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Abstract S100A6 protein belongs to the A group of the

S100 protein family of Ca2?-binding proteins. It is

expressed in a limited number of cell types in adult normal

tissues and in several tumor cell types. As an intracellular

protein, S100A6 has been implicated in the regulation of

several cellular functions, such as proliferation, apoptosis,

the cytoskeleton dynamics, and the cellular response to

different stress factors. S100A6 can be secreted/released by

certain cell types which points to extracellular effects of

the protein. RAGE (receptor for advanced glycation end-

products) and integrin b1 transduce some extracellular

S100A6’s effects. Dosage of serum S100A6 might aid in

diagnosis in oncology.
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Abbreviations

ALS Amyotrophic lateral sclerosis

CacyBP/SIP Calcyclin-binding protein/Siah-1-

interacting protein

CDK Cyclin-dependent kinase

EGF Epidermal growth factor

Hsp Heat shock protein

IL Interleukin

MDM Transformed mouse 3T3 cell double minute

NF-jB Nuclear transcription factor jB

Nrf2 Nf-E2 related factor 2

PDGF Platelet-derived growth factor

RAGE Receptor for advanced glycation end

product

ROS Reactive oxygen species

SOD Superoxide dismutase

Sp1 Specificity protein 1

TNF Tumor necrosis factor

TRAIL Tumor necrosis factor-related apoptosis-

inducing ligand

USF Upstream transcription factor

VEFG Vascular endothelial growth factor

Introduction

S100A6 belongs to the S100 family of Ca2?-binding pro-

teins of the EF-hand type [1]. It is also known as 2A9,

5B10, CABP, Cacy, Calcyclin, growth factor-inducible

protein 2A9, PRA—prolactin receptor associated protein,

and S100 calcium binding protein A6, S100a6. As a

member of the A group of S100 proteins, human S100A6

gene maps to chromosome 1q21 [2], a locus where frequent

chromosomal rearrangements occur in neoplasia. S100A6

is expressed as an 89-amino-acid protein in mouse and rat

and a 90-amino-acid protein in human and rabbit. Two

chicken isoforms, A (92 amino acids) and B (91 amino

acids), probably result from alternative mRNA splicing [3].

S100A6 from all these sources differs in only a few amino

acids and in the length of the carboxy terminus. The
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S100A6 gene was initially identified in growth-arrested

rodent fibroblasts stimulated with serum [4] and suggested

to have a role in cell-cycle progression as inferred by its

upregulation in several tumors [5–7]. S100A6 was found to

interact with calcyclin-binding protein/Siah-1-interacting

protein (CacyBP/SIP) [8]. Because CacyBP/SIP is a com-

ponent of the ubiquitin ligase complexes, S100A6 was

suggested to be involved in the ubiquitination of b-catenin

[9], thus supporting the possibility that S100A6 might play

a role in the control of cell-cycle progression. S100A6’s

ability to inhibit the interaction between the heat shock

proteins (Hsp70 and Hsp90) and Sgt1 [10] and Hop [11],

suggested a potential role for S100A6 in the cellular

response to different stress factors. In this respect, S100A6

was found to favor apoptosis in some cell types [12, 13],

but to limit it in others [14]. The in vitro interaction of

S100A6 with caldesmon [15], calponin [16], tropomyosin

[17], and kinesin light chain [11] suggested that S100A6

might be involved in the regulation of cytoskeleton

dynamics, particularly microfilament dynamics [18], and in

vesicular transport. As an extracellular factor, S100A6 was

shown to be involved in the release of lactogen II [19],

insulin [20], and histamine [21]. By binding to the trans-

membrane receptor for advanced glycation endproducts

(RAGE), S100A6 induced neuronal apoptosis by causing

reactive oxygen species (ROS)-dependent activation of

JNK and of caspases 3 and 7 [22]. RAGE transduces

extracellular effects of several S100 proteins (23). Integrin

b1 is another potential membrane protein transducing

extracellular effects of S100A6 [24]. The present review

seeks to critically summarize information about functional

roles of S100A6 also in light of results of recent studies of

S100A6 in cancer (Table 1).

Regulation of expression

Several factors have been shown to increase S100A6

mRNA and protein levels such as platelet-derived growth

factor (PDGF), epidermal growth factor (EGF) and serum

[25], retinoic acid [26], estrogen [27], palmitate [28],

vasopressin [29], and gastrin [30] (Fig. 1). S100A6 levels

are also upregulated upon stress conditions such as

ischemia [31], mechanical force [32], irradiation [33], and

oxidative stress [34].

In vivo, S100A6 protein levels are elevated in myocar-

dial disease [35] and in many types of tumor cells (see

below). However, the primary cause(s) of this increase

remain(s) to be fully elucidated. A decrease in S100A6

levels was observed during the course of TRAIL (tumor

necrosis factor-related apoptosis-inducing ligand)- and

etoposid-induced apoptosis in human breast cancer cells

[36]. At the transcriptional level, USF (upstream tran-

scription factor), NF-jB (nuclear transcription factor jB),

Sp1 (specificity protein 1), and Nrf2 (Nf-E2-related factor

2) have been shown to activate the S100A6 gene promoter

[13, 34, 37–39], whereas the tumor suppressor, p53, acts

indirectly to suppress transcription via interference with

Sp1 and NF-jB function on the S100A6 promoter [40].

Insufficient suppression of S100A6 gene by p53 mutants

might thus be responsible for S100A6 overexpression and

cell-cycle deregulation in cancer.

Table 1 S100A6 in cancer

Role of S100A6 Cancer References

S100A6 is overexpressed Breast, stomach, pancreas and colon cancer, melanoma, thyroid carcinoma, clear cell

renal cell carcinoma, mixed-lineage leukemia/AF4-positive acute lymphoblastic

leukemia

[49–52, 54, 55, 81, 82]

S100A6 is underexpressed Prostate and oral cancer [49]

S100A6 is a diagnostic marker

or prognostic factor

Pancreatic, gastric and prostate cancer, melanoma, non-small cell lung carcinoma,

hepatocellular carcinoma

[50, 51]
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Fig. 1 Regulation of S100A6 expression. Several extracellular

factors can upregulate S100A6 expression via the indicated tran-

scription factors. The tumor suppressor, p53, decreases SP1 and NF-

jB binding to the S100A6 promoter
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Regulation of activity

Like other members of the S100 protein family (excepting

S100G) [1], S100A6 exists within cells in the form of a

homodimer in which the two subunits are arranged in an

antiparallel fashion [41]. Each subunit consists of two EF-

hand (helix–loop–helix) motifs tethered by a flexible hinge

domain and a C-terminal tail [1, 42, 43]. Each S100A6

subunit binds two calcium ions. Ca2?-binding induces

conformational changes in the C-terminal half of each

subunit of the S100A6 homodimer [41] as observed for

other S100 proteins [1]. The Ca2? binding causes

hydrophobic residues of the hinge region, helices III and IV

of each subunit to become exposed which enables S100A6

to interact with many target proteins such as glyceralde-

hyde-3-phosphate dehydrogenase, annexin II, annexin XI,

annexin VI, and tropomyosin [44]. Additional intracellular

interacting proteins are caldesmon, calponin and lysozyme,

CacyBP/SIP, Sgt1, and melusin [44], p53 [13, 45], and the

Hsp90/Hsp70-organizing protein (Hop) and kinesin light

chain [10, 11, 43]. A Ca2?- or Zn2?-dependent S100A6/

S100B heterodimer was identified in a yeast two-hybrid

assay and confirmed in vivo [46, 47]. However, no func-

tional correlates have been reported for these interactions

with the exception of CacyBP/SIP (see subheading S100A6

and cell proliferation and cancer).

S100A6 also binds Zn2? [48]. The binding of Zn2?

induces conformational changes in the S100A6 molecule

that are different from those observed following Ca2?

binding. At present, there are no data showing a potential

zinc-dependent activity of S100A6.

S100A6 and cell proliferation and cancer

S100A6 affects cell proliferation and cancer development

by acting from within and from outside cells. S100A6 is

overexpressed in breast, stomach, pancreas and colon

cancer and in melanoma, whereas it is underexpressed in

prostate and oral cancer [49]. It is considered a diagnostic

marker or prognostic factor in pancreatic, gastric and

prostate cancer, melanoma, non-small cell lung carcinoma,

and hepatocellular carcinoma. S100A6 is also overex-

pressed in thyroid carcinoma [50, 51] and is suggested to

play a key role in the progression and development of

papillary thyroid carcinoma [52]. S100A6 affects murine

models of cancer; however, its contribution to promoting a

cancerous phenotype has only been examined in a limited

number of model systems and the mechanistic basis for the

observed effects on tumor progression has not been fully

delineated [43]. In gastric cancer cells, S100A6 negatively

regulates its partner-CacyBP/SIP-mediated inhibition of

cell proliferation and tumorigenesis by affecting b-catenin

degradation (Fig. 2) [53]. In addition, S100A6 enhanced

migration and invasion of pancreatic ductal adenocarci-

noma cells and promoted epithelial-mesenchymal

transition via activation of b-catenin [54] (Fig. 2). The

tumorigenic activity of overexpressed S100A6 was repor-

ted for clear cell renal cell carcinoma in which the protein

inhibited the expression of the anti-tumor chemokine,

CXCL14, and CXCL14-induced apoptosis [55]. It has been

hypothesized that S100A6 may regulate CXCL14 through

estrogen receptor 1 [55], but no experimental evidence for

this has been presented. Additional evidence for S100A6-

CacyBP/SIP interactions comes from the observation that

S100A6 inhibits CacyBP/SIP phosphorylation by casein

kinase II similar to the CacyBP/SIP phosphorylation inhi-

bitor, DRB, which results in reduced phosphatase CacyBP/

SIP activity towards the mitogen-activated protein kinases

(MAPKs), ERK1/2 [56], which in turn might sustain cell

proliferation and/or tumorigenesis.

S100A6 is reported to regulate endothelial cell cycle and

senescence. In primary human endothelial cells, depletion

of S100A6 caused increased cell-cycle arrest in G2/M

phase. S100A6 depletion caused a decrease in both cyclin-

dependent kinase 1 (CDK1), phosphorylated CDK1 levels,
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Fig. 2 Implications of S100A6

interaction with CacyBP/SIP.

S100A6 inhibits CacyBP/SIP

thereby stimulating cell

proliferation and migration,

tumorigenesis, and epithelial-

mesenchymal transition via

inhibition of b-catenin

degradation, inhibiting cell

differentiation, and participating

in aging and neurodegeneration
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and cyclin A1 and cyclin B genes with effects on cell-cycle

progression [57] likely via inhibition of antiproliferative

signal transducers and activators of transcription (STAT) 1

signaling [58] (Fig. 3a). A role for S100A6 as an intra-

cellular regulator of cell proliferation and differentiation is

suggested by the finding that S100A6 becomes downreg-

ulated at the beginning of keratinocyte differentiation and

that S100A6 overexpression in these cells causes

accelerated proliferation, enhanced adhesive properties,

and reduced differentiation [59] (Fig. 3b). Downregulation

of S100A8 and S100A9 proteins upon differentiation of

monocytes into mature macrophages has been reported

[60, 61]. Transient downregulation has also been reported

for S100B protein at the beginning of myoblast, neuronal,

chondrocyte, and astrocyte differentiation and this event

has been shown to be permissive for the differentiation of

these cell types [62–67]. Whether transient downregulation

at the beginning of cell differentiation is a general property

of S100 proteins remains to be established.

Transfection with recombinant S100A6 of or adminis-

tration of recombinant S100A6 to HCT116, a colorectal

carcinoma cell line with relative low S100A6 expression,

resulted in enhanced cell proliferation and migration,

MAPK activation in vitro, and tumor growth in vivo.

Conversely, RNAi-mediated knockdown of S100A6 in

LoVo, a colorectal carcinoma cell line with relatively high

S100A6 expression, resulted in reduced cell proliferation,

migration, and MAPK activity. S100A6-induced prolifer-

ation was partially attenuated by an ERK1/2 inhibitor,

while migration was suppressed by a p38 MAPK inhibitor

[68] (Fig. 3c). These results suggest that S100A6 might act

as an extracellular signaling molecule affecting cancer cells

in a receptor-mediated manner. RAGE is a candidate

receptor as it transduces certain effects of S100A6 on

responsive cells [22, 69]. However, whether RAGE trans-

duces S100A6 effects on colorectal carcinoma cells

remains to be determined.

Regarding S100A6-RAGE interaction, one study

reported that S100A6 binds the C1 and C2 domains of

RAGE [22], whereas another study showed that S100A6

binds RAGE V domain similar to other S100 proteins

[1, 70]. Recent work [71] suggests that the primary S100A6

binding site is formed by the RAGE C1 domain and that

S100A6 adopts a dimeric conformation different from all

known S100 dimers; the N-terminus of helix H1 from one

S100A6 subunit inserts into the hydrophobic cleft formed

between helices H3 and H4 from the opposite subunit in

the presence of Ca2?. Incidentally, this cleft binds RAGE

[71] and CacyBP/SIP [72].

Contrasting effects have been reported regarding effects

of S100A6 on cell proliferation. S100A6 increases adhe-

sion and inhibits proliferation of mesenchymal stem cells

isolated from Wharton’s jelly of the umbilical cord [24].

Integrin b1 appears to be the membrane protein (receptor)

transducing these S100A6 effects because neutralization of

integrin b1, but not RAGE blunted them. On the other

hand, exogenous expression of S100A6 in mesenchymal

stem cells increased proliferation and inhibited osteogenic

differentiation, and stimulated osteosarcoma growth

in vivo [73]. Whether these latter S100A6’s effects result
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Fig. 3 Roles of S100A6 in cell proliferation and differentiation.

a S100A6 is suggested to stimulate cell-cycle progression and to

inhibit differentiation and senescence in endothelial cells. b S100A6

becomes downregulated at the beginning of keratinocyte and

astrocyte differentiation, and S100A6 overexpression in these cells

causes accelerated proliferation, enhanced adhesive properties, and

reduced differentiation. c S100A6 is upregulated in and secreted by

colorectal carcinoma cells. Secreted S100A6 stimulates cell prolifer-

ation and migration in a receptor-mediated manner
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from intracellular regulatory activities, receptor-mediated

mechanism(s), or both remains to be determined.

Interaction of certain S100 proteins with RAGE and

with receptors other than RAGE is not unusual [1]. For

example, S100A4, S100A8/S100A9, and S100B engage

RAGE in several cell types but can act independently of

RAGE on other cell types [1, 23]. Thus, S100A4 stimulates

neurite outgrowth by binding to heparan sulphate proteo-

glycans and a putative Gaq-coupled receptor [74] and

stimulates tumor progression by interacting with EGFR

ligands [75]. S100A8 and S100A9 can activate toll-like

receptor 4 in phagocytes [76], S100A12 activates a

G-protein coupled receptor in mast cells and monocytes

[77], and S100B binds bFGF and enhances bFGF/FGFR1

signaling and simultaneously blocks RAGE in high-density

myoblast cultures thereby promoting cell proliferation [78].

S100A6 modulates RAGE-dependent survival of neu-

roblastoma cells by triggering apoptosis and generation of

ROS through c-Jun NH2 terminal protein kinase activation

[22]. S100A6 may regulate secretory processes in some

cells. It stimulates secretion of lactogen II by trophoblasts

[19] and insulin release from pancreatic islet cells [20], and

may modulate allergic responses by inhibiting histamine

release by mast cells [21, 79]. The receptor(s) transducing

these effects remain(s) to be determined.

The role of S100A6 as an intracellular regulator of cell

proliferation/apoptosis is further complicated by its effects

on the anti-tumor, p53 [80], and by the finding that p53 acts

indirectly to suppress S100A6 transcription [40] (Fig. 1).

S100A6 competes with MDM2, an ubiquitin E3 ligase that

degrades p53, for binding to p53, and with p300 acetyl-

transferase. Once acetylated, p53 loses the ability to bind

S100A6, suggesting that high S100A6 concentrations

might interfere with p53 acetylation, and thus, that S100A6

might protect p53 against untimely degradation and/or

acetylation thus resulting in the promotion of p53 nuclear

translocation and, likely, p53 transcriptional activity. In

this perspective, S100A6 might aid in cell proliferation

arrest and/or apoptosis. However, the opposite has also

been observed in mixed-lineage leukemia/AF4-positive

acute lymphoblastic leukemia, where IL-24-induced inhi-

bition of S100A6 expression was shown to exert pro-

apoptotic effects, which points to an anti-apoptotic,

tumorigenic role of S100A6 in these cells [81, 82] (Fig. 4).

For S100A6’s anti-apoptotic effects, also see subheading

S100A6 and stem cells in the following.

Other S100 proteins have been implicated in tumorige-

nesis and metastasis [1, 42, 43]. Intracellular S100A4 has

pro-metastatic activity [83]. Once released by stromal/ep-

ithelial cancer cells, S100A4 stimulates cancer cell

invasiveness [84], cooperates with the chemochine,

RANTES (CCL5), in promoting tumor progression [85],

and interacts with EGF receptor ligands, thereby enhancing

EGFR/ErbB2 receptor signaling and cell proliferation [74].

S100A7 overexpression is seen in invasive breast cancer

[86] and enhances mammary tumorigenesis and breast

cancer metastasis RAGE dependently [87, 88]. The

S100A8/S100A9 heterodimer (calprotectin) facilitates

tumor cell invasion [89, 90]. Overexpression of S100B is

associated with and exerts a pathogenic role in malignant

melanoma [91–93] and glioma [62, 94–96]. Thus, several

S100 proteins have a role in tumor development and pro-

gression with a certain specificity in terms of mechanism of

action and cell type.

S100A6 and cytoskeleton

Intracellular S100A6 has been functionally linked to

changes in cellular motility and cytoskeletal reorganization

[42, 79], but a clear mechanistic picture is still lacking.

Knockdown of S100A6 in NIH-3T3 fibroblastic cells

causes a reorganization of the actin cytoskeleton with an

extensive cortical network of actin filaments and tropo-

myosin structures and increase in the number of focal

adhesions at the cell periphery [18, 97]. Thus, S100A6

effects on actin filaments and tropomyosin structures might

be responsible at least in part for the large increase in

lamellipodia and possibly for the enhancement of cellular

motility seen when S100A6 levels are reduced by siRNA

S100A6
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Ac-p53
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Apoptosis

Caspase 3
HOXA9

Angiogenesis

Caspase 8

MEIS1

TNF-α

p53

Oxida�ve
DNA damage

ER stress

BiP

R

MLL/AF4-posi�ve cell

Fig. 4 S100A6 exerts anti-apoptotic effects in mixed-lineage leuke-

mia (MLL)/AF4-positive leukemia cells. In MLL/AF4-positive acute

lymphoblastic leukemia cells, IL-24-induced inhibition of S100A6

expression exerts pro-apoptotic effects, which points to an anti-

apoptotic function of S100A6 in these cells
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techniques [98]. The involvement of S100A6 in the

motility of cancer cells has also been reported, albeit with

contradictory outcomes. Down- or upregulating of S100A6

expression in osteosarcoma cells led to increased or

decreased migration, respectively, suggesting a role for

S100A6 as an inhibitor of cell motility in cultured cells

[98, 99]. However, S100A6 has also been shown to pro-

mote cellular motility in pancreatic cancer cells [100, 101]

by a mechanism that is dependent on the presence of

annexin 2. Elevated levels of intracellular S100A6 have

been shown to be associated with tumorigenesis (reviewed

in [22]) and the ability of colorectal adenocarcinoma cells

[102] and Ras-transformed NIH 3T3 cells [103] to metas-

tasize to form secondary lesions. Yet, the molecular

mechanisms underpinning S100A6’s ability to regulate cell

motility have remained elusive. Direct interaction between

S100A6 and the tropomyosin–actin complex has been

shown in vitro [17], but remains to be confirmed in vivo;

the only current evidence suggests that S100A6 acts as a

downregulator of tropomyosin expression [18]. S100A6

interacts in vitro with other components of the actin

cytoskeletal architecture, such as the myosin ATPase

inhibitors, caldesmon [104, 105], and calponin [16], but no

mechanistic link to cell motility has been demonstrated.

Other S100 proteins interact with the cytoskeleton. S100B

binds to tubulin and inhibits its polymerization into

microtubules [106, 107], associates with microtubules and

intermediate filaments in cultured cells [108, 109],

increases the Ca2?-sensitivity of microtubules [110], and

promotes stress fibers formation in and migration of pro-

liferating astrocytes via a Src/PI3K/RhoA/ROCK pathway

[65]. S100A1 interferes with the assembly of desmin

intermediate filaments [111] and interacts with the giant

sarcomeric protein, titin [112] thereby reducing sarcomeric

passive tension before contraction [113]. Indeed, S100A1

gene delivery rescues failing myocardium [114]. Interac-

tion with non-muscular myosin heavy chain IIA,

tropomyosin, and actin is causally related to the pro-

metastatic activity of intracellular S100A4 [42, 83, 115].

S100A8, S100A9, and the heterocomplex S100A8/S100A9

(also known as calprotectin) associate with vimentin

intermediate filaments during Ca2? transients in monocytes

[116] and with keratin intermediate filaments in ker-

atinocytes [117], and stimulate microtubule assembly

during transendothelial migration of phagocytes [118].

Thus, regulation of the cytoskeleton and cytoskeleton-as-

sociated activities seems to be one intracellular function

shared by several S100 proteins with each of them showing

a preferential molecular target among cytoskeletal ele-

ments likely due to the unique length and primary sequence

of the hinge region and C-terminal tail of individual S100

members and the cell type(s), where they are expressed.

S100A6 and stem cells

S100A6 was shown to be expressed in neural stem cells in

the subgranular zone of the dentate gyrus in adult hip-

pocampus [119]—a major neurogenic niche. These

S100A6-expressing cells were recognized as astrocyte

precursors. The finding that S100A6 was not detected in

mature astrocytes suggested that S100A6 might play an

important, yet unknown role during astrocytic differentia-

tion of neural stem cells. Possibly, S100A6 has to be

downregulated for astrocyte precursors to undergo differ-

entiation, as observed for keratinocyte differentiation [59]

(Fig. 3b) and with other S100 proteins [60–67]. S100A6

also marks glial precursor cells in neuroblastoma [120].

S100A6 expression is increased in the peri-infarct zone of

rat heart postinfarction and functions as a global negative

regulator of the induction of cardiac genes by trophic stimuli

[35]. S100A6 is induced in cardiomyocytes by TNF-a via NF-

jB activation and protects cardiomyocytes from TNF-a-in-

duced apoptosis by associating with p53 and interfering with

p53 phosphorylation [14] (Fig. 5). Similar to S100A6, S100B

is induced in cardiomyocytes surviving an infarct, and can

limit the hypertrophic response by inhibiting expression of a-

actin and b-myosin [121]. However, extracellular S100B

causes cardiomyocyte apoptosis in a RAGE-mediated manner

[122] and induces myofibroblast proliferation in a RAGE-

VEGF-mediated manner potentially contributing to the scar

formation observed in infarcted myocardium [123]. At pre-

sent, there is no information about potential extracellular

effects of S100A6 in the context of cardiac infarction.

R

Peri-infarct cardiomyocyte
TNF-α

NF-κB
S100A6

p53

apoptosis
Skeletal ac�n
and β-myosin

Fig. 5 Induction of S100A6 expression in peri-infarct cardiomy-

ocytes. The TNF-a/NF-jB axis induces S100A6 in peri-infarct

cardiomyocytes. Induced S100A6 reduces the cardiomyocyte hyper-

trophic response and inhibits the pro-apoptotic effect of p53

2754 R. Donato et al.

123



S100A6 and neurodegenerative diseases

In Alzheimer’s disease mouse models, astrocytic S100A6

protein was shown to be homogeneously upregulated

within the white matter, whereas within the grey matter,

almost all S100A6 immunoreactivity was found to be

concentrated in astrocytes surrounding the Ab amyloid

deposits of senile plaques [124]. S100A6 is also overex-

pressed in astrocytes located near impaired axons of

motoneurons in amyotrophic lateral sclerosis (ALS) [125].

These findings suggest that S100A6 might participate in

the pathophysiology of Alzheimer’s disease and ALS,

respectively. Mechanistically, S100A6 was shown to form

oligomers and amyloid-like fibrils, an event negatively

regulated by Ca2?, and to potentiate in vitro the aggrega-

tion of superoxide dismutase-1 (SOD1) [126], that forms

cytoplasmic aggregates in ALS-affected neurons. Although

S100A6 oligomers but not fibrils proved toxic to neuronal

cell in culture [126], there are no data to demonstrate that

S100A6 plays a role in the promotion of SOD1 aggregates

in ALS neurons. Other S100 proteins (e.g., S100B,

S100A8, S100A9, and S100A12) are known to take part in

the pathophysiology of neurodegenerative disorders by

affecting neurons, astrocytes, and/or microglia mostly as

extracellular signals [1, 127–140]. Likely, accumulation of

S100 proteins, including S100A6, in the brain extracellular

space might be a consequence rather than a cause of the

underlying neurodegenerative disorder, and represents one

molecular means by which astrocytes and microglia

respond to noxious stimuli (such as disturbances of the

local circulation, changes in the redox status, metabolic

disorders, etc) to bring about a complex inflammatory

response that cannot, however, progress through the

canonical phases, i.e., an early proinflammatory, defense

phase, and a late reparative phase, due to the persistence of

the underlying noxious stimulus and the intervention of

several membrane receptors. Overall, the available infor-

mation about the involvement of several S100 proteins in

the pathophysiology of neurodegenerative disorders

[124, 127–140] suggests that targeting one single S100

protein might not be sufficient to reverse the pathology.

S100A6 as a serum marker of disease

Serum levels of S100A6 are significantly elevated in early

stage non-small cell lung cancer [141], gastric cancer

[142], urinary bladder urothelial carcinoma [143] and

ovarian cancer [144] as well as in acute coronary syndrome

and myocardial infarction [145]. Elevation of serum levels

of other S100 proteins (e.g., S100B, S100A4, S100A7,

S100A8, and S100A9) has been reported in several cancers

[146–150]. However, pending additional work on larger

cohorts of patients, usage of serum levels of S100A6 in

diagnosis of the above tumors [141–144] is promising.

Conclusions

Studies of S100A6’s interaction with and inhibition of its

partner, CacyBP/SIP—an inhibitor of cell proliferation and

tumorigenesis by virtue of its ability to promote degrada-

tion of b-catenin—support a role for S100A6 as a positive

regulator of cell proliferation in the epidermis, endothelial

cells, and tumor cells and as an anti-apoptotic factor in

certain leukemias. In addition, upregulation of S100A6 in

peri-infarct cardiomyocytes results in reduction of p53-in-

duced apoptosis via interference with p53 phosphorylation

and inhibition of induction of fetal genes responsible for

cardiomyocyte hypertrophy. On the other hand, interaction

with the tumor suppressor, p53, implicates S100A6 in

apoptosis, with high concentrations of S100A6, as is typ-

ical of certain tumor cells, protecting p53 from inactivation

by p300 acetyltransferase and degradation by MDM2.

S100A6 can be secreted/released by certain cell types

which points to extracellular effects of the protein. RAGE

and integrin b1 might transduce extracellular S100A6’s

effects, but further analyses in physiological and patho-

logical contexts are required. Finally, dosage of serum

S100A6 might aid in diagnosis in oncology and acute

coronary syndrome. The growing interest on S100A6 in

cancer makes this protein a potential therapeutic target.
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