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Abstract Enterovirus infections are implicated in the

development of type 1 diabetes (T1D). MicroRNAs as

regulators of gene expression are involved in many phys-

iological and pathological processes. Given that viral

infections dysregulate cellular microRNAs, we investi-

gated the impact of persistent coxsackievirus B4 infection

on microRNA expression of human pancreatic cells. Next-

generation sequencing was used to determine microRNA

expression in PANC-1 cells persistently infected (for sev-

eral weeks) with coxsackievirus B4 and uninfected control

cells. Target prediction restricted to T1D risk genes was

performed with miRWalk2.0. Functional annotation anal-

ysis was performed with DAVID6.7. Expression of

selected microRNAs and T1D risk genes was measured by

quantitative reverse-transcription polymerase chain reac-

tion. Eighty-one microRNAs were dysregulated in

persistently infected PANC-1 cells. Forty-nine of the

known fifty-five T1D risk genes were predicted as putative

targets of at least one of the dysregulated microRNAs.

Most functional annotation terms that were enriched in

these 49 putative target genes were related to the immune

response or autoimmunity. mRNA levels of AFF3,

BACH2, and IL7R differed significantly between persis-

tently infected cells and uninfected cells. This is the first

characterization of the microRNA expression profile

changes induced by persistent coxsackievirus B4 infection

in pancreatic cells. The predicted targeting of genes

involved in the immune response and autoimmunity by the

dysregulated microRNAs as well as the dysregulated

expression of diabetes risk genes shows that persistent

coxsackievirus B4 infection profoundly impacts the host

cell. These data support the hypothesis of a possible link

between persistent coxsackievirus B4 infection and the

development of T1D.
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Abbreviations

CVB Type B coxsackieviruses

CVB4 Coxsackievirus B4

Ct Cycle threshold

FCS Fetal calf serum

miRNA MicroRNA

T1D Type 1 diabetes

Introduction

Type 1 diabetes (T1D) is thought to be caused by an

interplay between genetic factors, the immune system,

and environmental factors [1]. Among the later, enter-

ovirus infections, especially with type B coxsackieviruses

(CVB), have been linked to the development of T1D

[2, 3]. Signs of enteroviral infection have frequently been

detected in pancreatic cells of T1D patients [4]. There-

fore, a persistent enteroviral infection of the pancreas

could be one of the causes responsible for the develop-

ment of T1D [1, 3, 5, 6].
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CVB are small non-enveloped RNA viruses that belong

to the Enterovirus genus of the Picornaviridae family.

CVB can establish persistent infections in vitro as well as

in vivo [7]. Persistence of CVB4 in human pancreatic

ductal cells resulted in an impaired formation and viability

of islet-like cell aggregates [8]. CVB might initiate or

accelerate the development of T1D by different mecha-

nisms, including direct destruction of beta-cells,

inflammatory cytokine induction, molecular mimicry, or

dysregulation of host cell microRNA (miRNA) expression

[1, 9].

miRNAs are small 19–23 nucleotide RNA molecules

that regulate gene expression by inducing translational

arrest and/or degradation of messenger RNAs [10]. miR-

NAs are involved in many key regulatory processes in cells

and have also been shown to play an important role in beta-

cell function [11]. Dysregulation of miRNA expression has

been found in many diseases, including viral infections and

T1D [9, 12].

The impact of enterovirus infection on host cell miRNA

expression has been described in several recent studies

[13–16]. However, these studies focused on acute enter-

ovirus infection. To our knowledge, the impact of

persistent enterovirus infection on pancreatic cell miRNA

expression has not been investigated to date. Given that

persistent enterovirus infection of the pancreas may be one

underlying mechanism of T1D development, the aim of the

current study was to investigate the impact of persistent

CVB4 infection on the miRNA expression profile of pan-

creatic cells. To this end, we took advantage of pancreatic

ductal cells persistently infected with CVB4, in which a

stable persistent infection was obtained beyond 5 weeks

post-inoculation of the virus [8, 17].

We further investigated whether the dysregulated miR-

NAs potentially target T1D risk genes.

Methods

Cells and virus

The human pancreatic ductal cell line PANC-1 (ATCC,

LGC Standards, Molsheim, France) was cultured in Dul-

becco’s modified Eagle’s medium supplemented with 10%

of heat inactivated fetal calf serum (FCS), 1% of L-glu-

tamine, penicillin, and streptomycin (Thermofisher

Scientific, Courtaboeuf, France). The diabetogenic

CVB4E2 strain (kindly provided by Ji-Won Yoon, Julia

McFarlane Diabetes Research Center, Calgary, Alberta,

Canada) was propagated in Hep-2 cells (BioWhittaker,

Vervier, Belgium). The CVB4E2 strain was isolated by

Yoon et al. from the pancreas of a child with recently

diagnosed type 1 diabetes and is diabetogenic in mice [18].

Briefly, after three freeze–thaw cycles, the suspension was

collected and clarified at 2000 g for 10 min at 4 �C. Ali-
quots of virus preparations were stored at -80 �C.

Persistent CVB4 infection in PANC-1 cells

A persistent CVB4 infection was established in PANC-1

cells [17]. Briefly, a 25 cm2 Nunc� cell culture flask

(Thermofisher Scientific, Villebon, France) containing an

average of 106 cells was inoculated with CVB4E2 at a

multiplicity of infection (MOI) of 0.01. During the acute

lytic infection, cells were regularly washed to remove

excess virus. A stable equilibrium developed between viral

replication and cell proliferation. The CVB4 infected and

uninfected PANC-1 cells were scraped and subcultured

once a week.

Cells were collected from four independent biological

replicates of PANC-1 cells persistently infected with CVB4

(after 13 passages, i.e., 13 weeks (n = 3), and after 20

passages, i.e., 20 weeks (n = 1), of persistent CVB4

infection) and four replicates of uninfected PANC-1 cells.

Cells were washed with PBS. RNA was extracted with the

miRNeasy Mini kit (Qiagen, Courtaboeuf, France) with on-

column DNA digestion using DNase I (Qiagen, Courta-

boeuf, France). Extracted RNA was quantified with a

Nanodrop� spectrophotometer (Thermofisher Scientific,

Courtaboeuf, France) and RNA quality was assessed using

the 2100 Bioanalyzer (Agilent technologies, Courtaboeuf,

France).

Sequencing of microRNAs

Small RNA libraries were prepared from 1 lg of total RNA
using the Ion Total RNA-Seq Kit v2.0 (Life Technologies,

Carlsbad, CA, USA). Each sample was ligated to two

barcodes to detect and bypass PCR biases. Barcoded

libraries were quantified and assessed for quality using the

Agilent 2100 BioAnalyzer (Agilent technologies France,

Courtaboeuf, France). Libraries were pooled in equimolar

amounts and sequenced on an Ion PROTONTM Platform

using an Ion P1TM Chip Kit v2 and the Ion P1TM

Sequencing 200 kit v3 (Life Technologies, Thermofisher

Scientific, Courtaboeuf, France).

Primary analysis transforming signal to DNA sequences

was done with the default parameters on a Torrent Server

4.0.2 (Life Technologies, Thermofisher Scientific, Courta-

boeuf, France). Demultiplexing was done with 0 errors

allowed in barcodes. Raw reads were analyzed with

ncPRO-Seq 1.5.1 [19]. For each sample, reproducibility of

counts within the two barcodes was investigated by

Spearman correlation and visual inspection of counts

showing no biases between the barcodes. Each pair of

barcodes was then pooled and a new ncPRO-Seq analysis
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was performed on all samples (n = 8). The differential

expression of the raw counts obtained from ncPRO-Seq

was performed with DESeq2 [20].

Quantification of miRNAs by RT-PCR

The expression of hsa-miR-663b, hsa-miR-1913, hsa-miR-

10a-5p, hsa-miR-23a-3p, hsa-miR-23b-3p, hsa-miR-125b-

5p, hsa-miR-146a-5p, and hsa-miR-138-5p was quantified

using the TaqMan� MicroRNA kits (Life Technologies,

Thermofisher Scientific, Courtaboeuf, France). The Taq-

man MicroRNA Reverse Transcription Kit was used for

cDNA synthesis, and real-time PCRs were performed with

the Taqman Small RNA assays (primers and probe) and the

Taqman Universal PCR Master Mix II according to the

manufacturer’s recommendations, on a Mx3000p� ther-

mocycler (Agilent technologies France, Courtaboeuf,

France).The expression of hsa-miR-6087 and hsa-miR-

4516 was quantified using the miScript PCR Starter Kit

(Qiagen, Courtaboeuf, France) according to the manufac-

turer’s recommendations, on a Mx3000p� thermocycler

(Agilent technologies France, Courtaboeuf, France).

RNU6B was used for normalization and the relative

expression was determined using the 2-DDCt formula [21].

MiRNA target prediction

miRWalk 2.0 was used to predict potential target genes of

the 81 dysregulated miRNAs [22]. The following settings

were applied: ‘‘species: human’’; ‘‘restricted to 30UTR’’;
‘‘minimum seed length = 7’’; ‘‘p value = 0.05’’; and using

the databases: miRWalk, RNA22, miRanda, and Tar-

getscan. The list of genes predicted as targets by at least

three of the four databases was compared with the list of

type 1 diabetes risk genes obtained from T1Base [23] to

identify T1D risk genes that are potentially targeted by the

dysregulated miRNAs.

Functional annotation analysis

The 49 T1D risk genes that were potential targets of the 81

dysregulated miRNAs were functionally annotated using

the Database for Annotation, Visualization, and Integrated

Discovery (DAVID) 6.7 [24]. This analysis yields func-

tional annotations that are enriched in these genes and

indicates an enrichment p value.

Gene expression analysis

2 lg of total RNA from PANC-1 cells persistently infected

with CVB4 and uninfected control cells were DNAse

treated (RQ1 RNase-Free DNase, Promega France, Char-

bonnières-les-Bains, France). cDNA synthesis was

performed using the Superscript III first strand synthesis

system for RT-PCR kit (Thermofisher Scientific, Courta-

boeuf, France) and random hexamer primers. cDNA was

diluted 1:10 and quantitative PCR was performed with the

Power SYBR green master mix (Applied Biosystems,

Thermofisher Scientific, Courtaboeuf, France). The fol-

lowing primers were used (Eurofins Genomics, Ebersberg,

Germany): CLEC16A: CATCAAGACGAGTGGGGA-

GAGT and TCCTCGTCCGTGGTGTTCTG; GLIS3: CAA

CCAGATCAGTCCTAGCTTACA and GCGAAATAAG

GGACCTGGTATC; IKZF1: CACAGTGAAATGGCAGA

AGACC and GGCCCTTGTCCCCAAGAAAT; SH2B3:

AACCACCAGGTTCCTGCAAC and GGACAGCCA-

GAAGAACTAAGGTG [16]; BACH2: GACTTTGATCGT

GGAGAGGAA and GCAAGCTGACCACCAAATC;

beta-Actin: ACCGAGCGCGGCTACAG and CTTAATGT

CACGCACGATTTCC; AFF3: ACTCAACAGGATGATG

GCACG and TGCCTAAAGTGTTCTGGATCCG; IKZF4:

ACGAAATACGTGACCTGGAGATG and CTTGCGTTT

GGTGAGGCTATTG; IL7R: CTGGTTTGTAGGCAGC

AGAAGA and GGAGCCTCCTATTTGAGACTTGAC.

Cycling was performed on an ABI7500 (Applied

Biosystems, Thermofisher Scientific, Courtaboeuf, France)

with the following thermal profile: 10 min at 95 �C fol-

lowed by 40 cycles of 15 s at 95 �C, 30 s at 60 �C, and
30 s at 72 �C. Cycle thresholds (Cts) were normalized to

beta-Actin levels. Relative mRNA expression was expres-

sed as fold change in PANC-1 cells persistently infected

with CVB4 compared to uninfected control cells. Relative

mRNA expression in persistently infected versus non-in-

fected cells was compared using the Mann–Whitney test. A

p value \0.05 was considered statistically significant.

Statistical analyses and graphs were performed with the

Graph Pad Prism 6.03 software (GraphPad Software, La

Jolla, CA).

Results

The miRNA expression profile differed between PANC-1

cells with persistent CVB4 infection and uninfected

PANC-1 cells. A total of 81 miRNAs showed a significant

differential expression (defined as a fold change C3,

p\ 0.05), and among them, 65 miRNAs were up-regulated

and 16 were down-regulated in persistently infected cells

(Table 1). The highest induction was seen for hsa-miR-

6087, hsa-miR-663b, hsa-miR-4516, hsa-miR-4532, hsa-

miR-1913, and hsa-miR-3621 that showed a more than

hundredfold higher expression in persistently infected

compared to uninfected cells. In contrast, the down-regu-

lated miRNAs displayed less than tenfold down-regulation

in persistently infected cells compared to uninfected cells.

The expression of selected miRNAs that showed a high
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fold change in the sequencing data or that are known to be

implicated in enteroviral infection (hsa-miR-6087, hsa-

miR-663b, hsa-miR-4516, hsa-miR-1913, hsa-miR-10a-5p,

hsa-miR-23a-3p, hsa-miR-23b-3p, hsa-miR-125b-5p, and

hsa-miR-146a-5p, hsa-miR-138-5p) [13–15, 25] was addi-

tionally analyzed by RT qPCR. Five of the six miRNAs

Table 1 MiRNAs differentially expressed in PANC-1 cells persis-

tently infected with CVB4 compared to uninfected cells

miRNA

(Mirbase-v20)

Dysregulationa Fold

changeb
Adjusted

p valuec

hsa-miR-6087 Up 340.51 1.37E-125

hsa-miR-663b Up 208.55 1.53E-27

hsa-miR-4516 Up 156.42 2.16E-22

hsa-miR-4532 Up 133.15 9.88E-22

hsa-miR-1913 Up 120.21 6.09E-18

hsa-miR-3621 Up 115.92 9.22E-16

hsa-miR-6730-3p Up 95.54 3.41E-15

hsa-miR-4492 Up 85.40 1.08E-14

hsa-miR-6800-3p Up 78.41 4.11E-12

hsa-miR-6087 Up 73.40 1.19E-11

hsa-miR-1292-3p Up 65.85 9.49E-21

hsa-miR-3687 Up 58.50 3.22E-16

hsa-miR-6858-3p Up 46.37 1.17E-08

hsa-miR-4449 Up 41.62 1.92E-14

hsa-miR-663a Up 37.51 1.79E-07

hsa-miR-885-3p Up 32.61 6.28E-36

hsa-miR-7641 Up 32.51 4.84E-13

hsa-miR-4488 Up 31.76 1.51E-06

hsa-miR-3656 Up 30.96 8.46E-10

hsa-miR-1470 Up 25.14 4.34E-18

hsa-miR-4497 Up 23.67 2.36E-06

hsa-miR-6858-5p Up 23.14 1.64E-14

hsa-miR-4508 Up 21.92 9.26E-25

hsa-miR-3182 Up 17.61 9.72E-05

hsa-miR-3654 Up 16.42 3.86E-04

hsa-miR-4477a Up 16.14 1.83E-06

hsa-miR-664b-5p Up 13.57 1.17E-08

hsa-miR-6821-5p Up 11.83 2.70E-03

hsa-miR-6808-3p Up 11.18 2.65E-03

hsa-miR-4758-5p Up 11.05 2.74E-04

hsa-miR-664a-5p Up 10.88 1.77E-04

hsa-miR-922 Up 10.60 4.21E-03

hsa-miR-6834-3p Up 10.51 4.65E-03

hsa-miR-4710 Up 9.17 8.41E-03

hsa-miR-6892-5p Up 8.79 9.80E-03

hsa-miR-204-5p Up 8.54 2.24E-04

hsa-miR-582-5p Up 7.94 1.17E-02

hsa-miR-1268b Up 7.59 4.39E-03

hsa-miR-551a Up 7.17 1.05E-02

hsa-miR-4417 Up 6.76 2.73E-02

hsa-miR-668-5p Up 6.72 2.77E-02

hsa-miR-483-3p Up 6.65 4.19E-03

hsa-miR-8072 Up 6.59 1.92E-02

hsa-miR-137 Up 6.07 3.80E-02

hsa-miR-30d-3p Up 5.61 4.11E-02

hsa-miR-15a-3p Up 5.59 1.38E-03

hsa-miR-483-5p Up 5.58 2.96E-02

Table 1 continued

miRNA

(Mirbase-v20)

Dysregulationa Fold

changeb
Adjusted

p valuec

hsa-miR-5701 Up 5.57 3.43E-02

hsa-miR-146a-5p Up 5.41 2.06E-09

hsa-miR-1908-3p Up 5.31 2.02E-02

hsa-miR-412-5p Up 5.30 4.14E-02

hsa-miR-1227-3p Up 5.23 2.20E-02

hsa-miR-380-5p Up 5.03 1.27E-02

hsa-miR-147b Up 4.91 6.80E-08

hsa-miR-138-5p Up 4.61 4.34E-02

hsa-miR-7704 Up 4.13 7.64E-08

hsa-miR-668-3p Up 3.73 4.21E-03

hsa-miR-376b-3p Up 3.66 2.06E-15

hsa-miR-222-3p Up 3.60 3.85E-18

hsa-miR-3117-3p Up 3.55 7.65E-03

hsa-miR-665 Up 3.50 3.88E-08

hsa-miR-1248 Up 3.42 5.00E-04

hsa-miR-376a-3p Up 3.30 4.66E-08

hsa-miR-675-3p Up 3.23 2.19E-02

hsa-miR-1307-5p Up 3.04 1.61E-10

hsa-let-7f-1-3p Down -8.20 7.85E-03

hsa-miR-23b-5p Down -7.90 9.65E-03

hsa-let-7b-3p Down -6.78 4.86E-07

hsa-miR-335-3p Down -6.17 2.96E-02

hsa-miR-194-5p Down -5.53 4.41E-02

hsa-miR-3178 Down -5.39 2.22E-02

hsa-miR-34c-5p Down -5.31 2.45E-05

hsa-miR-187-3p Down -5.25 7.60E-06

hsa-let-7d-3p Down -5.21 9.63E-04

hsa-miR-132-5p Down -4.64 4.17E-02

hsa-miR-10a-5p Down -4.28 1.66E-33

hsa-miR-10b-5p Down -3.55 1.35E-20

hsa-miR-98-3p Down -3.44 2.91E-02

hsa-miR-23b-3p Down -3.22 4.62E-22

hsa-miR-335-5p Down -3.11 1.53E-03

hsa-miR-1260b Down -3.07 2.17E-02

a miRNAs up-regulated or down-regulated in PANC-1 cells persis-

tently infected with CVB4 compared to uninfected cells are listed
b Fold change of miRNA expression in PANC-1 cells persistently

infected with CVB4 compared to uninfected cells
c Adjusted p value calculated between PANC-1 cells persistently

infected with CVB4 and uninfected cells obtained with DESeq2

(based on negative binomial generalized linear models)
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analyzed that showed an up-regulation in the sequencing

data (Fig. 1a) and also showed an up-regulation by RT

qPCR, whereas one showed no change (Fig. 1b). Two of

the four miRNAs analyzed that showed a down-regulation

in the sequencing data (Fig. 1a) and also showed a down-

regulation by RT qPCR (Fig. 1b). The extent of the dys-

regulation was different between the sequencing and the

RT qPCR data, for example hsa-miR-6087 showed a

341-fold up-regulation by sequencing and a 39-fold up-

regulation by RT qPCR (Fig. 1).

We next investigated the potential impact of the miRNA

expression changes induced by persistent CVB4 infection

on genes that are known to be implicated in T1D. To this

end, miRNA target prediction was performed using miR-

Walk and target genes were restricted to the 55 T1D risk

genes contained in the T1D database [23]. Forty-nine of the

fifty-five T1D risk genes were predicted as putative targets

of at least one of the dysregulated miRNAs (Table 2). Most

of the genes were potentially targeted by several of the

dysregulated miRNAs, and the genes targeted by the

highest number of dysregulated miRNAs (n = 24) were

AFF3 and BACH2. Most of the dysregulated miRNAs

were also predicted to target several of the T1D risk genes

(Table 2).

mRNA levels of the house-keeping gene beta-Actin and

selected T1D risk genes were measured by RT qPCR in

PANC-1 cells with persistent CVB4 infection and unin-

fected PANC-1 cells. Beta-Actin mRNA levels were

similar in persistently infected and uninfected cells (mean

difference of 0.5 Cts, data not shown). mRNA levels of

AFF3 and IL7R were significantly higher in persistently

infected cells, whereas BACH2 levels were significantly

lower (Fig. 2). The mRNA levels of the other analyzed

genes were similar in infected and uninfected cells.

Functional annotation analysis of the 49 putative target

genes was studied with DAVID [26]. ‘‘Autoimmune thy-

roid disease’’ showed that the highest enrichment score and

genes associated with viral myocarditis and T1D were also

enriched. Most functional annotation terms that were

enriched in these 49 putative target genes were related to

the immune response or autoimmunity (Table 3).

Discussion

miRNAs are major regulators of gene expression and are

involved in many physiological and pathological processes.

Inhibition of miRNA production by disruption of the gene

Dicer leads to development of diabetes in mice [27]. Dis-

ruption of Dicer leads to altered islet morphology, marked

decreased beta-cell mass, and reduced insulin production

[27]. Several miRNAs have been described to be involved

Fig. 1 Changes of miRNA expression in PANC-1 cells persistently

infected with CVB4. a Expression of selected miRNAs expressed as

fold changes of persistently infected compared to uninfected control

cells. Data of four independent biological replicates are shown as

mean ± standard error obtained from sequencing data analyzed by

DESeq2. b Expression of selected miRNAs determined by RT qPCR

expressed as fold changes of persistently infected compared to

uninfected control cells. Data of six independent biological replicates

are shown except for hsa-miR-6087 and hsa-miR-4516, where data of

two independent biological replicates are shown as mean ± standard

error of the mean
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Table 2 Type 1 diabetes risk genes predicted as targets of the 81 dysregulated miRNAs

Type 1

diabetes risk

gene

Up-regulation Down-regulation Number

of

miRNAsa

AFF3 hsa-miR-4492, hsa-miR-6087, hsa-miR-6800-3p, hsa-miR-4417, hsa-

miR-4710, hsa-miR-582-5p, hsa-miR-1227-3p, hsa-miR-138-5p,

hsa-miR-146a-5p, hsa-miR-222-3p, hsa-miR-30d-3p, hsa-miR-

380-5p, hsa-miR-1227-3p, hsa-miR-222-3p, hsa-miR-30d-3p, hsa-

miR-1248, hsa-miR-665, hsa-miR-675-3p

hsa-let-7b-3p, hsa-let-7f-1-3p, hsa-miR-194-5p,

hsa-miR-23b-3p, hsa-miR-335-3p, hsa-miR-

98-3p

24

BACH2 hsa-miR-4492, hsa-miR-4516, hsa-miR-663b, hsa-miR-885-3p, hsa-

miR-204-5p, hsa-miR-582-5p, hsa-miR-922, hsa-miR-137, hsa-

miR-147b, hsa-miR-3117-3p, hsa-miR-380-5p, hsa-miR-483-3p,

hsa-miR-5701, hsa-miR-668-3p, hsa-miR-137, hsa-miR-147b, hsa-

miR-380-5p, hsa-miR-483-3p, hsa-miR-1248

hsa-miR-23b-3p, hsa-miR-23b-5p, hsa-miR-

335-3p, hsa-miR-335-5p, hsa-miR-34c-5p

24

BAD hsa-miR-4449, hsa-miR-663a hsa-miR-132-5p, hsa-miR-34c-5p 4

C1QTNF6 hsa-miR-4492, hsa-miR-4516, hsa-miR-1913, hsa-miR-3656, hsa-

miR-4532, hsa-miR-6087, hsa-miR-663a, hsa-miR-663b, hsa-miR-

6858-5p

hsa-miR-132-5p, hsa-miR-23b-5p 11

CCR5 hsa-miR-15a-3p, hsa-miR-204-5p, hsa-miR-3182, hsa-miR-6800-3p,

hsa-miR-6834-3p

hsa-miR-335-3p, hsa-miR-335-3p 7

CD226 hsa-miR-204-5p hsa-miR-335-3p 2

CD69 hsa-miR-23b-3p 1

CLEC16A hsa-miR-4492, hsa-miR-1248, hsa-miR-138-5p, hsa-miR-1913, hsa-

miR-1914-3p, hsa-miR-222-3p, hsa-miR-3182, hsa-miR-380-5p,

hsa-miR-4488, hsa-miR-4497, hsa-miR-4508, hsa-miR-4710, hsa-

miR-4758-5p, hsa-miR-483-3p, hsa-miR-663b, hsa-miR-664a-5p,

hsa-miR-6800-3p, hsa-miR-922

hsa-miR-3178, hsa-miR-335-3p 20

COBL hsa-miR-3117-3p, hsa-miR-664a-5p, hsa-miR-668-3p, hsa-miR-

6808-3p

hsa-miR-23b-3p 5

CTLA4 hsa-miR-1248, hsa-miR-664a-5p hsa-miR-23b-5p, hsa-miR-335-3p 4

CTSH hsa-miR-4710 1

CYP27B1 hsa-miR-146a-5p, hsa-miR-15a-3p hsa-miR-335-3p 3

DEXI hsa-miR-137, hsa-miR-15a-3p, hsa-miR-3182, hsa-miR-4497, hsa-

miR-6800-3p

hsa-miR-1260b, hsa-miR-23b-5p 7

EFR3B hsa-miR-1268b, hsa-miR-15a-3p, hsa-miR-1913, hsa-miR-4492, sa-

miR-4516, hsa-miR-6087, hsa-miR-663a, hsa-miR-664a-5p, hsa-

miR-664b-5p, hsa-miR-665, hsa-miR-6730-3p, hsa-miR-6858-5p,

hsa-miR-922

hsa-miR-10a-5p, hsa-miR-10b-5p, hsa-miR-

1260b, hsa-miR-34c-5p

17

ERBB3 hsa-miR-137, hsa-miR-204-5p, hsa-miR-3182, hsa-miR-4492, hsa-

miR-4516, hsa-miR-664a-5p, hsa-miR-665

hsa-miR-335-5p 8

FUT2 hsa-miR-1268b, hsa-miR-664a-5p, hsa-miR-675-3p hsa-miR-1260b, hsa-miR-23b-5p 5

GLIS3 hsa-miR-137, hsa-miR-138-5p, hsa-miR-146a-5p, hsa-miR-204-5p,

hsa-miR-3117-3p, hsa-miR-3182, hsa-miR-380-5p, hsa-miR-4710,

hsa-miR-582-5p, hsa-miR-665

hsa-let-7b-3p, hsa-let-7f-1-3p, hsa-miR-335-3p,

hsa-miR-98-3p

14

GPR183 hsa-miR-582-5p 1

GSDMB hsa-miR-34c-5p 1

HLA-A hsa-miR-6800-3p hsa-miR-23b-3p 2

HLA-B hsa-miR-30d-3p, hsa-miR-4417, hsa-miR-6800-3p hsa-miR-23b-3p 4

HLA-DQB1 hsa-miR-137, hsa-miR-1913, hsa-miR-30d-3p, hsa-miR-6858-3p,

hsa-miR-7641

hsa-miR-335-3p 6

HLA-DRB1 hsa-miR-15a-3p 1

IKZF1 hsa-miR-137, hsa-miR-138-5p, hsa-miR-146a-5p, hsa-miR-1470,

hsa-miR-15a-3p, hsa-miR-3117-3p, hsa-miR-3182, hsa-miR-3654,

hsa-miR-376a-3p, hsa-miR-376b-3p, hsa-miR-380-5p, hsa-miR-

4488, hsa-miR-4516, hsa-miR-4710, hsa-miR-483-3p, hsa-miR-

582-5p, hsa-miR-663a, hsa-miR-6858-3p, hsa-miR-665, hsa-miR-

664a-5p

hsa-miR-3178, hsa-miR-335-3p, hsa-miR-34c-

5p

23
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Table 2 continued

Type 1

diabetes risk

gene

Up-regulation Down-regulation Number

of

miRNAsa

IKZF4 hsa-miR-137, hsa-miR-146a-5p, hsa-miR-1913, hsa-miR-1914-3p,

hsa-miR-30d-3p, hsa-miR-3117-3p, hsa-miR-3182, hsa-miR-4516,

hsa-miR-4710, hsa-miR-483-3p, hsa-miR-582-5p, hsa-miR-663b,

hsa-miR-665, hsa-miR-6858-3p, hsa-miR-6858-5p, hsa-miR-885-

3p, hsa-miR-922

hsa-miR-10a-5p, hsa-miR-10b-5p, hsa-miR-

34c-5p, hsa-miR-98-3p

21

IL10 hsa-miR-3182, hsa-miR-4492 hsa-miR-194-5p, hsa-miR-23b-5p 4

IL21 hsa-miR-194-5p 1

IL27 hsa-miR-30d-3p, hsa-miR-4492 2

IL2RA hsa-miR-1248, hsa-miR-138-5p, hsa-miR-1913, hsa-miR-1914-3p,

hsa-miR-204-5p, hsa-miR-3182, hsa-miR-6808-3p, hsa-miR-922

8

IL7R hsa-miR-1227-3p, hsa-miR-1248, hsa-miR-137, hsa-miR-138-5p,

hsa-miR-146a-5p, hsa-miR-1913, hsa-miR-1914-3p, hsa-miR-204-

5p, hsa-miR-3182, hsa-miR-483-3p, hsa-miR-5701, hsa-miR-665

hsa-miR-194-5p, hsa-miR-23b-3p, hsa-miR-

335-3p

15

INS hsa-miR-3656, hsa-miR-8072 2

ITGB7 hsa-miR-668-3p 1

NAA25 hsa-miR-15a-3p, hsa-miR-3656, hsa-miR-6800-3p, hsa-miR-922 hsa-let-7b-3p, hsa-let-7f-1-3p, hsa-miR-194-5p,

hsa-miR-23b-5p, hsa-miR-335-5p

9

NRP1 hsa-miR-1248, hsa-miR-137, sa-miR-1914-3p, hsa-miR-204-5p, hsa-

miR-3654, hsa-miR-376a-3p, hsa-miR-376b-3p, hsa-miR-4492,

hsa-miR-483-3p, hsa-miR-5701, hsa-miR-582-5p, hsa-miR-668-3p

hsa-miR-194-5p, hsa-miR-335-3p, hsa-miR-

98-3p

15

ORMDL3 hsa-miR-15a-3p, hsa-miR-1913, hsa-miR-204-5p, hsa-miR-3182,

hsa-miR-4516, hsa-miR-4710, hsa-miR-663b, hsa-miR-665, hsa-

miR-6800-3p

hsa-miR-23b-3p, hsa-miR-34c-5p 11

PHTF1 hsa-miR-7641 1

PRKCQ hsa-miR-137, hsa-miR-30d-3p, hsa-miR-4488, hsa-miR-4492, hsa-

miR-4516, hsa-miR-665, hsa-miR-668-5p, hsa-miR-7641

hsa-miR-34c-5p 9

PTPN2 hsa-miR-137, hsa-miR-138-5p, hsa-miR-1913, hsa-miR-4417, hsa-

miR-582-5p, hsa-miR-675-3p, hsa-miR-7641

hsa-miR-194-5p, hsa-miR-23b-5p, hsa-miR-

335-3p

10

PTPN22 hsa-miR-30d-3p hsa-miR-335-5p 2

RAC2 hsa-miR-146a-5p, hsa-miR-1914-3p, hsa-miR-4492, hsa-miR-922 4

RASGRP1 hsa-miR-146a-5p, hsa-miR-222-3p, hsa-miR-30d-3p, hsa-miR-376a-

3p, hsa-miR-582-5p

hsa-let-7f-1-3p 6

RBM17 hsa-miR-1248, hsa-miR-15a-3p hsa-miR-23b-3p 3

RNLS hsa-miR-137, hsa-miR-204-5p, hsa-miR-222-3p, hsa-miR-4516 hsa-miR-194-5p, hsa-miR-335-3p 6

SH2B3 hsa-miR-1248, hsa-miR-138-5p, sa-miR-147b, hsa-miR-1913, hsa-

miR-204-5p, hsa-miR-30d-3p, hsa-miR-3656, hsa-miR-380-5p,

hsa-miR-4417, hsa-miR-668-3p, hsa-miR-6858-3p, hsa-miR-6892-

5p

hsa-miR-10a-5p, hsa-miR-10b-5p, hsa-miR-

3178

15

STAT4 hsa-miR-1227-3p, hsa-miR-30d-3p, hsa-miR-3182, hsa-miR-6858-

5p

hsa-miR-335-3p 5

TAGAP hsa-miR-6858-5p hsa-miR-335-3p 2

TNFAIP3 hsa-miR-1248, hsa-miR-15a-3p, hsa-miR-1914-3p, hsa-miR-204-5p,

hsa-miR-30d-3p, hsa-miR-380-5p, hsa-miR-4477a, hsa-miR-4516,

hsa-miR-664a-5p, hsa-miR-6808-3p, hsa-miR-6858-3p, hsa-miR-

885-3p, hsa-miR-922

hsa-miR-23b-3p, hsa-miR-335-3p 15

TYK2 hsa-miR-4710, hsa-miR-922 1

UBASH3A hsa-miR-138-5p, hsa-miR-4492 hsa-miR-132-5p, hsa-miR-23b-3p 4

Type 1 diabetes risk genes are shown with the miRNAs that are predicted to target them and that have been found up-regulated or down-

regulated by persistent CVB4 infection in the current study
a The total number of miRNAs found dysregulated in the current study that are predicted to target the type 1 diabetes risk genes
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in pancreas development, glucose sensing, insulin pro-

duction, and diabetes [9, 28, 29]. miRNA expression

changes induced by persistent enterovirus infection could

thus impact on the function or regeneration of pancreatic

beta-cells.

We, therefore, investigated the miRNA expression pro-

file changes associated with persistent CVB4 infection in a

human pancreatic cell line (PANC-1). To our knowledge,

our study is the first to describe the impact of persistent

enterovirus infection on miRNA expression in pancreatic

cells. As far as acute enterovirus infection is concerned,

two studies have analyzed the impact of CVB infection on

pancreatic miRNA expression [16, 30]. Kim et al. reported

a dysregulation of 33 miRNAs out of a total 754 analyzed

in human pancreatic islets during acute CVB5 infection

[16], and Lam et al. investigated the impact of acute CVB4

infection on miRNA expression in rat beta-cells [30].

When we compared the miRNAs that were reported to be

dysregulated in these two studies with the list of 81 dys-

regulated miRNAs identified in the study presented here,

there was no overlap with the study by Lam et al. and only

one miRNA was dysregulated in our study and the study by

Kim et al.: hsa-miR-663b. The function and targets of hsa-

miR-663b are unknown, and to date, no reports on its

involvement in viral infection or T1D have been published.

The small overlap of dysregulated miRNAs between our

study and the two previous studies might partly be due to

methodological differences of the miRNA expression

analysis [31] and/or the use of different cells. Furthermore,

the effect on cellular miRNA expression may depend on

the virus strain. The small overlap between the miRNA

expression changes identified in our study and the two

previous studies also demonstrate that acute CVB infection

has a different impact on the cellular miRNA expression

profile and thus on the resulting gene expression changes

than persistent CVB infection. Concerning persistent CVB

infection, a recent study compared miRNA expression

profiles in endomyocardial biopsies of patients with CVB3

cardiomyopathy who spontaneously eliminated CVB3 with

those who had virus persistence on follow-up. 16 miRNAs

were differentially expressed and were proposed as mark-

ers for the risk of CVB3 persistence in CVB3

cardiomyopathy [32]. Interestingly, none of these 16

miRNAs was found dysregulated in our study, underlining

again that the changes in miRNA expression profiles are

cell-specific and virus-specific.

MiRNAs play an important role in the regulation of

insulin expression and glucose homeostasis. Hsa-miR-204

is highly expressed in beta-cells and overexpressed in

diabetes. Its overexpression reduces insulin expression in

Fig. 2 mRNA expression of T1D risk genes in PANC-1 cells

persistently infected with CVB4. mRNA expression of selected T1D

risk genes was measured by RT qPCR and expressed as fold changes

in cells persistently infected with CVB4 compared to uninfected

control cells. Data of five independent biological replicates are shown

as mean ± standard error of the mean. **p\ 0.01

Table 3 Functional annotation analysis of 49 T1D risk genes that are

potential targets of 81 dysregulated miRNAs

Functional annotation term p value

Autoimmune thyroid disease 4.66E-06

Allograft rejection 2.83E-05

Cell adhesion molecules 4.10E-05

Type I diabetes mellitus 5.27E-05

Viral myocarditis 4.14E-04

Graft-versus-host disease 9.60E-04

Jak-STAT signaling pathway 9.66E-04

MHC class II receptor activity 1.24E-03

Intestinal immune network for IgA production 1.87E-03

Growth factor binding 3.02E-03

Antigen processing and presentation 8.32E-03

Asthma 9.38E-03

Endocytosis 1.33E-02

T cell receptor signaling pathway 1.70E-02

Cytokine binding 3.66E-02

Cytokine-cytokine receptor interaction 4.21E-02

MHC class I receptor activity 4.61E-02

The 49 type 1 diabetes risk genes that were potential targets of the 81

dysregulated miRNAs were functionally annotated using DAVID 6.7.

Functional annotations that are enriched with an enrichment p value

\0.05 are shown
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human islets by targeting a key insulin transcription factor,

MafA [33]. We found that hsa-miR-204 is induced by

persistent CVB4 infection (Table 1). Induction of this

miRNA by persistent CVB4 infection may, therefore,

reduce insulin expression and contribute to the insulin

deficiency observed in T1D. The let-7 family is also

involved in the control of glucose homeostasis and insulin

sensitivity [34]. Several members of the let-7 family were

found down-regulated in our study (Table 1), suggesting

that persistent CVB4 infection may have an impact on

glucose homeostasis. Hsa-miR-10a-5p was also found

down-regulated during persistent CVB4 infection in our

study (Table 1; Fig. 1a). The mouse homolog of this

miRNA is expressed to a lower level in regulatory T cells

of non-obese diabetic mice (NOD) as compared to

autoimmunity-resistant mice [35] suggesting a potential

link of this miRNA to autoimmunity. The link of the

miRNAs dysregulated during persistent CVB4 infection to

autoimmunity is further supported by the results of the

functional annotation analysis, because most of the enri-

ched functional annotation terms were related to the

immune response or autoimmunity (Table 3). Hsa-miR-

10a-5p was also shown to be up-regulated during differ-

entiation of human induced pluripotent stem cells to

insulin-producing cells [36]. The down-regulation of hsa-

miR-10a-5p that we observed during persistent CVB4

infection (Table 1) might thus be implicated in the

impaired formation of islet-like cell aggregates of PANC-1

cells reported previously [8]. A recent study found that EV-

71 infection induced expression of miR-146a in human

cells and in a mouse model. MiR-146a was further shown

to target TRAF6 and IRAK1 [37]. Inhibition of mir-146a

restored IRAK1 and TRAF6 expression, increased IFN-a
production, inhibited viral propagation, and improved

mouse survival. The authors concluded that miR-146a

facilitates enteroviral pathogenesis by suppressing IFN

production [37]. Interestingly, proinflammatory cytokines

induce miR-146a in MIN6 cells and human islets via the

NfjB pathway [38, 39]. Moreover, induction of miR-146

promotes beta-cell apoptosis, while miR-146 inhibition

reduces beta-cell death [38, 40]. Expression of this miRNA

is increased in islets of prediabetic NOD mice [38]. Taken

together, these findings suggest that overexpression of

miR-146a during persistent CVB4 infection as shown in

the current study (Table 1; Fig. 1) might link enteroviral

infection to the development of T1D. In agreement with

this hypothesis, hsa-miR-146a has been reported to be

dysregulated in the plasma of prediabetic patients and in

PBMCs of patients with T1D [41].

Persistent CVB4 infection induced dysregulation of 81

miRNAs in pancreatic cells (Table 1). A single miRNA

can potentially regulate hundreds of genes [42]; therefore,

the changes in miRNA expression are expected to have a

strong impact on the transcriptome and biology of these

cells. Importantly, the miRNAs dysregulated by persistent

CVB4 infection were found to potentially target several

T1D risk genes (Table 2). Indeed, gene expression of

selected genes investigated by RT qPCR analysis con-

firmed dysregulation of AFF3, BACH2, and IL7R in

PANC-1 cells persistently infected with CVB4 (Fig. 2),

whereas the other investigated genes showed similar

mRNA expression. However, the expression of these genes

might be impacted at the protein level.

Basic leucine zipper transcription factor 2 (BACH2) is a

key regulation factor in B and T cell differentiation and

function [43]. BACH2 is also involved in the regulation of

apoptosis. Inhibition of BACH2 sensitized beta-cells to

cytokine-induced apoptosis [44]. BACH2 is a predicted

target of 24 of the dysregulated miRNAs in our study and

dysregulation of its expression has been found by RT qPCR

(Table 2; Fig. 2). Cells persistently infected with CVB4

might, therefore, be more susceptible to apoptosis.

AF4/FMR2 family member 3 (AFF3) is a nuclear tran-

scriptional activator that is preferentially expressed in

lymphoid tissue [45]. AFF3 polymorphisms have been

found associated with autoimmune diseases [46]. AFF3 is a

predicted target of 24 of the dysregulated miRNAs and

dysregulation of its expression has been found by RT qPCR

(Table 2; Fig. 2).

Interleukin-7 receptor (IL7R) is indispensable for nor-

mal lymphocyte development and IL7R polymorphisms

have been found associated with autoimmune diseases

[47, 48]. Binding of IL7 to the IL7R activates multiple

pathways that regulate lymphocyte survival, glucose

uptake, proliferation, and differentiation [49]. Blocking of

IL7R in non-obese diabetic (NOD) mice prevented

autoimmune diabetes and reversed disease in new-onset

diabetic mice by modulation of effector/memory T cell

function [50]. The soluble form of IL7R antagonizes IL7

signaling and is increased in patients at the onset of T1D

[51]. IL7R is a predicted target of 15 of the dysregulated

miRNAs and dysregulation of its expression has been

found by RT qPCR in our study (Table 2; Fig. 2). Given

that dysregulation of IL7/IL7R signaling is involved in the

development of T1D, our results suggest that persistent

CVB4 infection has an impact on IL7/IL7R signaling in

pancreatic cells that might be linked to the development of

T1D.

Our previous studies showed that during persistent

CVB4 infection, approximately 50% of cells harbored

CVB4 RNA and 1–5% cells were VP1 positive [8].

Therefore, it is noteworthy, that although only approxi-

mately 50% of the cells are infected during persistent

infection, expression of some miRNAs and mRNAs

changed strongly. In fact, miRNAs can be secreted and

taken up by surrounding cells and these miRNAs can be
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functional [52, 53]. Therefore, it is possible that the per-

sistently infected cells influence the miRNA expression

profile of surrounding non-infected cells and consequently

also their gene expression profile.

In conclusion, our study presents the first characteriza-

tion of the miRNA expression profile changes induced by

persistent CVB4 infection in pancreatic cells. The pre-

dicted targeting of genes involved in the immune response

and autoimmunity by the dysregulated miRNAs as well as

the dysregulated expression of the diabetes risk genes

AFF3, IL7R, and BACH2 show that persistent CVB4

infection profoundly impacts the host cell and link persis-

tent CVB4 infection to the development of T1D. To fully

understand the impact of miRNA dysregulation induced by

persistent CVB4 infection on the cell physiology, it will be

interesting to study the global gene and protein expression

profiles of these cells using transcriptomic and proteomic

approaches.
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