controls cell migration,

proliferation and survival, also occurs in the primary cilia

since its receptor localizes to primary cilia in fibroblasts,

where PDFG-a activates it and triggers the activation of

downstream signaling machinery [32]. Canonical and non-

canonical/planar cell polarity Wnt pathways regulate

developmental and homeostatic processes [33]. The Hippo

pathway controls organ size and proliferation [34]. The

primary cilium seems to play a role in dictating the outcome

(canonical or non-canonical) of Wnt signaling [35, 36] and

also controls the Hippo pathway [37]. In addition, G protein-

coupled receptors (GPCRs) of hormones, peptides, lipids

and neurotransmitters, including for instance those of

dopamine, serotonin, neuropeptide Y and somatostatin,

reside in primary cilia and use cilia for signaling [25, 38].

Given the importance of cilia, it is not surprising that

ciliary dysfunction by mutation in cilia-related genes causes

a great variety of disorders in humans (Fig. 1c). If the

mutated gene affects motile 9 ? 2 cilia the disorders caused

are related to mucociliary clearance (bronchitis, rhinosi-

nusitis), hydrocephalus and infertility; defective functioning

of nodal cilia causes heterotaxia (the abnormal arrangement

of internal organs in the chest and/or abdomen). Dysfunction

of nonmotile cilia produces defects in signaling that result in

a large variety of symptoms (renal and liver cysts, blindness,

cognitive impairment, deafness, anosmia, polydactyly,

skeletal abnormalities, obesity, etc.). Depending on the

gene(s) affected, these alterations combine to produce

numerous heterogeneous human developmental and

degenerative genetic diseases, collectively known as cil-

iopathies, that affect nearly every major body organ (for

extensive reviews, see Refs. [39–41]). Ciliopathies are

characterized by overlapping phenotypes that may include

multiple symptoms caused by the dysfunction of motile and/

or primary cilia. For instance, primary cilia dyskinesia and

Kartagener syndrome are caused by defective motile cilia

[42], whereas in other ciliopathies, such as nephronophthisis

(NPHP), Meckel (MKS) and Joubert syndromes (JBTS),

only primary cilia function tends to be affected [43]. Largely

due to their medical relevance, there has been an immense

increase in research in recent times aimed at better under-

standing the structure, mechanisms of assembly,

maintenance and function of primary cilia.
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Structure of primary cilia

The general structure of cilia is evolutionarily conserved,

despite the obvious difference between the distinct types of

axoneme [44]. In contrast to specialized cilia such as those

in photoreceptor cells, the primary cilium of epithelial

cells, fibroblasts, muscle cells, neurons, etc., adopts a

similar morphology and size (Fig. 2) [2, 45].

Primary cilia have a basal body, which consists of the

older of the two centrioles, also known as the mother

centriole, in the centrosome and the associated accessory

structures. These accessory structures include transition

fibers, basal feet and ciliary rootlets [46–48]. Transition

fibers and basal feet are ultrastructurally similar to the

distal and subdistal appendages, respectively, of the mother

centriole. Transition fibers emerge from the central

microtubule of each triplet of the basal body just before the

end of the most external microtubule, and are involved in

docking the basal body to the plasma membrane [49]. The

distal appendages possess proteins, such as Cep164, Cep89

and Cep83/Ccdc41, that are important for ciliogenesis.

Basal bodies have nine transition fibers, but only one or

two basal feet. The basal feet further differ from the sub-

distal appendages in that they are larger and more electron

dense [50]. The outer dense fiber protein 2 (Odf2)/Cenexin,

a component of the distal and subdistal appendages, is

essential for the formation of transition fibers and basal feet

[51]. The rootlet is a thick (80–100 nm) striated bundle of

filaments made of the protein rootletin [52]. Basal feet,

which anchor microtubules, and striated rootlets, which

project from the proximal end of the basal body and extend

close to the nucleus, provide structural support to the

cilium.

Beyond the basal body is the transition zone, which is an

intermediate region between the basal body and the axo-

neme [53, 54]. The transition zone is distinguished by the

shift from triplet microtubules in the basal body to

axonemal doublets, and by the presence of characteristic

scallop-like structures at the ciliary surface and of inner

structures, known as Y-links, that appear Y-shaped under

electron microscopy and connect the outer doublet micro-

tubules to the overlying ciliary membrane [55–57]. The

transition zone houses a network of two biochemically

distinct protein complexes involved in ciliopathies. One of

the modules spans the membrane and contains many of the

proteins (Tctn1–3, MKS1, B9d1, B9d2, Cep290, Ahi and

the transmembrane proteins Tmem67, Tmem216,

Tmem17, Tmem231, Tmem107, etc.) involved in MKS

and JBTS. The second module, called the NPHP module,

includes three proteins (Nphp1, Nphp4 and Rpgrip1l)

encoded by genes mutated in NPHP, and is proximal to the

axoneme. The collaboration of the two modules in which

Rpgrip1l and Cep290 play an important role explains the

overlapping phenotypes seen in MKS, JBTS and NPHP, in

which proteins belonging to these modules are involved

[58, 59].

Following the transition zone, the axoneme of primary

cilia is constructed from the elongation of the nine parallel

doublet microtubules formed at the transition zone [60, 61].

As the axoneme becomes longer, it loses microtubules and

the doublets transform into singlets. Singlets are also lost

gradually in such a way that the tip of the cilium often

contains only a few of them. The axoneme is subject to

numerous post-translational modifications, including

acetylation, detyrosination, glutamylation and glycylation,

which are related to microtubule structure, flexibility and

function [62–64].

Cilia have no machinery for protein synthesis, so all

ciliary proteins must be synthesized elsewhere in the cell

and imported selectively into the cilium. Although the

ciliary compartment lacks a limiting membrane that sepa-

rates it from the cytosol, the base of the primary cilium
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Fig. 2 General structure of the

primary cilium. The basal body

is attached to the ciliary

membrane by the transition

fibers. The axoneme constitutes

the backbone of the cilium and

is surrounded by the ciliary

membrane, which is continuous

with the plasma membrane. IFT

is carried out by the IFT-A and

IFT-B complexes powered by

dynein-2 and kinesin-2 motors,

respectively, and with the

participation of the BBSome

complex
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selectively regulates the entry of proteins. Protein segre-

gation is made possible by a functional gate at the ciliary

base that is responsible for the selective entry of proteins

into the primary cilium. This gate encompasses the tran-

sition fibers, the ciliary base and the transition zone and

also involves importins, the GTPase Ran and nucleoporins,

similar to nuclear import, and septin polymers (for exten-

sive reviews see Refs. [65–68]).

Ciliary growth is regulated at the tip by the receipt of

tubulin and other axonemal precursors that elongates the

axoneme and by their removal during axoneme disassem-

bly. Defined structures at the tip were reported for the

9 ? 2 flagella of Chlamydomonas and of other organisms

[69–72]. These structures cap the central singlet micro-

tubules at their tip and, it has been proposed, are involved

in cargo loading and unloading, and signal transduction

[73]. However, such well-defined structures have not been

detected in primary cilia of mammalian cells. Not only is

the tip of primary cilia the place where ciliary growth is

regulated, as in 9 ? 2 cilia, but also it is involved in cell

signaling. Kif7, a kinesin-4 family protein that is a con-

served regulator of the Hh signaling pathway and a human

ciliopathy protein, binds to the distal end of axonemal

microtubules and organizes a specialized compartment

where the activity of the Gli family of Hh transcription

factors is regulated [30, 74, 75]. Recent evidence from

Chlamydomonas flagella and Caenorhabditis elegans and

mammalian primary cilia showed that ciliary signaling is

also regulated at the ciliary tip by shedding receptors and

other material in the form of extracellular vesicles [76–81].

Cilia typically begin to form during the Go phase of the cell

cycle and begin to disassemble as cells re-enter the cell

cycle to free the centrosome [82, 83]. While cilia disas-

sembly has for some time been considered to occur solely

through resorption [84], release of extracellular vesicles

also helps to regulate ciliary disassembly and size

[77, 78, 80]. In conclusion, although the nature of the tip of

primary cilia is not well understood, it appears to act as a

hub that coordinates many important ciliary functions.

Protein machinery for ciliary growth, targeting
and transport

Cilia require general machinery for the processes of

licensing the centrosome to initiate cilium formation, and

protein transport along the ciliary membrane. These gen-

eral tasks are performed by the regulators of the centriolar

protein Cp110 and by intraflagellar transport (IFT)

machinery, respectively. The BBsome complex is also

responsible for the traffic of certain receptors at the primary

cilium. Rab-family proteins control membrane trafficking

during primary cilium initiation and the targeting of cargo

to the ciliary base once the cilium has formed. In addition

to the general machinery, the Par complex, which is

involved in acquisition of cell polarity, and the exocyst,

which is a protein complex implicated in polarized trans-

port in epithelial cells, are also important for ciliogenesis in

polarized epithelial MDCK cells and kidney tubules. Since

the functions performed by the IFT and the BBSome

complex have been extensively reviewed recently [85, 86],

they will be mentioned only briefly below, whereas par-

ticular emphasis will be placed on the machinery specific to

polarized epithelial cells.

The protein CP110 and its regulators

The well-known negative regulators of ciliogenesis, such

as centriolar protein Cp110 and its network of interacting

partners, have been studied in the human bone osteosar-

coma U2OS cell line, as well as in NIH-3T3 fibroblasts and

retinal pigment epithelial (RPE)-1 cells [87–89]. Cp110

localizes at the mother and the daughter centrioles,

blocking primary cilium formation. At the beginning of

ciliogenesis, Cp110 is removed from the basal body to

allow axoneme extension, but remains at the daughter

centriole. The transition zone protein Cep290 interacts with

Cp110 and this interaction is essential for suppressing

primary cilium formation [88]. Another complex contain-

ing Cp110 and Cep97 also serves to suppress primary

cilium assembly [87]. Cp110 removal requires the activity

of positive ciliary regulators, such as Tau tubulin kinase-2

(Ttbk2), whose knockout inhibits Cp110 removal from the

basal bodies in mouse embryonic fibroblasts (MEFs) [90].

Cep164, which is present in transition fibers, is essential for

ciliogenesis and for recruiting Ttbk2 to the basal body [91].

Microtubule affinity regulating kinase 4 (Mark4) is also

required for Cp110 removal and accumulates at the basal

body as Cp110 is displaced [92]. These findings indicate

that disappearance of Cp110 from the mother centriole is

crucial for initiating primary cilium biogenesis. Cp110

removal seems universally required for initiating the cili-

ation process, since cells that normally do not form a

primary cilium, such as T lymphocytes, assemble one when

Cp110 expression is knocked down [93]. The Aurora A

kinase is necessary for the organization and alignment of

the chromosomes during prometaphase and for their sep-

aration, and contributes to the completion of cytokinesis

[94]. Ciliogenesis is inhibited by Aurora A, which is bound

and activated by trichoplein at the centriole [95]. Cul3-

RING E3 ligases, aided by the protein KCTD17, ubiqui-

tinate trichoplein and target it for degradation by the

proteasome, allowing initiation of axoneme extension [96].

Therefore, given its role in regulating the cell cycle, the

ubiquitin–proteasome system has emerged as an important

coordinator of cell cycle progression and primary

Routes and machinery of primary cilium biogenesis 4081
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ciliogenesis initiation (for extensive reviews, see Refs.

[97–99]).

IFT machinery

Soluble and membrane proteins are transported along the

primary cilium by the IFT machinery [7, 85, 100]. IFT is

highly conserved and is required for the assembly of cilia.

It is formed of two multisubunit complexes: IFT-A and

IFT-B, comprising 6 and 16 subunits, respectively (Fig. 2).

Mutations in IFT proteins can cause several ciliopathies

[101]. With the exception of the two small GTPases IFT22

and IFT27, none of the other IFT proteins is predicted to

have enzymatic activity. IFT-complex polypeptides are

largely composed of a-solenoids and b-propeller domains

that predominate in COPI, COPII and clathrin cage com-

ponents and form planar coats resembling flat COPI, COPII

and clathrin coats at the ultrastructural level [102]. IFT-B

mediates anterograde movement (from the cell body to the

cilium) of ciliary proteins, whereas IFT-A directs retro-

grade transport (from the cilium to the cell body) and

anterograde transport of certain proteins such as Arl13b

and Smo. The IFT-B complex transports cargo to the cil-

iary tip with the participation of kinesin-2 motors—

heterotrimeric kinesin-2, composed of Kif3a, Kif3b, and

Kap, or homodimeric Kif17—whereas turnover products or

signaling components destined for internalization are

returned to the cell body via the IFT-A complex propelled

by cytoplasmic dynein-2 [85]. The switch of the machinery

for anterograde and retrograde IFT and their respective

motors takes place at the ciliary tip. In contrast to trimeric

kinesin-2, Kif17 is not required for ciliogenesis and its

ciliary entry requires it to interact with both importin-b2
and Rab23 [103]. In Chlamydomonas, it has been demon-

strated that each microtubule doublet is used as a

bidirectional double-track railway in such a way that

anterograde and retrograde IFT trains move along the

exterior and the interior microtubules, respectively, of each

doublet [104]. Thus, the microtubule doublet geometry

provides direction-specific rails to coordinate the bidirec-

tional transport of ciliary components.

Small Rab GTPases

In a screen of 39 human GTPase-activating proteins, GAPs

for Rab8a, Rab17 and Rab23 were identified as necessary

for primary cilium formation in RPE-1 cells [105]. Rab8a

was the only one of the three GTPases in that study found

to localize to the cilium. Rab8a is recruited to the centro-

some by a direct interaction with Odf2/Cenexin and is

required for primary ciliogenesis [105, 106]. Although they

were not identified in the original screen, Rab11 and Rab10

have also been implicated in this process [106–108]. Two

centrosome appendage proteins, centriolin and Odf2/Cen-

exin, regulate the association of Rab11 vesicles with the

distal part of the mother centriole [109]. The GTP-bound

form of Rab11 interacts directly with its downstream

effector Rabin8 to target it to the centriole and stimulates

its guanine nucleotide exchange factor (GEF) activity

toward Rab8 in RPE-1 cells [107]. Rabin8, in turn, inter-

acts with the membrane-tethering transport protein particle

II complex, which is a GEF for Rab11 [110]. It has been

proposed that, similar to the Rab5–Rab7 switch [111],

Rab11 vesicles are converted into a Rab8 preciliary vesicle

with the participation of Rabin8 and transport protein

particle II complex [106]. Knockdown of Rab11, Rabin8 or

Rab8 inhibits ciliogenesis, highlighting the importance of

this signaling cascade [106, 107]. Despite evidence sup-

porting a crucial role for Rab8 in primary cilium formation

in cultured cells, the absence of its two isoforms, Rab8a

and Rab8b, in Rab8a and Rab8b double-knockout mice

does not disturb ciliogenesis of olfactory epithelium, pho-

toreceptors and MEFs [112]. However, the additional

knockdown of Rab10, but not of Rab13, in MEFs from

these mice greatly reduces the percentage of ciliated cells

[112]. This finding suggests that the Rab8a, Rab8b and

Rab10 proteins are simultaneously, rather than individu-

ally, involved in ciliogenesis.

Rab23 has been shown to localize to the cilium of

MDCK cells, thereby mediating the ciliary turnover of Smo

and possibly of other membrane receptors [113]. Coim-

munoprecipitation and affinity-binding studies revealed

that Rab23 exists in a complex with Kif17 and importin b2,
implying that Kif17 needs to bind to regulatory proteins

like Rab23 for its ciliary transport. Although a ciliary-cy-

toplasmic gradient of nuclear Ran is necessary to regulate

the ciliary transport of Kif17, Rab23 and Ran appear to

have differing roles in regulating the ciliary entry of Kif17

[114]. On the other hand, consistent with a role of Rab23 in

ciliary transport, Rab23 and Kif17 have been observed to

collaborate with IFT-B to deliver specific receptors to

primary cilia [115].

The BBSome

Bardet–Biedl syndrome (BBS) is a compound phenotype

disorder exhibiting cystic kidneys, obesity, mental retar-

dation, hypogonadism, heterotaxia, polydactyly and retinal

degeneration [86, 116]. The BBSome is a multimeric

protein complex composed of seven highly conserved BBS

proteins (BBS1, BBS2, BBS4, BBS5, BBS7, BBS8 and

BBS9) and BBIP10, each of which is present in stoichio-

metric amounts [117]. In humans, defects in the BBSome

result in BBS [116]. The BBSome contains coat-like

structural elements common to COPI, COPII, and clathrin

coats, and is the main effector of the Arf-like GTPase Arl6/
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BBS3 [118]. Rabin8 interacts directly with the BBS1

subunit and recruits the BBSome. Since Rabin8 activates

Rab8, it has been proposed that the BBSome acts upstream

of Rab8 [119]. Silencing BBS2 or BBS4 greatly reduces

the number of ciliated RPE-1 cells. Live analysis of cargo

transport in olfactory sensory neurons revealed that the

BBSome complex moves in association with IFT trains and

cargo through cilia, suggesting that the BBsome acts as a

cargo adaptor between membrane cargoes and the IFT

machinery [119].

The BBSome was initially implicated in GPCR delivery

to cilia [118, 120, 121]. However, it is now known to be

important in retrograde trafficking. The BBsome regulates

the removal of GPCRs [122–124], polycystin-2 [125], and

membrane-associated proteins from cilia [126, 127]. The

conflict resulting from the role of the BBsome in antero-

grade transport is explained by the observation that when

membrane receptors fail to undergo BBSome-mediated

retrieval from the cilium back into the cell, they are

removed by ectocytosis giving the impression that their

sorting to the cilium was defective [77].

The exocyst complex and Arl13b

Tethering complexes are large protein complexes that

establish long-range interactions between donor and

acceptor membranes to capture transport vesicles and

enable their fusion with acceptor organelles before contacts

between v- and t-SNARES occur [128]. In addition to

capturing vesicles, tethering complexes appear to regulate

the spatial and temporal assembly of the SNARE complex.

The exocyst is an eight-subunit (Sec3, Sec5, Sec6, Sec8,

Sec10, Sec15, Exo70, and Exo84) complex [129, 130] that

delineates its function as a tethering complex in the traf-

ficking of vesicles from a post-Golgi compartment, the

recycling endosome, to the basolateral plasma membrane

in polarized epithelial cells [131]. Exocyst levels are higher

in patients with autosomal dominant polycystic kidney

disease [132].

The exocyst has been shown to be a downstream

effector of exocytic Rab GTPases [131]. The exocyst

subunit Sec15 directly interacts with Rab11 and Rabin8

and allows activation of Rab8 [133, 134]. The exocyst

subunit Sec10 localizes to the primary cilium [135, 136].

Consistent with the role of the exocyst in primary cilio-

genesis, knockdown of the exocyst component Sec10 leads

to shorter cilia, whereas its overexpression leads to elon-

gated cilia in MDCK cells. In addition, confirming the

importance of Sec10, Sec10-knockout mice have defects in

primary cilium assembly. These mice also show abnormal

epithelial cell extrusion in renal tubes indicating a role for

the exocyst and Sec10 in tubulogenesis [136]. As a further

evidence of the role of the exocyst, the Sec6/8 subunits

localize in apical ring-like structures at the base of nascent

cilia of MDCK cells and colocalize and interact with

Rab10, which is a Rab GTPase that collaborates with Rab8,

which in turn, is involved in primary cilium assembly

[108]. Sec10 colocalizes with polycystin-2 at the axoneme,

and associates with polycystin-2, as well as with the IFT

proteins IFT88 and IFT20. This interaction enables poly-

cystin-2 to reach the primary cilium since, in the absence of

Sec10, the ciliary localization of polycystin-2 is impaired

[137]. This was corroborated by the demonstration that the

effects of Sec10 knockdown in vitro and in vivo partially

resemble those of polycystin-2 knockdown [137].

Arl13b is a member of the ADP-ribosylation factor

family and the Ras superfamily of GTPases. Arl13b

concentrates in primary cilia and attaches to the ciliary

membrane through a palmitoyl residue [138]. Arl13b

mutation results in JBTS, a ciliopathy characterized by

mental retardation, congenital cerebellar ataxia and

hypotonia [139]. Arl13b has been found to play multiple

independent roles, such as modulation of the ciliary length

and post-translational modifications of ciliary tubulin

[140], and the correct recruitment of Hh signaling com-

ponents, such as Smo, to the cilium [140, 141]. It is of

note that Arl13b directly interacts with the exocyst sub-

units Sec8 and Sec5, which, together with Arl13b, have

been detected along the axoneme of NIH-3T3 fibroblasts,

epithelial RPE-1 cells and polarized epithelial MDCK

cells [142]. Additionally, a synergistic genetic interaction

between Arl13b and Sec10 has been demonstrated in

zebrafish morphants showing cilia-related phenotypes

[142]. Consistent with this role, the conditional deletion

of Arl13b and Sec10 in mouse kidney causes cyst

development and reduces ciliogenesis [142]. The obser-

vation that the exocyst complex preferentially binds to

Arl13b coupled to GTP suggests that the exocyst is an

effector of Arl13b.

The Par complex and Crumbs3

In polarized epithelial cells, tight junctions allow the gen-

eration of well-defined apical and basal membrane

domains. Cilium elongation is the final event of the

polarization process in these cells. Thus, many components

of the polarity machinery, such as those involved in apical

membrane biogenesis, establishment of cell junctions, and

lumen formation, are directly linked to cilium formation.

The Par complex consists of Par3, Par6, which are PDZ

domain proteins, atypical protein kinase C (aPKC), and the

small Rho-family GTPase Cdc42. In epithelial cells, the

Par complex has been shown to play a role in regulating

tight junction formation [143]. Par3, Par6 and aPKC

localize to the cilia of MDCK and inner medullary col-

lecting duct 3 cells, and Par3 and aPKC activity have been

Routes and machinery of primary cilium biogenesis 4083

123



shown to be essential for efficient primary cilium formation

in MDCK cells [144, 145]. In mammalian epithelia, 14-3-3

binds Par3, and disruption of the interaction leads to loss of

cell polarity [146]. 14-3-3g, a 14-3-3 isoform, localizes to

the primary cilium of MDCK cells and its depletion inhi-

bits ciliogenesis [145], indicating that Par3 and 14-3-3g are

essential for Par complex function in primary ciliogenesis.

In addition, Par3, Par6, aPKC and 14-3-3g associate with

the axoneme through the microtubule motor Kif3a [145].

Consistent with this finding, the coiled-coil domain of

Par3, which is required for interaction with Kif3a, was

demonstrated to be essential for ciliogenesis [144].

Cdc42, a component of the Par complex, interacts with

exocyst subunit Sec10 and colocalizes with Sec10 at the

primary cilium [147]. Cdc42 or Tuba, a GEF of Cdc42,

knockdown inhibits ciliogenesis and ciliary targeting of

polycystin-2. Moreover, depletion of Cdc42 affects the

ciliary localization of Sec8, indicating that Cdc42 function

is necessary for targeting the exocyst to the primary cilium.

In addition, Sec10 directly interacts with the Par complex

protein Par6, which itself associates with Cdc42. This

observation led to the proposal that the exocyst complex is

targeted to the primary cilium by Cdc42 and is then sta-

bilized by binding to the Par complex via the Sec10–Par6

interaction (Fig. 3). Once it has become stabilized at the

primary cilium, the exocyst targets and docks vesicles

carrying ciliary proteins, such as polycystin-2, by inter-

acting with Rab8 [147].

Crumbs3, which is a transmembrane protein that plays

an important role in the biogenesis of apical membrane and

that is a key component in cell polarization [146], localizes

to the primary cilium of MDCK and IMCD3 cells and is

critical for primary cilium assembly [145]. Crumbs3

directly interacts with the PDZ domain of Par6 [144, 148].

This interaction is necessary for targeting Crumbs3 to the

primary cilium, indicating that Par complex might act as an

adaptor for targeting membrane proteins to the ciliary

membrane via Kif3a [144]. Therefore, the Par complex is

required for targeting both Crumbs3 and the exocyst

complex to the primary cilium via Par6 and Cdc42,

respectively (Fig. 3). The sphingolipid ceramide, which is

a component of condensed membranes, localizes at the

ciliary base in a compartment called the apical ceramide-

enriched compartment, where it regulates a lipid–protein

molecular network that sustains the primary cilium

[74, 149]. Ceramide binds and activates aPKC, which, in

turn, colocalizes with Rab11 in the apical ceramide-en-

riched compartment. Disruption of the ceramide-aPKC

interaction results in impaired primary cilium formation

and loss of the association of Rab11 vesicles with Cdc42,

the exocyst subunit Sec8, and Rab8 [74]. Supporting the

important role of ceramide, inhibition of ceramide

biosynthesis by fumonisin B1 severely impairs primary

ciliogenesis in MDCK cells [149].

An alternate splice form of Crumbs3, known as

Crumbs3–CLPI, localizes at the primary cilium of MDCK

cells and interacts with importin b-1 in a Ran-regulated

fashion. Depletion of Crumbs3–CLPI disrupts primary

cilium formation without affecting the junctional complex.

However, unlike Crumbs3, Crumbs–CLPI does not interact

with Par6 [150]. Therefore, the exact role of Crumbs–CLPI

and how it is targeted to the ciliary membrane remain

unknown. Other proteins involved in apical transport,

including annexin-13, caveolin-1, galectin-3, syntaxin-3,

syntaxin-2 and the MAL protein, are also shown to be

involved in ciliogenesis [151–153]. This finding is further

evidence of the participation of the machinery for apical

membrane morphogenesis in primary cilium biogenesis

and strengthens the relationship between the two processes.

Pathways of primary ciliogenesis

Despite the evolutionary conservation of the ciliary struc-

ture and ciliogenic machinery, cilia in different cell types

and tissues are not created equal. The pioneering work of

Sorokin [154] established that primary ciliogenesis pro-

ceeds by two distinct pathways, depending whether the
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Fig. 3 Multi-protein complexes involved in polarized trafficking and

cell polarity implicated in primary cilium formation by polarized

epithelial cells. In addition to their role in polarization process, the

exocyst and the Par complexes participate in primary cilium

assembly. Par complex consists of Par3, Par6, aPKC and Cdc42.

The motor Kif3a targets the Par complex to the ciliary axoneme

through interaction with the coiled-coil domain of Par3. The Par

complex has been proposed to be an adaptor for targeting the

transmembrane protein Crumbs3a to the ciliary membrane through

association with the Par6 PDZ domain. Cdc42 is responsible for

recruitment of exocyst complex, which targets important cargo, such

as polycystin-2, to the cilium
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position of the centrosome in the cell is near the nucleus or

close to its apex.

In cells of connective tissues, such as fibroblasts and

chondrocytes, the primary cilium is present within an

invagination of the plasma membrane, known as the ciliary

pocket, whereas in other cell types it directly protrudes

from the plasma membrane [155–158]. The ciliary pocket

is characterized by containing budding clathrin-coated pits,

and is thought to mediate ciliary endocytic activity and

vesicular trafficking [156, 159]. It has also been proposed

as a compartment of signal transduction including trans-

forming growth factor-b signaling, which plays critical

roles in cell cycle control, migration and differentiation

[160]. In some cell types with ciliary pocket, the pocket is

deep and the cilium is almost completely submerged,

whereas in other cell types the pocket is shallow and the

cilium is mostly exposed to the extracellular environment

[2, 161–163]. RPE-1 cells, which generally form cilia with

deep pockets, can be forced to form shallow pockets under

specific confinement conditions [164]. The subdistal

appendages, which presumably keep the mother centriole

anchored to the Golgi apparatus, determine whether the

pockets are shallow or deep [162]. Cells without a ciliary

pocket or with a shallow one are free to sense motion, a

process crucial for mechanosensation [165].

The presence or absence of the ciliary pocket appears to

be a consequence of the route of primary cilium assembly

used and, therefore, of the position of centrosome

[157, 158]. When the centrosome is near the nucleus cili-

ogenesis starts intracellularly and finishes at the plasma

membrane, generating a pocket, whereas when the cen-

trosome is close to the plasma membrane the process takes

place entirely at the plasma membrane and no pocket

appears. The first route is referred to as the intracellular or

‘‘classic’’ pathway; the second route is known as the

alternative pathway (Fig. 4).

The intracellular pathway

The process of primary ciliogenesis by the intracellular

route was investigated in great detail in the seminal elec-

tron microscopy work of Sorokin [161], who analyzed the

process in fibroblasts and smooth muscle cells. The cilio-

genic process has been recapitulated entirely by electron

microscopic analysis of cultured cells such as RPE-1 cells

and NIH-3T3 fibroblasts [91, 92, 166–168]. Primary cilium

formation in these cells starts intracellularly with the

docking of small cytoplasmic vesicles to the mother cen-

triole (Fig. 5). The distal appendage protein Cep164 and

the distal centriolar protein Talpid3 are indispensable for

the docking of these vesicles [169]. The origin of those

vesicles is unclear, although they are presumably generated

in the Golgi and recycling endosomes [170], and in

embryonic neocortical stem cells they appear to derive

from a previous ciliary membrane [171]. The vesicles

associated with the mother centriole then fuse, generating a

large ciliary vesicle that encapsulates the nascent axoneme.

EHD1 and EHD3, two membrane-shaping proteins, have

been identified as being crucial for the fusion of the small

cytoplasmic vesicles in RPE-1 cells and zebrafish

[166, 172]. SNAP-29, a SNARE membrane fusion regu-

lator and EHD1-binding protein, also intervenes in the

fusion process. EHD1 is required for Cp110 loss from the

mother centriole, and in its absence the mother centriole

fails to recruit the transition zone protein Cep290 and

IFT20, suggesting an important role for EHD1 in the early

steps of primary cilium biogenesis. It is of note that Rabin8

colocalizes with EHD1 on preciliary vesicles but does not

require EHD1 for accumulation at the mother centriole.

Rabin8 activates Rab8 for ciliary extension only after cil-

iary vesicle assembly [166]. Hook2, a member of the Hook

family of adaptor proteins, is also necessary for the for-

mation of the large ciliary vesicle at the mother centriole

[167]. During its conversion to a basal body, at the time

that the centriole migrates towards the cell surface for

docking, the two internal microtubules of each of the nine

triplets at the distal tip of the mother centriole elongate, and

the centriolar appendages mature into transition fibers.

Ttbk2 or Mark4 knockdown blocks axoneme extension at

this stage by impeding removal of Cp110 [91, 92]. The

axoneme then elongates and deforms the ciliary vesicle in

such a way that an outer membrane (sheath) and an inner

membrane (shaft) surround the incipient axoneme and the

distal part of the mother centriole. After transitional fiber-

mediated docking of the mother centriole to the plasma

membrane, the ciliary vesicle is exocytosed and fuses with

the plasma membrane, exposing the nascent cilium to the

extracellular milieu. Upon fusion, the sheath gives rise to

the ciliary pocket, while the shaft forms the ciliary mem-

brane. Finally, the axoneme continues elongating from its

tip to reach its final size and the part proximal to the basal

body remains structurally distinct from the rest of the cil-

ium, forming the transition zone [158] (Fig. 5).

The alternative pathway

When renal epithelial cells polarize, the centrosome localizes

at the center of their apicalmembrane. Therefore, according to

Sorokin’s proposal [154], the assembly of the primary cilium

in these cells takes place entirely at the plasmamembrane.The

fact that the primary cilium of renal tubule epithelial cells

lacks a ciliary pocket [173] is consistent with their function of

sensing liquid flow [174] and with the use of the alternative

pathway to assemble a primary cilium.

Most of the work on primary cilium biogenesis has

focused on cell models that rely on the intracellular
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pathway, even though the primary cilium is also of pivotal

importance in cells that use the alternative route. The

importance of cilia in renal epithelial cells is exemplified

by the ciliary defects that cause kidney cystic diseases,

which are the most common of the many abnormalities

associated with ciliopathies [175]. Renal epithelial MDCK

cells have been used over the last 40 years as a paradig-

matic cell model to study polarized membrane trafficking

since they are considered to represent bona fide distal

tubule epithelial cells [176]. Similar to renal tubular

epithelial cells, MDCK cells polarize the centrosome to the

center of the apical membrane and have no pocket at the

base of the primary cilium [135, 153, 177]. Consistent with

sensing liquid flow, bending of the primary cilium of

epithelial MDCK cells results in an increase of intracellular

Ca2? [20], whereas removal of the cilium inhibits it [178].

Unlike RPE-1 cells, which use the intracellular route, a

large ciliary vesicle is not assembled at the distal part of the

mother centriole in MDCK cells, although Rab11, Rab8,

exocyst subunit Sec8, and BBS1 accumulate in the vicinity

of the centrosome at the apical plasma membrane [74]. The

absence of such a vesicle is consistent with MDCK cells

following a route of ciliogenesis different from that of

fibroblasts. Given their relevance, MDCK cells have also

been adopted to study primary cilia and to identify

machinery important for its assembly

[74, 108, 135, 144, 147, 149, 151, 153, 179–182] and

constitute a suitable cell model to study the alternative

pathway of primary cilium biogenesis [177].

Several proteins known to have a role in ciliogenesis,

such as Sec10, Cep97 and IFT88, are also known to par-

ticipate in the proper orientation of the mitotic spindle and/

or cytokinesis, indicating that primary cilium biogenesis,

which takes place in quiescent cells, and mitosis share

protein machinery [87, 183, 184]. In animal cells, cytoki-

nesis begins with the formation of an actomyosin ring at

the equator of the two spindle poles [185, 186]. Contraction

of the actomyosin ring leads to the ingression of a cleavage

furrow that splits the cytoplasm in half. The two halves

remain connected by an intercellular bridge containing

antiparallel microtubule bundles, which, at least in part,

arises from compressed mitotic spindle microtubules cov-

ered by plasma membrane [186, 187]. The amorphous

electron-dense structure situated in the middle of the bridge

is referred to as the midbody or Flemming body, which is

1.0–1.5-lm in size. The physical cleavage of the membrane

Intracellular pathway

Alternative pathway

No 
pocket

Ciliary 
pocket

Fibroblast

Epithelial cell

Fig. 4 Routes of primary

ciliogenesis. The position of the

centrosome, near the nucleus or

close to the plasma membrane,

and the presence or absence of a

ciliary pocket predicts the type

of pathway used for primary

ciliogenesis. Fibroblasts and

polarized epithelial cells are

shown as examples of cells that

use the intracellular and

alternative routes, respectively

Rab11-Rabin8

Ciliary pocket

Rab8

Ehd1

Ciliary membrane

Sheath
Shaft

Fig. 5 The intracellular pathway. Ciliogenesis initiates intracellularly

with the formation of a large ciliary vesicle at the distal end of the

appendages of the mother centriole by fusion of smaller vesicles. The

axoneme starts forming intracellularly and, as it grows, deforms the

ciliary vesicle and establishes an inner membrane (shaft) and an outer

membrane (sheath). The incipient cilium is finally exocytosed and the

cilium becomes exposed in the plasma membrane. The sheath gives

rise to the ciliary pocket, and the shaft forms the ciliary membrane
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bridge by the endosomal sorting complexes required for

transport (ESCRT) machinery with the help of transport

vesicle fusion separates the two daughter cells in a process

known as abscission [186, 188]. Physical separation of the

daughter cells requires severing the intercellular bridge at a

single site on either side of the midbody. In this case, one

of the daughter cells receives the midbody remnant [189].

The inherited remnant can then be conserved on the cell

surface as a microtubule-rich membrane protrusion,

degraded by autophagy, or released later on if the remnant

is cleaved on the other side. The intercellular bridge is

often severed on both sides and the remnant is released.

Whether the midbody remnant is released, conserved or

degraded depends on cell type and status [190–193].

Increasingly, studies are revealing non-cytokinetic impli-

cations for the post-mitotic midbody [189, 194]. It is of

note that the daughter cell with the older mother centriole

tends to inherit the midbody more frequently than its sister

cell, implying the existence of communication between the

centrosome and the severing machinery [190, 195]. Stem

cell-like and cancer cells often accumulate more than one

remnant. Accumulation of remnants is associated with

increased cell reprogramming efficiency and in vitro

tumorigenicity, respectively, in these cells [190, 195]. The

midbody remnant also provides polarity cues for the place

of the initiation of lumen formation in epithelial MDCK

cells and for the formation of the first neurite in D. mela-

nogaster neurons and the dorsoventral axis during C.

elegans development [196–198].

Proteomic analyses have shown that intercellular bridge

midbodies [199] and primary cilia [200] have a wide

spectrum of shared components [201]. It is of note that

Rab11, Rab8, IFT20, IFT88, exocyst complex subunits,

acetylated microtubules, BBS6, ESCRT components and

septins have been identified in both structures [202]. Some

of the shared proteins (e.g., Rab11, Rab8, the exocyst and

septins) are known to function in both cytokinesis and

primary cilium formation [109, 183, 203], whereas the

function of others had been traditionally assigned only to

one of the two processes. For instance, IFT20 and IFT88

have been found in the intercellular bridge and midbody

remnants [177, 204], although the IFT machinery has long

been thought to be exclusive to cilia. Conversely, the

ESCRT machinery, which has a role in severing the

intercellular bridge, is also present in primary cilia. These

observations raise the interesting possibility that a consid-

erable part of the machinery is used for both primary cilium

formation and cytokinesis.

The cleavage furrow of MDCK cells and of other

polarized epithelial cells initiates coincidently at the apical

and basal surfaces but, since the rate of furrow ingression is

more rapid from the basal surface, the intercellular bridge

becomes located apically [205, 206] (Fig. 6a). When

abscission occurs only on one side, this location of the

bridge causes the midbody remnant to become positioned

at the periphery of the apical surface of the cell, close to the

tight junction (Fig. 6b). The remnant remains physically

tethered to the surface of the cell that inherits it by a thin

plasma membrane stalk that originates from the unresolved

side of the bridge.

After abscission, the midbody remnant can remain teth-

ered to the cell for a long period, moving across the cell

surface [177, 183, 207]. In polarized MDCK cells, the rem-

nant, which carries Rab8, IFT20, IFT88, exocyst subunits

and, probably, other ciliary machinery, traffics to the central

part of the apical surface to meet the centrosome (Fig. 6c).

Although it is not clear how the remnant reaches the center of

the apical surface, it is known that its journey is dependent on

Rab8 expression. The encounter between the midbody

remnant and the centrosome is essential for primary cilium

formation, since ciliogenesis is severely impaired in cells

whose remnant has been removed [177]. Ultrastructural

analysis of serial sections shows that the membrane of the

midbody remnant is still connected to the adjacent plasma

membrane by a membranous stalk. The establishment of a

short microtubular connection between the midbody rem-

nant and the centrosome has been detected before primary

cilium starts forming, but the function of such a connection is

currently unknown. The physical continuity of the remnant

membrane and the plasma membrane raises the possibility

that the remnant could transfer to the centrosome materials

required for ciliogenesis [177]. Another possibility is that the

remnant signals to the basal body to start primary cilium

assembly. Further studies are required to understand the

mechanism by which the midbody remnant licenses the

centrosome for primary ciliogenesis (Fig. 6d).

Primary ciliogenesis is regulated by cell confinement in

non-polarized cells, as shown by RPE-1 cells cultured on

adhesive micropatterns, in which high spatial confinement

results in a greater percentage of ciliated cells [164]. This is

also true in epithelial MDCK cells, since cell–cell contacts

are crucial to ciliogenesis [177]. It is of note that the area of

MDCK cells governs the conservation of the midbody

remnant, its movement to the center of the apical mem-

brane and the beginning of primary cilium assembly. When

cells proliferate, the availability of space becomes limited

and cells are progressively constrained by their neighbors.

Under these conditions, MDCK grow in height and reduce

their area of attachment to the substrate, and the midbody

remnant is conserved. Successive cycles of cell division

increase the number of cells with a midbody remnant and,

subsequently, the percentage of ciliated cells [177]. As this

process progresses, compressive stress replaces tensile

stress [208, 209]. These gradual changes in stress forces

probably trigger the conservation of the remnant, its tran-

sition to the center of the apical surface to meet the
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centrosome and the beginning of ciliogenesis in polarized

epithelial cells.

A negative correlation is known to exist between mitosis

and primary cilium formation [210]. The dual function of

the centrosome as a basal body in ciliogenesis and as

MTOC in mitosis provides a point of connection between

the two processes. Whereas a centriole is essential for

primary cilium formation, mitosis can take place in the

absence of centrioles [211, 212]. These observations sug-

gest that centrioles may be more important for the first

process than for the latter. The finding that a structure

arising in the last stage of the cell division cycle, such as

the midbody remnant, licenses the centrosome for primary

ciliogenesis reveals a new mechanism by which these two

processes are coupled [177]. This mechanism of coupling

might be particularly important in epithelial cells that form

cilia when they become quiescent as a part of the epithelial

polarization/differentiation pathway of cells, such as kid-

ney tubule cells and cholangiocytes. In these cells, primary

cilia need to be exposed to the lumen to sense changes in

fluid flow [163, 213, 214] and, therefore, they need to use a

pathway of ciliogenesis that leads to primary cilia deprived

of their ciliary pocket.

Conclusions and future directions

Despite Sorokin’s proposal nearly 50 years ago of the

existence of two distinct pathways for ciliogenesis, most of

the work on primary cilium biogenesis has focused on cell

models that rely on the intracellular pathway, even though

the primary cilium is also of pivotal importance in cells

that were postulated to use an alternative pathway, as is the

case of renal epithelial cells. The great efforts made to

investigate the intracellular route have driven advances in

the field, revealing many molecular details of the cellular

events and the machinery involved. However, there is still

a long way to go before the process is fully understood. In

polarized epithelial cells, primary cilium biogenesis seems

to be a sequential process by which the establishment of

tight cell junctions and subsequent cell polarization mod-

ulates the conservation of the midbody remnant, its

movement to meet the centrosome, and the beginning of

primary cilium assembly at the middle of the apical sur-

face. This route of primary ciliogenesis establishes a new

biological mechanism that links the three major micro-

tubule-based organelles—the centrosome, the cilium and

the midbody—in the same process. Since this mechanism

is entirely new, it raises many interesting questions that, it

is to be hoped, will stimulate research on this pathway and

help us understand the function of the midbody remnant,

whose relevance to cellular processes other than cytoki-

nesis has only recently begun to be considered.

One of the most important questions that arises is

whether there is a transfer of materials from the midbody

remnant to the centrosome to feed primary ciliogenesis.

If this is the case, this material will need to be charac-

terized in order to appreciate how it potentiates the

centrosome for cilium formation. A second point is to

understand how the midbody remnant moves towards the

Ciliary proteins
Microtubules

(B) Midbody remnant inheritance (C) Midbody remnant translocation (D) Primary cilium formation

Midbody

(A) Cytokinesis

Fig. 6 The alternative route. a In polarized epithelial cells, the

intercellular bridge containing ciliary proteins forms at the apical cell

surface during cytokinesis. b When abscission occurs, one of the two

daughter cells inherits the midbody remnant, which localizes apically

at the cell periphery, near the tight junctions. c The remnant

subsequently moves over the apical surface towards the centrosome,

which is docked at the center of the apical membrane. d When the

midbody meets the centrosome, the initiation of primary cilium

assembly is facilitated. The entire process of primary cilium

formation takes place in the plasma membrane
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center of the apical surface until it meets the centro-

some. How is the remnant propelled? How does the

remnant ‘‘know’’ where to go and how is it able to arrive

at the cell center despite the conspicuous presence of

microvilli at the apical surface? What causes it to stop?

Another important matter concerns the possible

involvement of the midbody in the intracellular pathway.

Is the participation of the midbody remnant exclusive to

polarized epithelial cells or does it also intervene in cells

using the intracellular route? In this regard, the midbody

might also participate, for instance, by providing mate-

rials for the formation of the ciliary vesicles that

surround the intracellular, nascent cilium. The mother

centriole approaches the intercellular bridge of dividing

mouse L929 fibroblasts and HeLa cells [215, 216], so it

is possible that this contact could serve the centriole to

obtain materials used subsequently for primary cilium

formation. Activation of autophagy and initiation of

ciliogenesis are simultaneous events in which some

proteins participate direct or indirectly in both processes

[217, 218]. For instance, Ofd1, which is a repressor of

ciliogenesis, is removed from the centriolar satellites by

autophagy, enabling primary cilium biogenesis [218]. It

would also be fascinating to examine whether there is a

transfer of ciliary material to the centrosome during

autophagy of the midbody remnant in cells relying on

the intracellular pathway and in which the remnant is

internalized. Finally, it will be interesting to identify the

protein machinery specific to each of the two pathways

of ciliogenesis. Therefore, further research is needed to

elucidate the cellular and molecular basis that controls

the process of primary cilium biogenesis in different cell

types.
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WB, Traver D, Al-Gazali L, Ali BR, Lindner TH, Caspary T,

Otto EA, Hildebrandt F, Glass IA, Logan CV, Johnson CA,

Bennett C, Brancati F, The International Joubert Syndrome

Related Disorders Study Group, Valente EM, Woods CG,

Gleeson JG (2008) Mutations in the cilia Gene ARL13B lead to

the classical form of Joubert syndrome. Am J Hum Genet

83:170–179. doi:10.1016/j.ajhg.2008.06.023

140. Larkins CE, Aviles GDG, East MP, Kahn RA, Caspary T (2011)

Arl13b regulates ciliogenesis and the dynamic localization of

Shh signaling proteins. Mol Biol Cell 22:4694–4703. doi:10.

1091/mbc.E10-12-0994

141. Caspary T, Larkins CE, Anderson KV (2007) The graded

response to sonic Hedgehog depends on cilia architecture. Dev

Cell 12:767–778. doi:10.1016/j.devcel.2007.03.004

142. Cl Seixas, Choi SY, Polgar N, Umberger NL, East MP, Zuo X,

Moreiras H, Ghossoub R, Benmerah A, Kahn RA, Fogelgren B,

Caspary T, Lipschutz JH, Barral DC (2016) Arl13b and the

exocyst interact synergistically in ciliogenesis. Mol Biol Cell

27:308–320. doi:10.1091/mbc.E15-02-0061

143. Joberty G, Petersen C, Gao L, Macara IG (2000) The cell-po-

larity protein Par6 links Par3 and atypical protein kinase C to

Cdc42. Nat Cell Biol 2:531–539. doi:10.1038/35019573

144. Sfakianos J, Togawa A, Maday S, Hull M, Pypaert M, Cantley

L, Toomre D, Mellman I (2007) Par3 functions in the biogenesis

of the primary cilium in polarized epithelial cells. J Cell Biol

179:1133–1140. doi:10.1083/jcb.200709111

145. Fan S, Hurd TW, Liu C-J, Straight SW, Weimbs T, Hurd EA,

Domino SE, Margolis B (2004) Polarity proteins control cilio-

genesis via kinesin motor interactions. Curr Biol 14:1451–1461.

doi:10.1016/j.cub.2004.08.025

146. Hurd TW, Fan S, Liu C-J, Kweon HK, Hakansson K, Margolis

B (2003) Phosphorylation-dependent binding of 14-3-3 to the

polarity protein Par3 regulates cell polarity in mammalian

epithelia. Curr Biol 13:2082–2090. doi:10.1016/j.cub.2003.11.

020

147. Zuo X, Fogelgren B, Lipschutz JH (2011) The small GTPase

Cdc42 is necessary for primary ciliogenesis in renal tubular

epithelial cells. J Biol Chem 286:22469–22477. doi:10.1074/jbc.

M111.238469

148. Lemmers C, Michel D, Lane-Guermonprez L, Delgrossi M-H,

Médina E, Arsanto J-P, Le Bivic A (2004) CRB3 binds directly

to Par6 and regulates the morphogenesis of the tight junctions in

mammalian epithelial cells. Mol Biol Cell 15:1324–1333.

doi:10.1091/mbc.E03-04-0235

149. Wang G, Krishnamurthy K, Bieberich E (2009) Regulation of

primary cilia formation by ceramide. J Lipid Res 50:2103–2110.

doi:10.1194/jlr.M900097-JLR200

150. Fan S, Fogg V, Wang Q, Chen X-W, Liu C-J, Margolis B (2007)

A novel Crumbs3 isoform regulates cell division and ciliogen-

esis via importin b interactions. J Cell Biol 178:387–398. doi:10.

1083/jcb.200609096

151. Torkko JM, Manninen A, Schuck S, Simons K (2008) Depletion

of apical transport proteins perturbs epithelial cyst formation

and ciliogenesis. J Cell Sci 121:1193–1203. doi:10.1242/jcs.

015495

152. Takiar V, Mistry K, Carmosino M, Schaeren-Wiemers N,

Caplan MJ (2012) VIP17/MAL expression modulates epithelial

cyst formation and ciliogenesis. Am J Physiol Cell Physiol

303:C862–C871. doi:10.1152/ajpcell.00338.2011
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contractility regulate ciliogenesis in cell cycle-arrested cells.

J Cell Biol 191:303–312. doi:10.1083/jcb.201004003

165. Galati DF, Mitchell BJ, Pearson CG (2016) Subdistal appen-

dages stabilize the ups and downs of ciliary life. Dev Cell

39:387–389. doi:10.1016/j.devcel.2016.11.006

166. Lu Q, Insinna C, Ott C, Stauffer J, Pintado PA, Rahajeng J, Baxa

U, Walia V, Cuenca A, Hwang Y-S, Daar IO, Lopes S, Lip-

pincott-Schwartz J, Jackson PK, Caplan S, Westlake CJ (2015)

Early steps in primary cilium assembly require EHD1- and

EHD3-dependent ciliary vesicle formation. Nat Cell Biol

17:228–240. doi:10.1038/ncb3109

167. Baron Gaillard CL, Pallesi-Pocachard E, Massey-Harroche D,

Richard F, Arsanto J-P, Chauvin J-P, Lecine P, Krämer H, Borg
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