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Abstract Plants are sessile organisms. This intriguing

nature provokes the question of how they survive despite

the continual perturbations caused by their constantly

changing environment. The large amount of knowledge

accumulated to date demonstrates the fascinating dynamic

and plastic mechanisms, which underpin the diverse

strategies selected in plants in response to the fluctuating

environment. This phenotypic plasticity requires an effi-

cient integration of external cues to their growth and

developmental programs that can only be achieved through

the dynamic and interactive coordination of various sig-

naling networks. Given the versatility of intrinsic structural

disorder within proteins, this feature appears as one of the

leading characters of such complex functional circuits,

critical for plant adaptation and survival in their wild

habitats. In this review, we present information of those

intrinsically disordered proteins (IDPs) from plants for

which their high level of predicted structural disorder has

been correlated with a particular function, or where there is

experimental evidence linking this structural feature with

its protein function. Using examples of plant IDPs involved

in the control of cell cycle, metabolism, hormonal signaling

and regulation of gene expression, development and

responses to stress, we demonstrate the critical importance

of IDPs throughout the life of the plant.
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Introduction

Throughout evolution plants have developed an extraordi-

nary ability to overcome fluctuating and drastic

environmental changes. Their sessile nature has imposed

the selection of particular defense strategies allowing them

efficient and effective adjustment or acclimation responses

to these conditions, as well as skilled mechanisms to tol-

erate and survive them. The different endurance strategies

selected in these organisms are the result of complex

structural and interconnected regulatory networks, which

have evolved in an intimate relationship with develop-

mental programs. For instance, in many plant species, the

reproductive stage waits for favorable climatic conditions

to instrument a crucial set of processes for their perpetua-

tion; root architecture modifies according to the availability

of water, phosphorus and other nutrients; and orthodox

seeds once desiccated can remain dormant for many years

without significant loss in viability until they find sufficient

water to germinate [1, 2]. This outstanding resourcefulness

suggests mechanisms that make them capable of detecting

diverse changes in the plant cell milieu, imposed by the

external environment or by developmental programs.

Many molecular response mechanisms are efficiently

adapted for rapid detection of subtle environmental fluc-

tuations, as can be observed in mechano-sensitivity, ion

channels, proton pumps and post-translational protein

modifications. The modification of protein structure also

seems to be an efficient and effective transducer of a great

diversity of signals. This phenomenon is commonly
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62250 Cuernavaca, Mexico

Cell. Mol. Life Sci. (2017) 74:3119–3147

DOI 10.1007/s00018-017-2557-2 Cellular and Molecular Life Sciences

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-017-2557-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-017-2557-2&amp;domain=pdf


associated with changes in protein conformation produced

by phosphorylation or acetylation, or by interactions

between proteins or other partners such as nucleic acids or

other small molecules acting as substrates, cofactors, and

allosteric regulators [3, 4]. However, an adaptation that has

received less attention is that related to the intrinsic plas-

ticity found in those proteins that have the ability to present

different transient structures depending on the nature of

their surroundings.

During the last decade, we have witnessed significant

advances in the identification and characterization of many

proteins showing intrinsic structural disorder. This has

increased our knowledge of their functional relevance,

structural properties and dynamics, as well asmechanisms of

action (For review see [5–7]). Intrinsically disordered pro-

teins (IDPs) are widely distributed in all domains of life.

Although only a few complete proteomes from the different

domains are currently available, various bioinformatic

studies agree that Eukaryota proteomes show a higher

average of disorder, compared to those of Bacteria, which in

turn present higher disorder than those of Archaea. Inter-

estingly, the predicted disorder in eukaryote proteomes

spans a broad range of score values, with both very low and

very high disorder [8, 9]. Overall, current information indi-

cates that the level of disorder is higher in eukaryotic

organisms than in prokaryotes. Even more important is the

observation that protein superfamilies, which have under-

gone massive diversification during evolution present more

structural disorder than other families. These data also cor-

relate with the expansion of the number of cell types in an

organism, revealing a positive relationship between pro-

teome disorder and organism complexity [10, 11].

The accumulated knowledge on IDPs has revealed their

functional versatility resulting from their peculiar properties.

For example, IDPs can form ensembles with different

structural conformations, allowing variability in the exposed

surfaces [7, 12–14]. This structural plasticity confers to IDPs

the ability to differentially exhibit different post-transla-

tional modification sites and/or recognition motifs,

depending on specific conditions to interact transiently, but

specifically with proteins or nucleic acids. With this in mind,

it is not surprising the central roles that IDPs play in cellular

functions, achieving regulatory and signaling roles as well as

acting as scaffold or assembly proteins.

In this review, we present a general panorama of the

available knowledge on protein disorder in plants. We have

put together this information in the context of fundamental

biological processes such as development, metabolism and

stress responses, which in spite of the limited number of

studies unveil the functional relevance of these proteins in

the life of plants. The different IDPs referred to in this

work are compiled in Tables 1 and 2.

IDPs distribution in plants

In recent years, the discovery and characterization of pro-

teins with different amounts of structural disorder has

revealed their high representation in plants [15–18]. Large-

scale analysis of IDPs and intrinsically disordered regions

(IDRs) in Arabidopsis thaliana, a widely used experimental

model in plant biology, has shown that approximately 30%

of its proteome is mostly disordered [10, 16], whereas Zea

mays and Glycine max proteomes contain an even higher

proportion of disorder (*50%) [19]. Interestingly, the

chloroplast and mitochondrial proteomes show a signifi-

cantly lower occurrence of disorder (between 2 and 19%)

when compared to nuclear proteomes of different plant

species. The abundance of disorder in these organellar pro-

teomes is comparable to that of Archaea and bacteria, in

accordance with the bacterial origin of the genes encoding

their proteins [20]. The IDPs encoded in these organellar

genomes are mostly involved in translation, transcription or

RNA biosynthesis, and some are structural constituents of

ribosomes, having in common the ability to form large

complexes or to interact with numerous partners as expected

from their intrinsic structural flexibility [5, 20]. It is inter-

esting to note that for those proteins with paralogues of

nuclear origin, both copies tend to show similarly low levels

of disorder, suggesting again a common extra-nuclear origin

or functional constraints [20]. Furthermore, the recent data

obtained from the examination of the distribution of genes

encoding IDPs in the genomes of A. thaliana and Oryza

sativa indicate that they are not randomly arranged and that

their organization may result from high recombination rates

and chromosomal rearrangements. These observations are in

accordance with the location of genes for proteins with

highly disordered contentwithin recombination hotspots and

possessing high G ? C content; this codon usage related to

the over-representation of specific amino acid residues in

IDPs (e.g., Arg, Gly, Ala and Pro) [19].

In silico analyses of the Arabidopsis proteome and of

proteins from other plant species have found that IDPs are

highly represented in functions related to cell cycle, nucleic

acid metabolism, protein synthesis, hormone signaling and

regulation of gene expression, development and responses

to stress [16, 17, 19, 21–23]. This last functional category

seems to be particularly associated with plant IDPs,

including proteins involved in detection and signaling of

external stimuli, chaperone activities and secondary meta-

bolism; all essential functions for the phenotypic plasticity

needed for plant adaptation and survival, as will be further

discussed in this review. It should be noted that the

examples we present in this review cannot be unequivo-

cally classified and they may belong to several functional

classes, which alludes to their functional promiscuity.
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IDPs in plant development

The study of plant development and the characterization of

the mechanisms involved have identified many proteins

playing major control roles in this process. Further detailed

analyses have revealed the presence of IDRs in some of

these proteins. Germination and early seedling develop-

ment [24], adventitious shoot formation [25], xylem

development [26], photomorphogenesis [27], phytohor-

mone signaling and response [28], flowering [29], and

vegetative and reproductive growth [30] are some of the

processes where IDR-containing proteins appear as key

players. Interestingly, the structural plasticity arising from

IDRs of several of these IDPs has been shown to be

essential for proper function.

TCP (TB1-CYC-PCF1) transcription factors

The appropriate development and function of vegetative

(leaves, shoot and roots) and reproductive (flowers) organs

is orchestrated by several proteins, which are subjected to

adaptable but precise spatio-temporal control, resulting in a

timely fine-tuning of cell proliferation, expansion and dif-

ferentiation [31]. Many of these proteins are transcription

factors, some of which contain IDRs of significant length,

that by interacting with other proteins and/or binding to

DNA decode a specific signal in the activation or repres-

sion of gene expression. The TCP [from TEOSINTE

BRANCHED1 (TB1), CYCLOIDEA (CYC) and PRO-

LIFERATING CELL NUCLEAR ANTIGEN FACTOR1

(PCF1)] protein family consists of plant-specific tran-

scription factors involved in plant shape developmental

control. Bioinformatic analyses have shown that these

transcription factors are IDPs [30, 32]. TCPs are classified

as class I or class II according to the characteristics of their

conserved and non-canonical basic helix-loop-helix

(bHLH) DNA-binding domain [30, 32]. Class I TCP tran-

scription factors participate in organ shape and growth,

pollen development, germination, and inflorescence and

flower development [33]. Class II TCPs, in addition to their

redundant function in the regulation of lateral organ mor-

phogenesis, also participate in endosperm, cotyledon, leaf,

petal and stamen development, as well as other aspects of

plant development and other processes [33]. Some of the

functions assigned to TCP transcription in plant growth and

development are a consequence of their involvement in the

biosynthesis of some phytohormones, such as brassinos-

teroids and jasmonic acid, and other metabolites with

biological activity such as flavonoids [21]. Analysis of the

24 Arabidopsis TCP protein sequences has shown a dif-

ferential structural disorder content between the two TCP

classes; with class I being more disordered than class II

[30]. Biochemical analysis of TCP8, a class I TCP shows

three IDRs of more than 50 residues in length containing a

cluster of serine residues, at least one of which is phos-

phorylated [30]. In addition, the IDR located in the TCP8

C-terminal region corresponds to a trans-activation domain

(TAD), which is required for the formation of high-order

TCP8 homo-oligomers [30]. The identification of molec-

ular recognition features (MoRFs) in the TCP8 TAD [30]

and evidence of its requirement to bind TCP15 and PNM1,

a pentatricopeptide repeat protein [34], are consistent with

TCPs’ function as mediators of different stimuli or signals

(Fig. 1a). Furthermore, they demonstrate the importance of

IDRs as protein domains able to confer the ability to rec-

ognize various different partners, a feature needed for

precise and flexible control.

NAC (NAM-ATA-CUC2) transcription factors

Another fundamental aspect of plant development is the

maintenance of the shoot apical meristem (SAM). NAC

(NAM/ATAF/CUC2) transcription factors constitute one

of the largest families described in plants that, in addition

to their involvement in other processes, control key aspects

of SAM maintenance [35]. A conserved and folded DNA-

binding domain defines these transcription factors; how-

ever, an additional feature of some NAC transcription

factors is the presence of a variable and disordered TAD

[24]. This characteristic has been experimentally confirmed

for several NAC TADs [21, 36], such as ANAC019,

involved in germination and early seedling development;

HvNAC005 and HvNAC013, in senescence; NTL8,

ANAC013, NAP, ANAC046 and SOG1 in germination and

senescence; CUC1 in adventitious shoot formation and

ANAC012 in xylem fiber development [24, 25, 37, 38]. It

is known that TADs from HvNAC013 and ANAC046

interact with the RST (RCD1-SRO-TAF4) multi-binding

domain of the hub protein RCD1 (RADICAL-INDUCED

CELL DEATH1), a regulator of developmental, hormonal

and stress responses [37]. Differing from the folding-upon-

binding phenomenon, no structural rearrangement of the

two disordered TADs occur upon binding to RCD1 [37],

indicating that these ensembles might function as fuzzy

complexes.

Elongated hypocotyl (HY5), bZIP transcription

factor

Light is absolutely required for plant life. The presence or

absence of light causes developmental reprogramming. The

light-dependent modulation of plant development is known

as photomorphogenesis. This developmental program leads

to cotyledon expansion, hypocotyl shortening and chloro-

plast development [27]. HY5 (Elongated hypocotyl) is a
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Table 1 Plant intrinsically disordered proteins involved in development, metabolism and stress response

Biological
Process

Protein Functional role Organism Reference

Development TCP8 TAD and formation of high order oligomers Arabidopsis thaliana Valsecchi et al. [30]

HvNAC005 Senescence Hordeum vulgare Kjaersgaard et al.
[37]HvNAC013

NTL8 Germination and Senescence Arabidopsis thaliana O’Shea et al. [38]

ANAC013

NAP

ANAC046

SOG1

ANAC019 Germination and earlyseedling development

HDC1 Flowering and petiole development Arabidopsis thaliana Perrella et al. [53]

HY5 Photomorphogenesis Arabidopsis thaliana Yoon et al. [27]

BRI1 Brassinosteroid signaling Arabidopsis thaliana Hothorn et al. [60]

BKI1 Brassinosteroid signaling Arabidopsis thaliana Jiang et al. [61]

LD Flowering Arabidopsis thaliana Chakrabortee et al.
[29]

AtRGL1n GA signaling Arabidopsis thaliana Sun et al. [70]

AtRGL2n

AtRGL3n

AtGAIn

AtRGAn

RHT1n GA signaling Triticum aestivum Sun et al. [70]

CRY1 Blue light signaling Arabidopsis thaliana Brautigam et al. [47]

CRY2 Arabidopsis thaliana Partch et al. [48]

Metabolism CP12 Regulation of GAPDH and PRK activities Chlamydomonas reinhardtii Erales et al. [92]

Arabidopsis thaliana Fermani et al. [96]

Chlamydomonas reinhardtii Mileo et al. [97]

Chlamydomonas reinhardtii

Arabidopsis thaliana

Marri et al. [99]

Chlamydomonas reinhardtii Moparthi et al. [98]

MSP Regulation and stability of cofactors needed for correct
functioning of PSII

Spinacia oleracea Lydakis-Simantiris
et al. [118]

Spinacia oleracea Shutova et al. [116]

Spinacia oleracea Popelkova et al.
[119]

BTPC Catalyzes the addition of bicarbonate to
phosphoenolpyruvate

Ricinus communis Dalziel et al. [126]

Alb3 Recruits cpSRP to the thylakoid membrane Arabidopsis thaliana Falk et al. [120]

UreG Chaperone needed to activate urease Glycine max Real-Guerra et al.
[130]

Jaburetox Insecticidal popypeptide Canavalia ensiformis Lopes et al. [136]

RuBisCO
Activase

Activates RuBisCO Arabidopsis thaliana Zhang & Portis [108]

Nicotiana tabacum Stotz et al. [109]

Arabidopsis thalianaNicotiana
tabacumCamelina sativa

Carmo-Silva et al.
[112]

Arabidopsis thaliana Wang & Portis [111]
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bZIP transcription factor that positively regulates photo-

morphogenesis [39]. Disorder within the N-terminal region

of HY5, responsible for the interaction with its negative

regulator COP1, a multifunctional E3 ubiquitin ligase, has

been demonstrated by various biophysical methods

including limited proteolysis, mass spectrometry, circular

dichroism (CD) and nuclear magnetic resonance (NMR)

[27]. It is proposed that this disordered character might

modulate the interaction with its partners, although func-

tional characterization is still needed.

Cryptochromes (CRYs), blue light receptors

Plants are able to sense light quality (or wavelength) using

different proteins such as phytochromes, phototropins and

cryptochromes (CRY). Cryptochromes are blue light

receptors that control developmental processes such as

seedling de-etiolation, growth by elongation and initiation

of flowering [40, 41]. CRYs consist of two domains: a

conserved light-sensing N-photolyase-homologous region

(PHR) of about 500 residues, and a C-terminal tail of

variable sequence and length (CRY C-terminal Extension,

CCE) [42, 43]. The CCE tail interacts with the PHR

domain in a globular well-defined structure. Light activa-

tion of the Arabidopsis receptors CRY1 and CRY2 releases

the CCE tail from the PHR, inducing the unfolding of the

tail and allowing the interaction of both the PHR and the

CCE with other proteins (e.g., COP1 and SPA1, a sup-

pressor of phytochrome A1) to promote the blue light

signal transduction pathway [44–46]. The light-induced

disordered state of CRY receptors has been characterized

by several biophysical methods such as limited proteolysis,

CD, NMR and X-ray crystallography [47–49]. It is possible

that plant CRYs use their disordered CCE region to effi-

ciently recognize diverse binding partners through high-

specificity/low-affinity interactions, potentially expanding

the repertoire of plant signaling pathways coordinated by

light [17].

HDC1 (histone deacetylase complex 1)

Regulation of chromatin accessibility is an important event

of gene expression control, fundamental in developmental

processes to fulfill the cell requirements within its organ-

ismal context. This process depends on the action of

multiprotein complexes that control different modifications

in DNA and histones [50]. One of these complexes is the

histone deacetylase complex (HDAC), which in plants

consists of histone deacetylases, co-repressors and histone-

binding proteins [51]. HDC1 (HISTONE DEACETYLASE

COMPLEX1) is a protein component of Arabidopsis

HDAC containing a disordered N-terminal region [52, 53].

Table 1 continued

Biological
Process

Protein Functional role Organism Reference

Stress
Response

GR-RBP RNA chaperone Arabidopsis
thaliana

Kwak et al. [237]

Nicotiana
tabacum

Khan et al. [246]

VIPP1 Plastid vesicle formation and thylakoid membrane biogenesis Arabidopsis
thaliana

McDonald et al. [259]

Arabidopsis
thaliana

Zhang et al. [260]

DREB2A Transcription factor Arabidopsis
thaliana

Kragelund et al. [21]

Arabidopsis
thaliana

Blomberg et al. [262]

Arabidopsis
thaliana

O’Shea et al. [264]

bZIP28 Transcription factor in the unfolded protein response Arabidopsis
thaliana

Srivastava et al. [270]

OsWAK14 Positively regulates resistance to Magnaporthe oryzae Oryza sativa Delteil et al. [273]

OsWAK92

OsWAK91 Positively regulates resistance to Magnaporthe oryzae. Required for
H2O2production

OsWAK112d Negatively regulates resistance to Magnaporthe oryzae

Hsp90 Helps to form the Hsp90-Sgt1-CHORD complex involved in viral
resistance

Hordeum
vulgare

Zhang et al. [281]
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Interestingly, an HDC1 knockout mutant shows impaired

leaf growth and delayed flowering, demonstrating its par-

ticipation in plant development [52]. As expected for an

IDP, HDC1 interacts with a wide variety of partners

(HDA6, HDA19, SNL3, SNL2, SAP18, ING2 and MSI1)

[53]. Deletion of the N-terminal disordered region con-

siderably weakens HDC1 interaction with those proteins.

This result together with evidence obtained from comple-

mentation experiments shows that the HDC N-terminal

IDR plays a significant role in the coordination of flower-

ing and petiole development [53].

BRI1 and BKI1, brassinosteroids signaling proteins

Brassinosteroids (BRs) are plant hormones that control a

variety of growth and developmental processes, such as

vascular differentiation, leaf development, stem elongation,

flowering, senescence, stomatal development and male

fertility [54–56]. BRs are perceived at the cell surface by

BRI1 (BRASSINOSTEROID INSENSITIVE 1), a leucine-

rich repeat receptor-like kinase (LRR-RLK) and its co-re-

ceptor BAK1 (BRI1-ASSOCIATED RECEPTOR

KINASE 1) [57]. In the absence of BRs, the cytosolic

kinase activity of BRI1 is maintained at low levels by auto-

inhibition through its C terminus and by interacting with

the repressor protein BKI1 (BRI1 KINASE INHIBITOR 1)

[58]. When BRs bind to the extracellular domain of BRI1,

the intracellular kinase domain is activated through auto-

and trans-phosphorylation. BKI1 is then phosphorylated by

BRI1 and released to the cytosol [59]. In contrast to animal

LRR toll-like receptors, the extracellular region of the BR

receptor contains a superhelix of twenty-five twisted LRRs;

moreover, a *70 amino acid ‘island’ domain has been

localized between LRRs 21 and 22, which together con-

stitute a hormone binding region. BR binding causes a

conformational change in the BRI1 receptor that leads to its

auto-phosphorylation. Remarkably, the ‘island’ domain

connects to the LRR core through two long-disordered

Fig. 1 Schematic representation of two examples of plant proteins

containing IDRs that participate in developmental and metabolic

processes. a TCP8 is a plant-specific transcription factor involved in

plant shape developmental control. TCP8 contains three IDRs

(represented by curved lines). In these IDRs, there are conserved

serine residues, from which at least one is phosphorylated (fill blue

small circle in the middle IDR). The IDR at the C-terminal region

corresponds to a trans-activation domain (TAD) required for the

formation of TCP8 homo-oligomers. This TAD is also required to

bind different partners, such as TCP15 or PNM (red irregular oval).

The IDR at the amino-terminal region (purple irregular line) is part of

the TCP8 DNA-binding domain; this disordered region gains

structure when TCP8 binds to DNA. b CP12 plays a key role in the

regulation of the Calvin cycle by translating changes in light

availability into the modulation of GAPDH and PRK enzyme

activities. CP12 is a scaffold protein (represented by curved lines at

the top of this panel) that forms a ternary complex with GAPDH (blue

and red irregular ovals) and PRK (brown irregular oval) (GAPDH-

CP12-PRK) (represented by the association of the three components

at the bottom of the panel). During the formation of the GAPDH-

CP12-PRK complex, GAPDH associates with CP12 by conforma-

tional selection. Upon this interaction, the CP12 N-terminal region

remains in a fuzzy state, serving as a linker that facilitates the

interaction with PRK. Once the complex is formed, it dimerizes to

form a native complex in which there are two dimers of PRK, two

tetramers of GAPDH and two monomers of CP12 (figure at the

bottom right of this panel). Using this mechanism, it seems that CP12

is able to modulate GAPDH and PRK activities
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loops that become fully ordered upon binding to the steroid

ligand. This makes the receptor competent to interact with

other proteins, a conversion that may be necessary for

receptor activation. It has been proposed that the BRI1 IDR

may be an LRR receptor adaptation for efficient detection

of small ligands [60]. Further participation of protein

structural disorder is evident in this BR sensing protein

ensemble, as the BKI1 C-terminal region presents high

levels of disorder, particularly, at the BRI1 interacting

motif (BIM). It is interesting to note that even though

angiosperm BKI1 orthologues are highly diverse, the BIM

IDR shows a high degree of conservation [61]. This,

together with the finding that the absence of the IDR leads

to increased BR sensitivity, establishes its relevance in BR

signaling in plants [61].

Luminidependens (LD), a plant prion

The most diverse group of plants corresponds to the

flowering plants (angiosperms). Flowering needs to be

precisely controlled to generate flowers in an optimal time

frame, where environmental conditions match with the

presence of pollinators to promote fertilization and repro-

duction processes [62] Flowering often follows

vernalization, a process achieved after a prolonged period

of cold (winter), which ensures flowering in the spring [63].

Interestingly, Chakrabortee and collaborators found that a

high proportion of proteins related to flowering in Ara-

bidopsis are predicted to contain prion-like domains (PrDs)

[29]. Some of these proteins are involved in transcription or

regulation of RNA stability in the autonomous flowering

pathway: Luminidependens (LD), Flowering Locus PA

(FPA), Flowering Locus Y (FY) and Flowering Locus CA

(FCA) [29]. Prions are proteins that retain the molecular

memory of the cell because they are able to adopt different

conformations and can be self-perpetuating [64]. PrDs are

enriched in glutamine, asparagine, glycine, proline, serine

and tyrosine and it has been shown that they are intrinsi-

cally disordered [65, 66]. LD is the first protein reported to

have prion-like properties in plants, and can fully com-

plement the activity of the Sup35 PrD, a well-characterized

yeast prion [29]. As expected for a prion-like protein, LD

protein shows a high level of structural disorder (64.6%

according to PONDR, this work) [67], indicating that it is

an IDP, even though this property has not been experi-

mentally tested. Notably, LD orthologues from different

plant species (Z. mays, O. sativa, Phaseolus vulgaris and

Physcomitrella patens) also show a high percentage of

disorder (51–66%, this work) [67]. As mentioned above,

LD, along with a substantial percentage of Arabidopsis

PrD-containing proteins, participates in flowering pro-

cesses. This suggests that these proteins may play adaptive

roles in the plant environmental memory required for fast

responses to changing conditions, fine-tuning reproductive

functions and consequently plant species preservation.

GRAS (GAI-RGA-SCR) transcription factors

The plant-specific GRAS [GIBBERELLIC ACID INSEN-

SITIVE (GAI), REPRESSOR OF GAI (RGA),

SCARECROW (SCR)] protein family is essential in

diverse developmental processes, acting as integrators of

signals from different plant growth regulatory inputs (for

an extensive review refer to 68). GRAS proteins modulate

gene expression through interaction with different tran-

scription factors, thereby controlling their activities. Along

with the conserved and folded GRAS domain, GRAS

proteins are characterized by a disordered N-domain enri-

ched in MoRFs [69]. Remarkably, the predicted MoRFs

exclusively reside in the N-domain conserved motifs that

define each subfamily, suggesting that structural disorder

permits interactions with different proteins [17]. As has

been established for other unstructured proteins, GRAS

IDRs containing MoRFs experience disorder-to-order

transitions when interacting with their ligands [17, 68–70].

GRAS proteins are classified in ten subfamilies. One of

these subfamilies, composed of DELLA (Asp-Glu-Leu–

Leu-Ala) proteins, is particularly important for hormonal

regulation because DELLA proteins participate as negative

regulators of gibberellic acid (GA)-induced plant growth.

These are negatively regulated under increasing GA, as GA

binds to its receptor (GID), prompting the interaction of the

GID-GA complex with the disordered N-domain of DEL-

LAs. This, in turn, promotes the degradation of the DELLA

proteins through the ubiquitin–proteasome pathway,

resulting in derepression of plant growth [71]. This inter-

action is mediated by the conserved DELLA and VHYNP

motifs localized in an IDR that upon binding to the GID1/

GA complex, experiences a disorder-to-order transition

[70]. The participation of GRAS IDRs in this signaling

pathway highlights their prevalence and function among

hub network proteins, operating as integrators of environ-

mental and developmental cues in plants.

MAP65-1, a microtubule associated protein

MAP65-1 is a microtubule (MT)-bundling protein impli-

cated in central spindle formation and cytokinesis in

animals, yeast and plants [72]. The Arabidopsis genome has

nine genes encoding MAP65 proteins [73]. All these pro-

teins have an N-terminal dimerization domain and an MT-

binding domain. The MT-binding domain is localized at the

second half of the MAP65-1 protein. The N-terminal region

of this part of the MAP65-1 protein contains a conserved

sequence responsible for MT binding, whereas its C-termi-

nal region is more variable and predicted to be disordered
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[74, 75]. It was recently shown that ArabidopsisMAP65-1 is

phosphorylated by Aurora a-kinases at two amino acid

residues within its C-terminal disordered tail. The phos-

phorylation of these residues renders its detachment from

MTs, leading to cell cycle progression, suggesting that the

unfolded structure in MAP65-1 is required to modulate the

accessibility of the two phosphorylatable residues to Aurora

kinases, hence ensuring appropriate cell proliferation during

plant development [75].

NRPE1, the largest subunit of Pol V

The RNA-directed DNA methylation (RdDM) pathway

may act to repress the transcription of transposable ele-

ments to maintain genome integrity, mostly during critical

plant development stages [76]. In A. thaliana, the canonical

RdDM pathway is characterized by the participation of

heterochromatic 24 nt small RNAs (hc-siRNAs) which are

mainly produced by the interplay between RNA POLY-

MERASE IV (POLIV) and RNA-DEPENDENT RNA

POLYMERASE 2 (RDR2). These enzymes generate a

double stranded RNA that is subsequently trimmed into a

24 nt duplex by a type III ribonuclease, DICER-LIKE 3

(DCL3) [77, 78]. The generated hc-siRNAs are then

methylated by HEN1 at the 3’ end of each strand [79] to be

exported to the cytoplasm where one strand associates with

the ARGONAUTE 4 (AGO4) complex [80]. The complex

is then imported to the nucleus where hc-siRNA pairs may

bind by base complementarity to a scaffold long non-

coding RNA produced by RNA POLYMERASE V

(POLV) [81]. The association of AGO4 in the silencing

complex allows a physical interaction between this protein

and POLV carboxy-terminal domain (CTD) via AGO

hooks (described below) aided by the function of KTF1/

SPT5L (Suppressor of Ty insertion 5—such as a homo-

logue of SPT5 Pol II-associated elongation factor) [82].

This triggers the recruitment of a plethora of proteins

which remove active chromatin marks and establish

repressive ones, such as DNA methylation, DNA and his-

tone modifications and chromatin remodeling features

(reviewed extensively in [83]).

A peculiarity of the RdDM pathway in plants is the

participation of two plant-exclusive RNA polymerases,

POLIV and POLV. The catalytic domain of these poly-

merases is highly conserved, but their specific activities are

conferred by their largest subunits; NRPD1 for POLIV, and

NRPE1 for POLV [76, 84]. These subunits possess a

characteristic carboxy-terminal domain which, in the case

of NRPE1, contains a region rich in GW, WG and GWG

amino acid residue arrangements, known as AGO hooks

[84, 85]. This region constitutes an AGO-binding platform

necessary for the interaction between NRPE1 and AGO4

and the consequent small RNA-directed DNA methylation

[86]. Besides NRPE1, AGO hooks are also present in other

AGO-binding proteins with up to 45 repeats. Along with

their repetitive character, AGO-binding platforms have

been predicted to be IDRs [87]. Interestingly, whereas the

AGO-binding platform of NRPE1 orthologues is highly

divergent in the primary sequence, the intrinsic disorder

and the presence of AGO hooks are hallmarks of AGO-

binding platforms across NRPE1 s. These characteristics

are also extended to other AGO-binding proteins such as

SPT5L, suggesting that this repetitive disordered structure

is required to interact with a broad repertoire of targets,

presumably regardless of sequence conservation [84].

Moreover, the evolutionary analyses reported by Trujillo

et al. [84] suggest that this repetitive disordered array has

been conserved to allow rapid sequence divergence while

maintaining key functions in these proteins.

Protein disorder in plant metabolism

Large-scale computational approaches have found that IDP

functions seem to be more common in signaling and reg-

ulation processes, whereas structural order is more frequent

in proteins involved in catalysis, in binding of small

ligands and in membrane proteins (channels or trans-

porters) [88]. However, this dichotomy contrasts with the

description of some enzymes containing IDRs in loops or

tails, which participate in the modification of protein con-

formation upon substrate binding, and thus expose catalytic

residues and contribute to catalysis [89–91]. Furthermore,

one must consider the role of some IDRs as sites for post-

translational modifications, acting as switches of activa-

tion/inactivation or as modulators of their own activity.

Many of these IDR-containing proteins are involved in the

fundamental housekeeping of the plant.

In this section, we will describe those IDPs known to

participate in different aspects of plant metabolism; some

of them involved in photosynthesis, in metal binding or in

antioxidant mechanisms.

Chloroplast protein 12 (CP12)

Few studies have investigated the role of protein structural

disorder in the plant photosynthetic machinery. However,

with the advancement of the characterization of proteins

implicated in this process, more data are emerging showing

the impact of intrinsic disorder in this essential plant

function. An example of this is the chloroplast protein 12

(CP12), a well-characterized scaffold protein that forms a

ternary complex with glyceraldehyde-3-phosphate dehy-

drogenase (GAPDH) and phosphoribulokinase (PRK),

named the GAPDH-CP12-PRK complex. CP12, present in
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most photosynthetic organisms, also regulates GAPDH and

PRK activities [92, 93]. CP12 is a small protein (8.5 kDa)

encoded in the nuclear genome and translocated to

chloroplasts; although it contains cysteine residues, it has

been shown to have all the properties of an IDP. Because

its degree of disorder is higher in vascular plant ortho-

logues than in eukaryotic algae, it has been proposed that

CP12 has evolved to become more flexible, which corre-

lates with its increased multifunctionality [94, 95]. In the

plant kingdom, CP12 proteins share common features;

however, their N termini, in addition to being highly dis-

ordered, show high sequence variability [95, 96]. During

the formation of the GAPDH-CP12 or PRK-CP12 binary

complexes, CP12 structural disorder remains, in particular

in its N-terminal region, indicating that these are fuzzy

complexes. These observations have suggested that the

fuzziness of this association could facilitate the binding of

either GAPDH or PRK [97, 98]. The integration of the

different lines of evidence suggests a model for the for-

mation of the GAPDH-CP12-PRK complex, where

GAPDH associates with CP12 by conformational selection;

first recognizing specific conformation(s) in CP12 to

establish the binding. Upon this interaction event, the

CP12N-terminal remains in a fuzzy state acting as a linker

to facilitate the association with PRK. Once the GAPDH-

CP12-PRK complex is formed, it dimerizes to form the

native complex, composed finally of two dimers of PRKs,

two tetramers of GAPDH, and probably, two monomers of

CP12 [93, 96, 97] (Fig. 1b).

CP12 plays a key role in the regulation of the Calvin

cycle, transducing changes in light availability such as

those occurring during the day–night transition. This event

leads to the generation of a hyperoxidant state, which is

detected by the two cysteine residues in the CP12 C ter-

minus forming a disulfide bridge. This leads to a

conformational change in CP12, resulting in its N-terminal

region folding into a-helix [96], which subsequently pre-

vents the entrance of the NADPH cofactor in the GAPDH

catalytic site. In the night-to-day transition, the confor-

mation is reversed; the disulfide bridge is reduced by

thioredoxin permitting NADPH entry and resulting in

GAPDH activation. This inhibiting effect exerted by the

CP12 also occurs on the PRK enzyme, as part of the

complex. Interestingly, accumulating evidence indicates

that CP12 assembles in larger supramolecular complexes,

as happens in Chlamydomonas reinhardtii, where the

GAPDH-CP12-PRK complex associates with aldolase

[92], thus suggesting additional roles in other metabolic

processes [23]. From the differential lines of evidence, it

can be concluded that CP12, as with some other IDPs, has a

moonlighting activity, being able to act as a scaffold for

GAPDH and PRK [93], as a regulator of these enzyme

activities, and as a protective shield against oxidative

damage [23, 99, 100].

Glyceraldehyde-3-phosphate dehydrogenase

(GAPDH)

GAPDH plays a central role in glycolysis and gluconeoge-

nesis. In vascular plants, GAPDH can exist as

heterotetramers of two GapA and two GapB (A2B2) sub-

units, as homotetramers of four GapA subunits (A4) or as

hexadecamer of eight GapA and eight GapB subunits

(A8B8). Interestingly, the GapB subunit also contains a C

terminus highly similar to the CP12 C-terminal IDR [101].

The presence of two cysteine residues in this region permits

photosynthetic NADPH-dependent GAPDH containing the

GapB subunits to detect redox changes. Oxidative conditions

induce the formation of a disulfide bridge in its CP12-like C

terminus, promoting the NAD-dependent arrangement of

higher homo-oligomers that result in auto-inhibition of its

NADPH-dependent catalytic activity. This conformational

change and complex formation is needed for the reduction of

1,3-bisphosphoglycerate to produce glyceraldehyde-3-

phosphate [101–103]. This intrinsically disordered feature of

GapB confers on A2B2 GADPH a CP12-autonomous regu-

lation by the redox status of the cell.

Ribulose-1,5-bisphosphate carboxylase/oxygenase

(Rubisco) activase

Rubisco (Ribulose-1,5-bisphosphate carboxylase/oxyge-

nase), the most abundant protein on Earth [104, 105], is an

enzyme responsible for fixing atmospheric CO2 into RuBP

(ribulose 1,5-bisphosphate) to produce two phosphoglyc-

erate molecules. The activity of this enzyme depends on

the binding of Mg2? ions and the carbamylation of a lysine

residue located in its active site; however, the binding of

RuBP can reduce the efficiency of carbamylation, and

consequently the activation of the enzyme [106]. Nature

has solved this limitation through proteins known as

Rubisco activases that because of their ATPase and chap-

erone activity, allow Rubisco carbamylation by removing

RuBP from the active site and giving access to CO2

molecules. Photosynthetic organisms present two Rubisco

activase isoforms (a and b) [107] containing a C-terminal

extension (20–50 amino acid residues) which is predicted

as an intrinsically disordered region [23]. As is the case for

CP12, this IDR contains two highly conserved cysteine

residues in a isoforms [108, 109], responsible for the light

regulation of Rubisco activase. This control is achieved by

the action of thioredoxin f on the two cysteine residues,

such that upon oxidation, inhibition of a isoform activity
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by light is abolished [110, 111]. The Rubisco activase

function can be recovered by the reduction of the C-ter-

minal disulfide bridge by thioredoxin f, depending on the

redox status of the chloroplasts [112]. Interestingly, in spite

of the functional or structural differences among Rubisco

activases in diverse photosynthetic organisms, their C-ter-

minal IDRs have been conserved; for example, in the case

of cyanobacteria, they are involved in carboxysome tar-

geting [23, 113]. Overall, intrinsic disorder in Rubisco

activase strongly suggests that it is a conserved feature

responsible for its functional versatility as an ATPase, a

chaperone and as a fine-tuning regulator that has con-

tributed to the broad adaptability of the photosynthetic

process.

Manganese stabilizing protein (MSP)

Plants capture sunlight through the light-harvesting com-

plex (LHC) or antenna complex as part of Photosystem II

(PSII). This complex of proteins and pigments is embedded

in thylakoid membranes and connects the antenna to the

chlorophylls in the reaction center. The photons captured

by PSII initiate a chain of redox states through electron

transfer reactions needed for the oxidation of two water

molecules to O2. This photolysis reaction takes place in the

oxygen-evolving complex (OEC), one of the PSII subunits.

The different polypeptides of PSII are needed for an effi-

cient O2 evolution; in particular, three extrinsic proteins of

17, 23, and 33 kDa, which are located on the luminal side

of PSII. This last protein, also termed manganese stabi-

lizing protein (MSP), is required to maintain stability and

an efficient cycling of the four oxidizing manganese atoms

[114–117]. MSP lacks a compact structure and is com-

posed of 55% turns and random coils. These properties,

together with its amino acid composition and other fea-

tures, establish its intrinsic structural disorder. In vitro

experiments suggest that the structural flexibility of this

protein is required for its function, possibly by facilitating

effective protein–protein interactions as an integral mem-

ber of PSII [118]. Moreover, it has been shown that

conserved charged amino acid residues in MSP are

important for the retention of Cl- ions, to maintain their

concentration at the levels needed for the effective redox

reactions of the manganese cluster [119]. Again, MSP

exemplifies the participation of protein structural disorder

as an essential attribute to achieve precise and opportune

roles in a complex system able to adjust to the changing

environment.

Alb3, a thylakoid membrane protein

The membrane invertase protein Alb3 controls the inser-

tion, folding and assembly of a diverse group of proteins

into the thylakoid membrane of chloroplasts. Alb3 interacts

with chloroplast signal recognition particles (cpSRP) in the

thylakoid membrane through its C-terminal intrinsically

disordered region. This IDR has two conserved positively

charged motifs needed for the association with cpSRPs that

follows a coupled binding and folding mechanism [120].

Once the Alb3-cpSRP complex is formed, it participates in

the post-translational insertion of the light-harvesting

chlorophyll a/b-binding protein (LHCP), a highly abundant

protein in thylakoid membranes. The insertion of LHCP

into these membranes strictly requires the involvement of

cpSRP and Alb3. Alb3 is also needed for the targeting and

insertion of cytochrome b6 into the thylakoid membrane

[121]. Cytochrome b6 is a largely disordered protein in

aqueous solution, but by interaction with lipids from the

membrane it folds into an a-helical structure just before its
membrane insertion [122]. An additional function assigned

to the Alb3 C-terminal IDR is the light-dependent modu-

lation of Alb3 stability [123].

Polyphenol oxidases (PPOs)

Tyrosinases and catecholases from plants and fungi are gen-

erally named polyphenol oxidases (PPOs). In plants, PPOs

mediate the production of melanin, responsible for the brown

color in fruits when they suffer damage. They are nuclear-

encoded and are transported to the chloroplast thylakoid

lumen, where they can be in a soluble form or in a weak

association to the thylakoidmembranes. They are activated by

the proteolytic cleavage of their C-terminal region. Using

bioinformatic approaches to analyze multiple plant PPO

sequences, it was found that the region between the N-ter-

minal and C-terminal corresponds to a disordered linker

essential to establish those conditions in which the PPOs are

processed and may be activated [124]. This prediction sug-

gests that the PPO IDR may acquire certain levels of order

depending on the environment. Although experimental data

are needed, the presence of a conserved phosphorylation site

within this IDR suggests auto-regulation of PPO activities

and/or that PPOs have roles as signaling molecules [124].

Phosphoenolpyruvate carboxylase (PEPC)

Carbon assimilation is not only accomplished by the

activity of Rubisco, but also by PEPC (Phosphoenolpyru-

vate carboxylase), a ubiquitous enzyme in plants. PEPC

also plays a critical role in plants with C4 photosynthesis

and crassulacean acid metabolism (CAM), by producing

oxaloacetate from HCO3 [125]. Two types of PEPC

enzymes have been described in plants, known as plant-

type PEPC (PTPC) and a distantly related bacterial-type

PEPC (BTPC). The BTPC enzymes show low sequence

identity with PTPCs, they lack the typical serine
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phosphorylation motif located in the PTPC N-terminal

region and they are encoded in all plant genomes

sequenced to date. Of particular interest is the fact that

BTPCs contain an insertion of approximately 142 amino

acid residues predicted as a structurally disordered region.

This IDR seems to be highly divergent and a distinctive

characteristic of BTPCs. PEPC enzymes are organized as

oligomers, from which two classes have been identified:

class-1 oligomers consisting of PTPC homotetramers, and

class-2 complexes corresponding to heterotetramers com-

posed of three PTPC and one BTPC subunits [125].

Recently, it was demonstrated that the BTPC IDR from the

castor oil plant (Ricinus communis) is needed for its

association with the PTPC subunit in a class-2 PEPC

complex. Furthermore, even though the N-terminal region

conserved in PTPCs is not conserved in BTPCs, it was

thought that these enzymes were non-phosphorylatable.

However, it has been shown that RcBTPC is phosphory-

lated in vivo at least at two serine residues. One of these

modifications occurs at serine-451, a highly conserved

target residue located within the IDR of these proteins.

This event exerts a regulatory role, causing the inhibition

of the catalytic activity of the enzyme within the class-2

PEPC complex [126].

UreG G protein

GTP-binding proteins (G proteins) areGTPases that catalyze

the hydrolysis ofGTP to yieldGDP and inorganic phosphate.

The structure of the catalytic domain of this enzyme is usu-

ally a b-sheet delimited by flexible regions of a-helices and
loops. The binding of GTP or GDP activates (in the case of

GTP) or inactivates (in the case of GDP) these GTPases,

associations stabilized by the binding of specific protein

regulators that promote conformational modifications. UreG

is a bacterial-type G protein involved in urease maturation

that has been demonstrated to belong to the class of intrin-

sically disordered enzymes. The structural disorder in UreG

is mostly concentrated in a region of *50 residues localized

in the center of its protein sequence, which seems to influ-

ence the structure of the GTP-binding pocket [127–129]. In

plants, one gene shows sequence similarity with bacterial

UreG GTPase, which functions as an urease accessory pro-

tein, promoting optimal urease activation by allowing nickel

or zinc incorporation in its active site and theGTP-dependent

CO2 transfer required for lysine carbamylation. This protein

has been characterized in soybean (G. max), where it has

shown a differential binding affinity to Ni2? and Zn2?.

Furthermore, it has the highest affinity for Zn2? described to

date for any UreG protein. This observation suggests a role

for UreG as a Zn2? accumulator protein that may modulate

the available levels of this metal in the cell. Analysis of its

quaternary structure indicates that UreG is monomeric in

solution and that dimers can be formed and stabilized upon

Zn2? binding, due to conformational rearrangements in the

protein. The association with Zn2? decreases the levels of

secondary structure, but perhaps stabilizes the subsequent

dimerization by facilitating the folding of the active site

domain. However, this binding alone is not enough to yield a

high UreG activity, suggesting that additional factors are

needed to achieve its optimal GTPase activity [130]. UreG

further illustrates the functional versatility conferred by

intrinsic disorder to proteins with catalytic and regulatory

roles in plant metabolism.

Jaburetox, an intrinsically disordered insecticidal

polypeptide

Ureases are nickel-dependent metallo-enzymes that cat-

alyze the hydrolysis of urea into ammonia and CO2 [131].

It was discovered that canatoxin, considered an isoform of

a jack bean urease (from seeds of Canavalia ensiformis),

corresponds to a 10-kDa peptide (JBU) produced from

urease hydrolysis by cathepsin-like enzymes. This JBU

peptide is toxic to mammals, fungi and insects. One of the

major urease isoforms from jack bean seeds shows toxicity

to hemiptera insects independent of its ureolytic activity,

and instead its effect is produced by the action of digestive

enzymes present in the insect gut [132, 133]. This ento-

motoxic activity is caused by an internal peptide

(pepcanatox) product of this hydrolysis. Jaburetox, a

recombinant version of the in vivo generated peptide, is

derived from the N-terminal sequence of the C. ensiformis

urease isoform and possesses a potent insecticidal effect on

crop pests [133, 134]. A motif present on this peptide is

also found in pore-forming and neurotoxic peptides which

present membrane-disturbing activities [135]. A large

hydrodynamic radius, together with light scattering, CD

and NMR spectroscopic data, shows that Jaburetox is a

monomeric disordered peptide with an a-helix motif by its

N terminus and two turn-like structures in the central

region and by the C terminus of the peptide. It is suggested

that the Jaburetox IDP might act as a membrane protein or

as a scaffold protein, but evidence for this is still lacking,

therefore a comprehensive view of its insecticidal activity

remains elusive [136].

Protein structural disorder in plant abiotic stress
responses

Prediction of structural intrinsic disorder from plant pro-

teomes reveals a noteworthy participation of IDPs in plant

responses to their environment and to stress conditions.

Structural disorder in plant proteins: where plasticity meets sessility 3129

123



Table 2 Intrinsically disordered LEA proteins

Group Protein Specie Function* Reference

LEA 1 AtEM6 Arabidopsis thaliana Protein protection activity Campos et al. [155]

LEA 2 CrCOR15 Citrus clementina x Citrus reticulata Protein protection activity Sanchez-Ballesta et al. [151]

DHN-5 Triticum durum Protein protection activity Drira & Antonny [258]

Drira et al. [154]

YSK2 Vitis riparia Protein protection activity Hughes et al. [160]

PCA60 Prunus persica

DHN5 Hordeum vulgare

TsDHN-1 Thellungiella salsuginea Vesicle stabilization Rahman et al. [177]

TsDHN-2 Thellungiella salsuginea Protection activityVesicle stabilization Hughes et al. [160]

Rahman et al. [177]

OpsDHN-1 Opuntia streptacantha Protein protection activity Hughes et al. [160]

COR85 Spinacia oleracea Protein protection activity Kazuoka & Oeda [162]

WCS120 Triticum aestivum Protein protection activity Houde et al. [163]

HvP-80/

Dhn5

Hordeum vulgare Protein protection activity Bravo et al. [164]

Cor15am Arabidopsis thaliana Protein protection activity Nakayama et al. [165]

ERD10 Arabidopsis thaliana Protein protection activity, Calcium-binding

activity

Kovacs et al. [166]

Reyes et al. [158]

Alsheikh et al. [207]

ERD14 Arabidopsis thaliana Protection activity, Calcium-binding activity Kovacs et al. [166]

Tantos et al. [152]

Alsheikh et al. [206]

35KD Vigna unguiculata Lipid vesicles binding Ismail et al. [172]

DHN1 Zea mays Stabilization of vesicles Koag et al. [175]

rGmDHN1 Glycine max Lipid membrane binding Soulages et al. [176]

Lti30 Arabidopsis thaliana Stabilization of vesicles, Antioxidant activity Erickssson et al. [178]

Hara et al. [204]

K2 Vitis riparia Stabilization of vesicles Clarke et al. [179]

VcaB45 Apium graveolens Calcium-binding activity Heyen et al. [202]

BjDHN2 Brassica juncea Antioxidant activity (in vivo) Xu et al. [208]

BjDHN3

ITP Ricinus communis Fe transport in the phloem Krüger et al. [205]

CuCOR15 Citrus unshiu RNA and DNA binding Hara et al. [209]

WCI16 Triticum aestivum DNA binding Sasaki et al. [210]

DHN1a Vitis vinifera Protection activity, DNA binding Rosales et al. [211]

COR47 Arabidopsis thaliana Calcium-binding activity Alsheikh et al. [207]

HIRD11 Arabidopsis thaliana Antioxidant activity, Cu binding Hara et al. [204]

LEA 3 LEA76 Arabidopsis thaliana Protection activity Reyes et al. [149]

AavLEA3 Aphelenchus avenae Protection activity Goyal et al. [150]

PsLEAm Pisum sativum Protection activity Grelet et al. [156]

Cor15am Arabidopsis thaliana Protection activity Nakayama et al. [165]

Cor15a Arabidopsis thaliana Protection activity, Vesicle stabilization Thalhammer et al. [169]

Cor15b
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However, not many abiotic stress response proteins have

been confirmed as IDPs and there is limited information

about their function. Here, we compile those stress-re-

sponsive IDPs for which there is evidence of function and

structural organization.

Late embryogenesis abundant (LEA) proteins

Late embryogenesis abundant (LEA) proteins belong to an

emblematic group of IDPs distinctively involved in plant

stress responses, notably, in adverse conditions of low

water availability. LEA proteins can be classified into

seven groups or families based on amino acid sequence

similarity, although nomenclature can vary. In this review,

we will follow that proposed by Battaglia et al. [137], who

also report the presence of distinctive motifs for each

family, some of which correspond to MoRFs [138, 139].

LEA proteins do not show significant sequence similarity

with any other proteins of known function, making their

characterization a challenging task. LEA proteins are

considered ubiquitous in the Viridiplantae kingdom

because they have been found in angiosperms, gym-

nosperms, non-vascular plants and algae [137, 140].

Although for some time they were considered exclusive to

plants, interestingly they have also been detected in other

organisms including insects, nematodes, crustaceans, roti-

fers and bacteria [141–145]. In all cases, their abundance is

related to water deficit, but some also respond to other

stress conditions. In general, LEA proteins are highly

hydrophilic with a high content of glycine residues or other

small amino acids, and they are usually deficient in tryp-

tophan and cysteine residues; all characteristics of IDPs

[137, 146, 147]. These properties are conserved in a wider

group of water deficit response proteins, the ‘hydrophilins’,

which are conserved across all domains of life [148]. As is

documented for other IDPs, LEA proteins possess key

qualities that enable them to perform more than one

function; this ‘moonlighting’ characteristic will be

described below. As in the case of IDPs involved in

development and metabolism, the plasticity and molecular

flexibility of LEA proteins appear to be central to their

function (Fig. 2A).

One of the most general functions across the LEA group

is an ability to protect the integrity of other enzymes. This

has been demonstrated using several non-plant reporter

enzymes with in vitro partial dehydration and freeze–thaw

treatments, whereby the presence of LEAs prevents inac-

tivation, denaturation and consequent aggregation of

enzymes such as lactate (LDH) and malate dehydrogenases

(MDH), citrate synthase (CS), b-glucosidase G (bglG), and
glucose oxidase/peroxidase (GOD/POD) [137, 146,

149–155]. In the case of group 3 LEA proteins from Pisum

sativum (PsLEAm), this protective effect has been

demonstrated on plant proteins such as mitochondrial

rhodanase and fumarase [156]. The protective activities

resemble that of small heat shock proteins (sHSPs), which

circumvent protein aggregation upon heat shock treatments

in the absence of ATP [157]. Hence, it appears that LEA

proteins may function as chaperones during water deficit

stress. These observations suggest a protective role

specifically against protein damage caused when water

limitation inhibits cellular functions. Furthermore, it

appears that this unique function cannot be provided by

other types of chaperones [149, 158] (Cuevas-Velazquez

et al. unpublished).

The different lines of evidence from in vitro enzyme

assays have led to two main hypotheses to explain the

LEA protein protecting activity. Because high concen-

trations of LEA proteins are able to prevent inactivation

and aggregation of other proteins, it has been proposed

that they may act as ‘molecular shields’. Given their large

hydrodynamic radius in aqueous solution, they may create

a protein molecular net, thereby promoting the alignment

of their hydrophilic amino acid residues around the sur-

face of a target protein, and in this way, prevent the loss

of its bulk water and consequent changes in its native

structure [159, 160]. However, there is also evidence

Table 2 continued

Group Protein Specie Function* Reference

LEA 4 AtLEA4-2 Arabidopsis thaliana Chaperone-like Cuevas-Velazquez et al.

[139]AtLEA4-5

GmPM1 Glycine max Fe3? binding, Antioxidant activity Liu et al. [200]

GmPM9

LEA 7 GmASR1 Glycine max Zn2?, Fe3? binding Liu et al. [194]

VvMSA Vitis vinifera Protection activity, Transcription factor Ricardi et al. [212]

ZmASR1 Zea mays Transcription factor Virlouvet et al. [214]

ASR1 Solanum tuberosum Glucose content modulator Frankel et al. [215]

* Function is inferred from phenotypes as described in the text
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showing that small amounts of LEA proteins (down to

1:1–1:5 ratios of LEA:reporter enzyme) are also capable

of protecting target proteins to a similar degree

[149, 161–166]. This indicates that LEA proteins may

function in a ‘chaperone-like’ mode, where interaction is

required to select and protect their targets, binding as

monomers or oligomers [149, 161, 167, 168] (Fig. 2A(a)).

This hypothesis is supported by evidence indicating that

these disordered proteins can fold in a-helix under high

osmolarity or high macromolecular crowding, prevalent

conditions under water deficit, which would lead to a

decrease in their hydrodynamic radius

[138, 139, 147, 169]. Crucially, this property seems to be

associated with their chaperone-like activity [139]. With

this in mind, and considering the role of conformational

plasticity [138, 139, 147, 169–171], it is possible that

LEA proteins may bind and recognize their targets fol-

lowing a mechanism that resembles conformational

selection under water deficit, the natural conditions under

which they accumulate in the cell. Although similar lines

Fig. 2 Schematic representation of two examples of plant IDPs that

participate in abiotic and biotic stress responses. A LEA proteins

(represented as purple curved lines) belong to a representative group

of plant IDPs involved in plant abiotic stress responses. LEA proteins

are able to prevent the inactivation of reporter enzymes under in vitro

partial dehydration and freeze–thaw treatments. One action mecha-

nism supported by different lines of evidence indicates that LEA

proteins function as chaperones during water deficit a by interacting

with their protein target(s) (green irregular ovals) and avoiding the

damage (denaturation represented by green irregular lines emerging

from the green ovals) caused by the effects of low water availability

in the cell. The possibility that LEA proteins may bind and recognize

their targets by conformational selection under water deficit has been

suggested by in vitro data. In addition, there is evidence indicating

that LEA proteins are able to stabilize membrane (double blue circles)

integrity b during water deficit, by interaction through the amphi-

pathic regions present in some LEA proteins. It has been suggested

that LEA proteins might achieve more stable conformations upon

membrane association. It has been proposed that this interaction

induces LEA protein folding. b An additional attribute of at least

some LEA proteins is their ability to bind metal ions (Fe3?, Ni2?,

Cu2?, Co2? and Zn2?) (small gray fill circles), which in some cases,

by these means scavenge reactive oxygen species (c). For some LEA

proteins, metal binding promotes a reduction in the content of

structural disorder; however, this is not a common observation. In this

panel, continue arrows represent the protective effect of LEA

proteins, whereas discontinuous arrows indicate the consequent

damage produced by stress in the absence of these proteins. B Biotic

stress produced by plant pathogens has led to the selection of refined

mechanisms to detect their presence and to mount complex inducible

responses to efficiently counteract their attack. The participation of

IDPs along the different steps of pathogen invasion, from their

perception to the plant defense response has been documented. The

RbohD protein (green curved lines), which belongs to the NADPH

oxidase family, represents an example of this. This protein, partially

integrated in the membrane, is responsible for the early generation of

ROS, upstream of calcium and phosphorylation signaling. The RbohD

cytoplasmic N terminus possesses an IDR, which contains EF-hand

motifs involved in calcium binding. The malleable nature of this

region results in extended conformational changes induced by the

synergistic effect of calcium binding and its phosphorylation, which

in turn modulates the interaction with small GTPase proteins (orange

irregular oval); a process needed to set up the plant protection

response against pathogens
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of evidence have been obtained for LEA proteins from

different groups (LEA2, LEA3, LEA4, LEA7), further

experimentation is needed to support these alternative

mechanisms. In particular, it is imperative to establish

strategies to obtain in vivo data that could help provide a

more comprehensive view of their action mechanisms.

The intrinsic disorder of LEA proteins may also function

in the stabilization of membrane integrity under stress

(Fig. 2A(b)). Some LEA proteins, mainly those from

groups 2–4, are able to bind in vitro to lipid vesicles

[172–176]. In some cases, these vesicles have been pro-

duced using phospholipids and galactolipids common to

plant chloroplast and mitochondrial envelops [169, 177], or

they have been obtained from thylakoid membrane frac-

tions of spinach leaf tissue [178]. Interestingly, a-helix
folding upon vesicle binding has also been shown for some

LEA proteins [179, 180]. For group 2 LEA proteins (de-

hydrins), it has been found that the K-segment, a distinctive

motif of this family is necessary for liposome binding,

which is consistent with its amphipathic nature

[178, 180, 181] (Fig. 2A(b)). Distinctive motifs of LEA3

and LEA4 proteins also present amphipathic properties,

which help explain their ability to bind to lipid vesicles

surfaces [137, 182, 183].

Unfortunately, to date there remains no evidence of any of

these activities in vivo. Despite this, in vitro functions cor-

relate with the accumulation of LEA proteins in plant tissues

under lowwater potentials induced by dehydration or by cold

or freezing temperatures; conditions in which enzymes can

be inactivated and membrane injuries are produced. Inter-

estingly, some Arabidopsis LEA proteins are required for

plant optimal adjustment to cold, water deficit and/or salin-

ity, as can be inferred from the phenotypes produced by

mutants lacking genes encoding LEA proteins from group 1

[184], group 2 [185], group 3 [169] and group 4 [186].

Additionally, the acquisition of tolerance to water limitation

or low temperatures by the overexpression of several LEA

proteins (from groups 2–4 and 7) in different plant species

strongly supports their role as protector molecules under

these stress conditions [187–197].

As can be seen with IDPs involved in plant development

and metabolism, dynamic structural order can be attained

by interaction with metal ions. LEA proteins have also

been shown to bind metal ions (Fe3?, Ni2?, Cu2?, Co2?

and Zn2?) and scavenge reactive oxygen species (reviewed

in [198, 199]). LEA proteins showing high affinity to these

metals include LEA2 or dehydrins, LEA3 and LEA4

[191, 198–200]. Acid dehydrins (RAB17 and VCaB45) are

able to bind calcium, possibly to modulate intracellular

calcium levels, thereby acting as ionic buffers during water

deficit: a hypothesis that still needs to be tested [201, 202].

The metal binding properties in these proteins have been

attributed to the abundance of histidine residues or to the

presence of metal binding motifs (HX3H or HH) [203].

Importantly, for some LEA proteins, it is known that metal

binding can promote the gain of an ordered conformation

[204].

Remarkably, a group 2 LEA protein (ITP, iron transport

protein) has been shown to carry iron in vivo and bind iron

in vitro (Fig. 2A(c)). This protein was found associated

with iron in phloem exudate from R. communis L. [205].

ITP also binds Ni2?, Cu2?, Zn2? and Mn2? in vitro,

preferentially binding to Fe3? but not to Fe2?. This indi-

cates that this LEA protein may function as a phloem

micronutrient transport protein [205], opening up the pos-

sibility that this novel function may exist for other LEA

proteins or IDPs able to bind iron or other micronutrients.

For some group 2 proteins, it has been shown that their

phosphorylation is required for the metal association to

occur [202, 206, 207]. Group 2 and group 4 proteins can

also circumvent the production of reactive oxygen species

(ROS), given their capacity to bind metals able to promote

ROS generation (Fig. 2A(c)). Evidence for this activity has

been obtained in vitro and in vivo [200, 204, 208]. This

mechanism could be advantageous under abiotic stress

conditions such as water deficit, when ROS production and

sensitivity to secondary stresses are exacerbated.

The multifunctionality of LEA proteins and the role of

metal ions are reinforced by data indicating that group 2

and group 7 LEA proteins can also bind nucleic acids.

Group 2 LEA proteins (CuCOR15, VvDHN1a and WCI16)

have been shown to associate with DNA and RNA. In the

case of CuCOR15 and WCI16, this occurs in the presence

of physiological concentrations of Zn2? [209–211]. This

evidence suggests that nucleic acids need similar protection

from the effects of water limitation.

DNA binding has also been demonstrated for a group 7

LEA protein (ASR1, ABA [Abscisic acid] stress ripening

1), a widely occurring plant LEA protein that does not exist

in A. thaliana. Strikingly, in addition to its protein pro-

tective role, ASR1 can also function as a transcription

factor. It has been shown that ASR1 is able to bind to the

regulatory regions of genes related to cell wall synthesis

and remodeling, as well as genes encoding membrane

channels implicated in water and solute trafficking [212].

Grape ASR1, VvMSA, recognizes specific sites in the

regulatory region of the hexose transport 1 (Ht1) gene

[213], and ASR orthologues are also involved in sugar and

amino acid accumulation in species such as maize and

potato [214, 215].

Phosphorylation of IDRs in some LEA groups may also

play a role in LEA protein function. Members of group 2,

4, 6 contain phosphorylatable motifs and in vivo and

in vitro phosphorylation has been verified for group 2 LEA

proteins (dehydrins/DHNs) in Arabidopsis, wheat, maize,

and other plants [201, 207, 216–222]. Although the role of
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this modification is not well understood, for group 2 LEA

proteins it may be needed to modulate membrane interac-

tion and lipid phase transition [178, 180], as well as nuclear

localization [223, 224]. However, although phosphoryla-

tion pattern correlates with tolerance to water limitation, it

is unknown whether this modification is required to mod-

ulate LEA protein protective activity and/or target

selectivity by allowing the display of different binding

motifs and/or MoRFs.

The multifunctionality found in vitro for the different

LEA proteins is often compatible with their in vivo intra-

cellular localization, suggesting that there may be both

subcellular specialization as well as redundancy. LEA pro-

teins from all groups have been localized to cytosol, nucleus,

mitochondria and chloroplast [137, 199, 225]. However, at

least in the case of group 3 LEA proteins, the most diverse

LEA family, not all its members show the same localization.

Some are found in cytosol or nucleus, others in the chloro-

plast and some others only in mitochondria [226]. This

implies a requirement and possible functional specificity of

LEA proteins during the plant stress response.

Further evidence of their deep functional divergence, as

well as their ubiquitousness, can be seen in the high con-

servation of most LEA families throughout the Plantae

kingdom’s evolution. LEA proteins from group 1–4 can be

detected in genomes from the most recent angiosperms

through to the bryophytes, including the liverwort

Marchantia, the most basal plant model described to date.

Group 6 and 7 LEA proteins have been found only in seed

plants, and in the case of group 7 LEA proteins, do not

seem to be present in all phyla [137, 155, 186, 227, 228].

The broad distribution and conservation of these plant IDPs

throughout evolution illustrate not only the relevance of

these proteins for the organisms in this kingdom, but also

the importance of disorder for the various functions they

achieve.

The ubiquity of LEA proteins across land plants is tes-

tament to their versatility. Even though LEA protein action

mechanisms remain elusive, the intrinsically disordered

nature of these proteins matches their apparent ‘moon-

lighting’ character, as exhibited by diverse data where the

same LEA protein is able to protect proteins and mem-

branes, and bind metals and/or nucleic acids (see Table 2).

These characteristics are compatible with their ability to

utilize the same or overlapping regions to exert distinct

effects and to switch functions by adopting different con-

formations upon binding [229].

Small heat shock proteins (sHSPs)

Small heat shock proteins (sHSPs) are ubiquitous molec-

ular chaperones, which play important roles in protein

homeostasis and in plant responses to stress. sHSPs are

classified in 11 subfamilies, six localized to cytoplasm/

nucleus and five to organelles. These chaperones bind

diverse partially unfolded polypeptides maintaining their

refolding capacity until they can return to their native

structure with the help of other chaperone proteins, such as

HSP70. In this way, sHSPs protect cells from the loss of

essential proteins and from the penalties caused by protein

aggregation. Commonly these proteins respond to high

temperatures, but also to other stress conditions, and some

may also be produced even under optimal growth condi-

tions. In contrast to other molecular chaperones, sHSPs

form large and dynamic oligomers with different stoi-

chiometry. All sHSPs contain a core a-crystallin domain

bordered by a short C-terminal region and an N-terminal

extension of variable length and sequence (for review see

[157, 230]). Both regions participate in the recognition

of—and binding to—clients and in the formation of their

oligomers (for review see [230, 231]). It has been proposed

that during heat stress the oligomeric sHSPs undergo

conformational rearrangements leading to their dissocia-

tion. These structural changes enable the interaction of

these chaperones with hydrophobic patches in the partially

denatured clients, subsequently forming large soluble

complexes, protecting protein clients form further damage.

Biochemical and biophysical evidence indicate that the

intrinsically disordered N-terminal arm is able to present

different interaction sites revealing a mechanism to effi-

ciently protect the integrity of many different substrates in

the cell [157, 232]. Although many questions still remain

unanswered regarding mechanistic details and in vivo

evidence is required, sHSPs offer a view of the need for

structural plasticity and promiscuity to maintain cell

functions during stress.

Glycine-rich RNA-binding proteins (GR-RBPs)

Although LEA proteins are important to the plant cold

stress response, other IDPs are known to play a protective

role. Plants exposed to low temperatures experience a

slowing down or even a pause of their metabolic processes

and this may result, directly or indirectly, in damage to

macromolecules and cellular structures [233]. Among the

proteins synthesized to overcome the impairment that cold

and other abiotic and biotic stresses cause to macro-

molecules are the so-called glycine-rich RNA-binding

proteins (GR-RBPs) [234, 235]. Some of the functions

characterized for GR-RBPs are the facilitation of mRNA

transport and participation in splicing and translation: roles

mediated by their RNA chaperone activity [236, 237]. GR-

RBPs contain an RNA recognition motif (RRM) in the

N-terminal region and a disordered glycine-rich region

(GR) at their C-terminal end, and they can be classified into
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eight groups, each one with apparently different roles

[238, 239]. In Arabidopsis, AtGR-RBP7, in addition to

being a circadian regulator and promoter of flowering and

mRNA splicing, accumulates in response to cold stress

[236, 237, 240–244]. Deletion of AtGR-RBP7 leads to low-

temperature sensitive phenotypes, highlighting its role in

optimal plant adjustment to cold stress [245]. NMR anal-

ysis confirms the structural disorder of the GR domain for

NtGR-RBP1, an AtGR-RBP7 orthologue from Nicotiana

tabacum [246]. As expected, NtGR-RBP1 is shown to bind

RNA and single stranded DNA through the RRM. Fur-

thermore, the NtGR-RBP1 GR interacts transiently with its

RRM domain, promoting self-association to effectively

increase its local concentration, and hence its affinity for

nucleic acids. These findings suggest a mechanism for the

unfolding of non-native structures in RNA by NtGR-RBP1,

which may be involved in enhancing its RNA chaperone

activity [246].

Vesicle-inducing protein in plastid 1 (VIPP1)

The integrity of thylakoid membranes is crucially impor-

tant for photosynthesis and chloroplast functions. Multiple

reports have shown the participation of a protein called

VIPP1 (Vesicle inducing protein in plastid 1) in thylakoid

membrane biogenesis and thylakoid membrane mainte-

nance during drought, heat and osmotic stress [247, 248],

not only in cyanobacteria and green algae, but also in

vascular plants [249–251]. The evolutionary emergence of

this protein seems to be specific to oxygenic photosynthetic

organisms [251]. Recent evidence suggests that while

VIPP1 may have multiple roles in plastids, it strongly

protects the chloroplast envelope [252]. The N-terminal

region of VIPP1 presents high sequence similarity to its

bacterial orthologue PspA (Phage shock protein A) [253],

which plays a central role in the well-characterized bac-

terial system Psp, involved in the protection of membrane

integrity under various stresses [254]. During membrane

damage, PspA and VIPP1 bind to membranes forming

high-order oligomeric effector complexes able to repair the

inner membrane and conserve its integrity [255, 256].

Interestingly, this occurs despite the absence of trans-

membrane domains in these proteins [252, 253]. CD

spectroscopy studies show that PspA and VIPP1 N-termi-

nal peptides are disordered in solution and fold upon

membrane association, as occurs in a typical membrane

amphipathic helix [257, 258]. The membrane binding of

these proteins depends on differences in stored curvature

elastic stress, a feature of damaged membranes [259].

These observations suggest that the folding transition

associated with PspA and VIPP N-terminal membrane

binding might act as a stress-sensing mechanism control-

ling the effector function of these proteins.

During the evolution of photosynthetic organisms, the

PspA orthologue VIPP1 has acquired an additional C-ter-

minal tail (Vc) that also presents the characteristics of an

intrinsically disordered region [260]. Using live imaging

experiments performed in vivo in Arabidopsis, with GFP

(green fluorescent protein) translational fusions of VIPP1

or VIPP1 lacking Vc (VIPP1DVc), it was shown that Vc

enables VIPP1 to form oligomeric effector complexes

along cell envelopes, whereas VIPP1DVc leads to the

formation of irregular aggregates of VIPP1 particles. The

expression of VIPP1DVc complemented the vipp1 knock

out mutation in Arabidopsis, but exhibited sensitivity to

heat shock. Furthermore, transgenic plants over-expressing

wild-type VIPP1 showed enhanced tolerance against heat

shock. Vipp1 knockout Arabidopsis mutants show reduced

content and other structural defects of thylakoid mem-

branes, as well as reduced photosynthetic activity. In

addition to its role in membrane biogenesis, it has been

proposed that VIPP1 may also function as a lipid transfer

protein, delivering structural lipids into thylakoid or

envelope membranes [253]. Overall, these data suggest that

the involvement of the Vc disordered region in the for-

mation of the oligomeric effector complexes might be

relevant for the control of VIPP1 association/dissociation

states. Under conditions of membrane stress, this IDR may

permit the insertion of their amphipathic helix into the lipid

bilayer to relax the curvature elastic stress in membranes

[259].

Dehydration-responsive element binding protein 2A

(DREB2A)

Dehydration-responsive element binding protein 2A

(DREB2A) is a key transcription factor for drought and

heat stress tolerance in Arabidopsis. DREB2A induces the

expression of dehydration and heat stress responsive genes

[261]. This transcription factor contains several IDRs

allowing it to interact with multiple proteins, a character-

istic consistent with interactome data showing that

DREB2A is a hub protein with 26 nodes [21]. DREB2A

may interact with its negative regulators DRIP1 and DRIP2

(DREB2A-interacting protein1 and 2), with ribosomal

proteins such as RPL15 (ribosomal protein L15), other

transcription factors such as RCD1 (Radical cell death 1),

and the transcription co-regulator MED25 (Mediator 25),

among others [21]. It has been shown that MED25 binds to

one of the DREB2A IDRs and that this interaction results

in a gain of ordered structure in this region. Similarly, the

binding of DREB2A to its canonical DNA sequence also

leads to an increase in the secondary structure of the pro-

tein. Data also show that DREB2A conformational changes

induced by DNA binding reduce its interaction with the
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MED25 acid domain, which does not exclude the possi-

bility that this modification may promote its association to

another Mediator subunit close by [262]. RCD1 controls

DREB2A function, and is itself rapidly removed during

abiotic stress [263]. O’Shea et al. [264] showed by NMR

spectroscopy that DREB2A undergoes coupled folding and

binding with a-helix formation upon interaction with

RCD1.

bZIP28, a transcription factor in the unfolded

protein response

Under adverse conditions such as heat stress, pathogenesis

and by inhibition of protein glycosylation [265–267], the

demand for protein folding can exceed the capacity of pro-

tein homoeostasis systems. This results in the increase of

misfolded or unfolded proteins in the endoplasmic reticulum

(ER) lumen. This series of events leads to ER stress that

subsequently induces the unfolded protein response (UPR)

to fulfill the requirement of protein folding and degradation

[268]. Two branches of the UPR signaling pathway have

been described in plants: one involving the membrane-as-

sociated basic leucine zipper (bZIP) transcription factors and

the other involving a bifunctional protein, with kinase and

ribonuclease activities, known as inositol-requiring enzyme

1 (IRE1), which functions as an RNA splicing factor [269].

In Arabidopsis, bZIP28 is an ER membrane-associated

transcription factor; its N-terminal region contains a tran-

scriptional activation domain oriented towards the

cytoplasm, while its disordered C-terminal tail localizes to

the ER lumen [270]. It is proposed that bZIP28 senses ER

stress through its interaction with the ER chaperone BiP

(binding immunoglobulin protein), a master regulator of the

ER stress sensor. Under non-stress conditions, BiP binds to

bZIP28 IDRs present in its lumen-facing tail and retains it in

the ER. Upon stress, BiP is competed away from bZIP28 by

the accumulation of misfolded proteins in the ER, releasing

bZIP28 and allowing its exit from the ER, to move towards

the Golgi apparatus [271]. Then, bZIP28 is cleaved by pro-

teases, releasing its transcriptional activation domain that

will be translocated to the nucleus to up-regulate stress

response genes [271]. The bZIP28 IDR represents one

additional example of the role of IDRs in controlling sig-

naling in plant stress responses.

Protein structural disorder in plant biotic stress
responses

From germination to reproduction, plants confront a large

diversity of parasitic organisms that can cause disease.

These pathogens include viruses, bacteria, fungi, nema-

todes and insects that exploit resources and replication

systems in plants [272]. Infection by these organisms has

driven plants to evolve refined mechanisms to detect their

presence and to mount complex inducible responses to

efficiently counteract their attack. As in other plant pro-

cesses, plant defense systems are tightly regulated, many of

them through the participation of kinases and phosphatases

that modulate the phosphorylation status of key control

proteins [272–274]. Marı́n and Ott [22] have reported the

prediction and extensive compilation of different IDPs

involved in this process. Because this information has been

recently published, in the present work we include only a

summary of the material for which functional and struc-

tural evidence is available.

Plants are able to specifically recognize their aggressors

through receptors localized at the cell membrane. These

receptors include LRR-RLKs, a common class of receptors

in plants, where intrinsic disorder is present. An example of

this is the aforementioned BAK1, an RLK that in this

process functions as a co-receptor of the two of the best-

characterized pathogen LRR-RLK receptors, FLS2 (Flag-

ellin-sensing 2) and EFR (EF-Tu receptor) [275]. The

relevance of the BAK1 IDR C-region resides in its ability

to discriminate between two signal transduction pathways,

even though the same phosphorylation site (Tyr-610) inside

this region is involved in both brassinosteroid sensing and

in the pathogen defense response [276]. It is well estab-

lished that plant perception of pathogens is accompanied

by an oxidative burst, where RbohD plays a central role

(Fig. 2b). This protein belongs to the NADPH oxidase

family, responsible for the early generation of ROS,

upstream of calcium and protein phosphorylation signaling.

Different experimental evidence supports the presence of

an IDR in the RbohD cytoplasmic N terminus, a region that

contains an EF-hand motif involved in calcium binding.

The malleable nature of this region results in extended

conformational changes induced by the synergistic effect

of calcium binding and its phosphorylation, which in turn

modulates the interaction with small GTPase proteins

[277, 278]; fundamental events to set up protection

responses to pathogenic agents (Fig. 2b). Following per-

ception at the cell envelope, the signaling process

continues in the cytosol, where different molecules play

relevant roles. One of these protein molecules is the HSP90

molecular chaperone that given its refolding capacity, is an

essential participant in many signaling pathways in plants

and animals [279]. The structural organization of this

chaperone shows an N-terminal region with an ATPase

domain and a linker region composed of charged residues

that connect its middle domain with the dimerization

region localized at the C terminus. Interestingly, the

N-terminal domain undergoes consecutive conformational

changes upon ATP binding, leading to the formation of a

transient dimer with different co-chaperone partners. The
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association of HSP90 with the RAR1 co-chaperone results

in an order-to-disorder transition of this ATP domain,

which enables its movement to allow the entrance of the

catalytic loop localized at the middle HSP90 region [280].

These interaction events are essential for the competence of

RAR1 function, which together with the SGT1 co-chap-

erone, is needed to activate the majority of R proteins,

detectors of pathogen effector molecules, by mediating

NLR (nucleotide binding leucine-rich repeat receptor)

function [281]. This signal pathway flows towards a MAP

kinase cascade, whose activation ends in the phosphory-

lation of transcription factors (e.g., WRKY33) that induce

the expression of defense genes. Two of these MAP

kinases, MEK and MEKK1, show long disordered regions

in their N termini that, in the case of MEKK1, have been

shown to play a regulatory role; their removal results in a

constitutively active kinase [22, 282]. The reprogramming

of those genes encoding the proteins that will counteract

pathogen incursion needs the action of transcription factors

(TFs). Various TF families are involved in this process

including MYC, MYB, TGA, WRKY and ERF. Among the

TFs known to have a role in the plant pathogen response

are MYC2, MYB30, TGA3, WRKY1, WRKY4,

WRKY52, WRKY53 and ERF. All these proteins contain,

in addition to their DNA-binding domains, IDR-containing

linker domains with regulatory functions [21]. Some of

these linker domain IDRs have been shown to interact with

co-transcription factors that might contribute to the mod-

ulation of the spatio-temporal expression of target genes

and to the selectivity required to distinguish the identity of

particular pathogens (for review see [283]).

Computational analyses using available plant genome

sequences predict the presence of significant structural

disorder in many more proteins implicated in plant patho-

gen responses. However, as yet there is no experimental

support for their structure or function. Hence, new dis-

coveries await our curiosity and creativity.

Conclusions and future directions

Plants provide a clear picture of the importance of intrinsic

disorder in eukaryote protein function. The structural

flexibility and molecular promiscuity afforded to a wealth

of plant proteins with intrinsically disordered domains have

ensured pivotal and multifunctional roles in core processes,

including development and metabolism as well as biotic

and abiotic stress responses. Technical and experimental

barriers to the study of IDPs have limited IDP research in

planta, and up to now, there has been a strong reliance on

interpretation and extrapolation from in vitro analyses; in

particular, for those which are highly disordered and

function under stress. It is hoped that the recent explosion

in molecular genetic technologies will pave the way for

further exploration of the in vivo mechanisms and inter-

actions of plant IDPs. We are only beginning to understand

their place in the story of plant evolution and their essential

functions in life as a whole.
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Appendix

Amphipathic helix A type of a-helix in which one face

along the long axis of the helix is polar and the opposing

face is nonpolar [284].

Chaperone A type of protein that ensures the proper

folding of nascent polypeptidic chains by binding to them,

stabilizing one structural conformation and releasing from

the folded protein [285, 286].

Chloroplast signal recognition particle (CSRP) A pro-

tein complex formed by cpSRP43 and cpSRP54 involved

in the transport and insertion of proteins of the LHC into

the membrane of thylakoids [287, 288].

Conformational selection A protein binding mechanism

in which the binding protein structure shifts among dif-

ferent conformations and the ligand ‘‘selects’’ one such

conformation, stabilizing the structure of the binding pro-

tein [289, 290].

Crassulacean acid metabolism (CAM) A photosynthetic

pathway in which CO2 is ‘‘stored’’ in the form of malate in

the vacuole during the night and released during the day for

RuBisCO-mediated carbon fixation [291].

Folding-upon-binding A mechanism in which IDPs or

IDRs fold upon binding to their targets [292, 293].

Fuzzy complex A mechanism in which the parts of the

proteins involved in the formation of macromolecular

complexes do not fold, but remain in a disordered state [294].

Hydrodynamic radius The radius required for a perfect

solid sphere to achieve the same frictional coefficient as the

protein analyzed [295].

Hydrophilins Any protein that has a high glycine and/or

small amino acid residues content ([6%) and a high

hydrophilicity index ([1.0) [148, 167].

Intrinsically disordered protein (IDP) These proteins

lack a fixed three-dimensional structure. These proteins fail

to form a stable conformation and cannot be adequately

described by a single equilibrium 3D structure, yet they

exhibit biological activity [7, 296].
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Intrinsically disordered region (IDR) Significant disor-

dered sequences contained in a protein with structured

globular domains [7].

Light-harvesting complex (LHC) In green plants, these

complexes contain multiple proteins and molecules such as

chlorophylls a and b and carotenoids, which increase the

capacity for photon capture during the photosynthesis [1].

Molecular recognition feature (MORF) Protein struc-

tural element or feature that mediates the binding events of

disordered regions with other proteins or nucleic acids.

This element undergoes coupled binding and folding

within a disorder region [296].

Moonlight activity The ability of a protein to fulfill

several, apparently unrelated functions [229].

Orthodox seed Seeds that acquire desiccation tolerance

during development maintain dormancy and might be

stored under dry environments [297].

Store curvature elasticity stress Physical torque stress that

occurs within a bilayer when lipids in the constituent mono-

layers are forced to adopt an unfavorable packing

conformation.This stress results inhydrophobic cavities in the

membrane, which are known as lipid-packing defects [298].

Oxygen-evolving complex (OEC) A Mn4O5Ca cluster

embedded in the Photosystem II (PSII) protein complex. It

is considered the active site of water oxidation where O2 is

produced and protons are released into the lumen during

the light reactions of photosynthesis [299].

Unfolded protein response (UPR) Signaling pathways

triggered to maintain a productive endoplasmic reticulum

protein-folding environment [300].
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