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Abbreviations
ACE	� Angiotensin-converting enzyme
ACVRII	� Activin type II receptor type
ACVRL1	� Gene encoding activin receptor-like kinase
ALK	� Activin receptor-like kinase
BMP	� Bone morphogenetic protein
BMPRI	� Bone morphogenetic protein type I receptor
BMPRII	� Bone morphogenetic protein type II receptor
BMPR2	� Gene encoding bone morphogenetic protein 

receptor II
Cav1	� Caveolin-1
cGMP	� Cyclic guanosine monophosphate
DN	� Dominant negative
EC	� Endothelial cell
EndMT	� Endothelial-to-mesenchymal transition
FKBP12	� FK-binding protein-12
GDF	� Growth and differentiation factor
GDF-2	� Gene encoding BMP9
HMGA1	� High-mobility group protein
iTOP	� Induced transduction by osmocytosis and 

propanebetaine
MCT	� Monocrotaline
mPAP	� Mean pulmonary arterial pressure
miRNA	� MicroRNA
NMD	� Non-sense mediated decay
PAEC	� Pulmonary arterial endothelial cells
PAH	� Pulmonary arterial hypertension
PASMC	� Pulmonary arterial smooth muscle cells
PGI2	� Prostacyclin
PKG	� Protein kinase G
PTC	� Premature termination codon

Abstract  Pulmonary arterial hypertension (PAH) is a 
chronic disease characterized by a progressive elevation 
in mean pulmonary arterial pressure. This occurs due to 
abnormal remodeling of small peripheral lung vasculature 
resulting in progressive occlusion of the artery lumen that 
eventually causes right heart failure and death. The most 
common cause of PAH is inactivating mutations in the 
gene encoding a bone morphogenetic protein type II recep-
tor (BMPRII). Current therapeutic options for PAH are lim-
ited and focused mainly on reversal of pulmonary vasocon-
striction and proliferation of vascular cells. Although these 
treatments can relieve disease symptoms, PAH remains a 
progressive lethal disease. Emerging data suggest that res-
toration of BMPRII signaling in PAH is a promising alter-
native that could prevent and reverse pulmonary vascular 
remodeling. Here we will focus on recent advances in res-
cuing BMPRII expression, function or signaling to prevent 
and reverse pulmonary vascular remodeling in PAH and its 
feasibility for clinical translation. Furthermore, we summa-
rize the role of described miRNAs that directly target the 
BMPR2 gene in blood vessels. We discuss the therapeutic 
potential and the limitations of promising new approaches 
to restore BMPRII signaling in PAH patients. Different 
mutations in BMPR2 and environmental/genetic factors 
make PAH a heterogeneous disease and it is thus likely that 
the best approach will be patient-tailored therapies.
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RV	� Right ventricle
SMC	� Smooth muscle cell
TGF-β	� Transforming growth factor-beta
TNFα	� Tumor necrosis factor-alfa

Introduction

Pulmonary arterial hypertension (PAH) is a chronic dis-
ease characterized by a progressive elevation in mean pul-
monary arterial pressure (mPAP >25  mmHg) leading to 
right heart failure and death [1]. PAH is characterized by 
abnormal remodeling of small peripheral lung vascula-
ture resulting in progressive occlusion of the artery lumen. 
In addition, at late stages, so-called plexiform lesions are 
found, which are complex vascular formations originating 
from abnormal endothelial cell (EC) proliferation and vas-
cular smooth muscle cell (SMC) hypertrophy [2]. The basic 
pathogenic mechanisms underlying this disease include 
vasoconstriction, intimal proliferation, and medial hyper-
trophy. These processes are accompanied by illicit recruit-
ment of inflammatory cells which release factors enhanc-
ing cell proliferation and elastin fibers degradation [3, 4] 
(Fig. 1).

More than 70% of patients with familial PAH and 20% 
of idiopathic PAH show heterozygous mutations in the 
bone morphogenetic protein type II receptor (BMPRII) 
[5–8]. BMPRII is a transmembrane serine/threonine kinase 
receptor of the bone morphogenetic protein (BMP) pathway 
which is essential for embryogenesis, development, and 
adult tissue homeostasis. Upon BMP-induced heteromeric 
complex formation of BMPRII with BMP type I receptor 
(BMPRI), BMPRII activates BMPRI by phosphorylation. 
Thereafter, the activated BMPRI propagates the signal into 
the cell through phosphorylation of the SMAD1/5/8 tran-
scription factors.

In PAH, over 300 mutations have been found in the 
BMPR2 gene. These mutations target sequences that 
encode the ligand binding and kinase domain and the 
long cytoplasmic tail; the mutations compromise BMPRII 
function [9]. Although the BMPRII pathway is essential 
for vascular homeostasis and there is a strong correlation 
between BMPR2 mutations and PAH, the incomplete pen-
etrance of BMPRII mutations (20–30%) suggests that other 
genetic and environmental factors contribute to the disease. 
Among them, BMPR2 alternative splicing plays a role in 
PAH penetrance. One BMPR2 splice variant lacks exon 12, 
which is the largest exon of the gene and encodes the cyto-
plasmic tail. It has been shown that carriers of this variant 
are more prone to develop PAH through a dominant-neg-
ative effect (DN) effect on wild-type BMPRII [10]. Fur-
thermore, there are mutations in other genes in the BMP 
pathway, which further strengthens the notion of a causal 

role for this pathway in PAH [11]. Moreover, the co-exist-
ence of modifier genes, infections, toxic exposure, inflam-
mation, or alterations in estrogen metabolism has been 
described [11–14] and some of them were found to down-
regulate BMPRII expression. For example, pro-inflam-
matory cytokines such as tumor necrosis factor α (TNFα) 
and Interleukin 6 induce the expression of miRNAs that 
inhibit BMPRII expression [15]. Furthermore, BMPRII is 
essential for maintaining the barrier function of the pulmo-
nary artery endothelial cell lining and BMPRII deficiency 
increases endothelial inflammatory responses thereby con-
tributing to adverse vascular remodeling [16–18].

Current therapeutic options for PAH are limited and 
focused mainly on reversal of pulmonary vasoconstric-
tion and proliferation of vascular cells through targeting of 

Fig. 1   Physiopathological mechanisms of pulmonary arterial hyper-
tension development. Presence of genetic risk factors such as BMPR2 
mutations together with exposure to deleterious environmental or 
biological stimuli in the lung promotes PAH. PAH development is 
characterized by a disturbance on the signaling pathways that con-
trol pulmonary vascular homeostasis. It results in pulmonary vascu-
lar thickening and occlusion compromising lung and heart function. 
EndMT endothelial-to-mesenchymal transition
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prostacyclin (PGI2), endothelin, or nitric oxide pathways 
[19]. Although these treatments can relieve disease symp-
toms and slow down its progression, PAH remains a pro-
gressive lethal disease. Abundant research over the past 
decade has improved our understanding of the molecular 
mechanisms underlying PAH progression revealing novel 
potential therapeutic interventions [20–22]. Among them 
there are several anti-proliferative strategies including cell 
cycle inhibitors (e.g., mTOR inhibitor rapamycin) and 
anti-apoptotic drugs (e.g., surviving inhibitors) [23]. Fur-
thermore, based on the fact that Rho and ROCK mediate 
smooth muscle cell proliferation in a serotonin-BMPR-
dependent pathway, Rho-kinase inhibitors have been also 
considered [23, 24]. Although several drugs with possible 
benefit in PAH have been identified, only very few have 
been approved for use in the clinic due to toxicity or lack of 
clinical efficacy. This review will focus on recent advances 
on the rescue of BMPRII expression, function, or signaling 
to prevent and reverse pulmonary vascular remodeling in 
PAH. We will discuss data on the in vitro efficacy of the 
different approaches together with the physiological out-
comes in pre-clinical models and their feasibility for clini-
cal translation.

BMP signaling in vascular biology and PAH

BMPs belong to the multifunctional transforming growth 
factor-β (TGF-β) family of secreted dimeric cytokines. 
The effects of BMPs are highly dependent on cellular 
context [25]. In general, BMPs control cellular prolifera-
tion, differentiation, and apoptosis, and play an important 
role in embryonic development and maintaining tissue  
homeostasis [26]. Therefore, perturbation of BMP signal-
ing may lead to skeletal diseases, vascular diseases, and 
cancer [27]. BMPs can be subdivided into four subgroups 
based on their sequence similarity and cell surface recep-
tor affinities: BMP2/4, BMP5/6/7/8, BMP9/10, and growth 
and differentiation factor (GDF)-5/6/7 [28, 29]. BMPs sig-
nal via hetero-tetrameric combinations of type I receptors 
(activin receptor-like kinase (ALK)1, ALK2, ALK3, or 
ALK6) and BMP type II receptors (BMPRII) and activin 
type II receptor (ACVRII)A or ACVRIIB complexes [30, 
31]. Both, type I and type II receptors have a similar struc-
ture encompassing a short extracellular domain, a single 
transmembrane domain and an intracellular domain with 
intrinsic serine-threonine kinase activity. In the vascular 
endothelium, BMP signaling is mainly activated by BMP2, 
4, 6, 9, and 10 [32]. BMP2 and BMP4 bind preferentially to 
the BMPRII in complex with ALK3 or ALK6. BMP6 binds 
to the ACVRIIA-ALK2 complex, while BMP9 and BMP10 
bind to BMPRII or ACVRII in combination with ALK1 or 
ALK2. Whereas BMPRII is a specific receptor for BMPs, 

ACVRIIA and ACVRIIB can also interact functionally 
with other ligands, such as activins, myostatin, and nodal. 
Interestingly, ALK2 and 6 are widely expressed in various 
cell types, while ALK1 has a more selective expression 
pattern and is mainly restricted to ECs. After BMP binding 
and receptor complex formation, the type II receptor kinase 
phosphorylates the type I receptor on serine and threonine 
residues in the glycine-serine rich (GS)-domain causing its 
activation and subsequent phosphorylation of the recep-
tor-associated R-SMAD1, 5, and 8 effector proteins. The 
R-SMADs that are activated by TGF-β type I and activin 
type I receptor (i.e., ALK5 and ALK4, respectively) are 
SMAD2 and SMAD3 and these are distinct from BMP 
R-SMADs. Activated R-SMAD 1, 5, or 8 forms a hetero-
oligomeric complex with common mediator co-SMAD4. 
This complex translocates to the nucleus and regulates the 
expression of target genes by binding to specific enhanc-
ers/promoters upstream of these target genes [30, 33, 34] 
(Fig.  2). Besides canonical BMP receptor/SMAD signal-
ing, activated BMP receptors can initiate non-SMAD sign-
aling pathways such as ERK, JNK, p38 MAP kinases, and 
the phosphatidyl inositol 3 kinase (PI3K)/AKT pathways 
[35–37]. These non-SMAD pathways are also important for 
diversifying and modulating the canonical SMAD signal-
ing pathways that are activated by the BMP receptors [38, 
39]. In addition, BMP activity is also regulated by several 
extracellular modulators, including BMP binding proteins 
NOGGIN, CHORDIN, and FIBULINs. Co-receptors such 
as ENDOGLIN, BETAGLYCAN, and DRAGON fam-
ily members may also modulate the interactions between 
BMPs and BMP receptors [40, 41]. Moreover, intracellu-
lar kinases/phosphatases and other binding proteins have 
been identified as regulators of the trafficking, subcellular 
localization, stability, and function of BMP receptors and 
SMADs [26].

Genetic depletion of different components of the BMP 
signaling cascade leads to embryonic death due to cardio-
vascular malformations and abnormal vascular remodeling. 
BMP signaling plays an important role in vasculogenesis 
(de novo formation of blood vessels from undifferentiated 
mesodermal cells) and angiogenesis (formation of new 
blood vessels from the existing vasculature). In this light, 
it is not surprising to discover that, besides PAH, dysfunc-
tion of BMP signaling has been found to be associated with 
other vascular diseases including hereditary hemorrhagic 
telangiectasia, cerebral cavernous malformation, athero-
sclerosis, and vascular calcification among others [42]. 
Furthermore, BMPRII downregulation has been found to 
be involved in pancreatic and lung fibrosis [43, 44].

Blood vessels are composed of three layers: the tunica 
adventitia consisting of fibroblasts and associated collagen 
fibers; the tunica media composed of SMCs; and the tunica 
intima consisting of ECs coating the interior surface [45, 
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46]. ECs, SMCs, and fibroblasts have been found to play 
a role in the pathogenesis of PAH. Abnormal EC prolif-
eration resulting in the formation of plexiform lesions has 
been frequently described in many PAH cases [47]. In addi-
tion, pulmonary arterial SMCs show an increased prolifera-
tion and decreased apoptosis leading to vessel wall thicken-
ing and vascular remodeling (Fig. 1). The close interaction 
between ECs and SMCs has been found to be involved in 
vessel formation and maintenance. For instance, endothe-
lial derived factors, like endothelin and angiotensin II, 
affect SMCs which increases vascular tone. Similarly, nitric 
oxide and PGI2 secreted by ECs modulate the vasodilator 
response of SMCs [48]. In particular, PGI2 has been found 
to be reduced in PAH patients [49].

BMP signaling is known to control cell migration, pro-
liferation, and apoptosis in ECs and SMCs [45]. BMP9 
and BMP10 are present in the circulation and play an 
important role in the vasculature. Their associated recep-
tors BMPRII and ALK1 and co-receptor ENDOGLIN are 
predominantly expressed on ECs [50, 51] and together 
can modulate the ability of ECs to migrate and prolifer-
ate [27]. Furthermore, BMPRII is also expressed in vas-
cular SMCs where it has been shown to be necessary 

for the control of proliferation and differentiation [52]. 
Besides mutations in the BMPR2 gene, mutations in 
the genes of other BMP signaling components (such as 
GDF-2, ACVRL1, ENDOGLIN, and SMAD8) have also 
been linked to PAH development [11, 53–59]. This asso-
ciation reinforces the importance of BMP signaling in 
the control of vascular homeostasis, and suggests that 
there is a causal link between perturbation of canonical 
BMP/SMAD signaling and PAH. In support of this view, 
recent, new DNA sequencing techniques helped to iden-
tify new gene mutations associated to PAH [Caveolin-1 
(CAV1), KCNK3, and EIF2AK4] [60, 61] (Fig. 2).

The abnormal vascular remodeling that characterizes  
PAH involves an accumulation of α-smooth muscle, 
actin-expressing mesenchymal-like cells indicating that 
the endothelial-to-mesenchymal transition (EndMT) 
may be involved in the pathogenesis of the disease [62]. 
In addition, BMPRII reduction in pulmonary artery 
endothelial cells (PAECs) has been found to promote the 
trans-differentiation of epithelial cells into motile mesen-
chymal cells via the transcription factors high-mobility 
group protein (HMGA)1 and its target SLUG [63].

Fig. 2   BMP signaling in 
endothelial cells. BMP9 and 
BMP10 present in the circu-
lation initiate signaling by 
binding and bringing together 
BMPRII and ALK1. BMPRII 
phosphorylates ALK1 which 
then propagate the signal 
through phosphorylation of 
SMAD1/5/8. Subsequently, 
SMAD4 forms a complex with 
SMAD1/5/8, which translo-
cates to the nucleus regulating 
the expression of target genes 
such as ID1 and ID3. Known 
gene mutations associated with 
PAH are highlighted in red. 
It includes mutations in BMP 
signaling components (GDF2, 
BMPR2, ALK1, SMAD8, and 
ENDOGLIN) as well as recently 
discovered non-directly related 
BMP genes (CAV1, KCNK3, 
and EIF2AK4). CAV caveolin, 
EFI2AK4 eukaryotic translation 
initiation factor 2α kinase 4, 
ENG ENDOGLIN, ID inhibi-
tor of DNA binding, KCNK3 
potassium channel subfamily K 
member 3
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Animal models of PAH

PAH has a complex etiology and pathobiology with many 
factors contributing to its development [64]. A variety of 
pre-clinical rodent models have been used to study the 
underlying pathophysiological mechanisms and to test 
novel therapeutic strategies for PAH. A proper model 
should be reproducible, inexpensive, and faithfully repro-
duce (in a defined period) the basic features of PAH such 
as complex destructive neointimal lesions and right ventri-
cle (RV) dysfunction and failure. To date, there is no model 
that recapitulates all of the pathophysiological mechanisms 
and the clinical course of human PAH. For instance, in 
the chronic hypoxic exposure or monocrotaline (MCT)-
induced rat models, pulmonary hypertension rarely devel-
ops with the same severity observed in humans perhaps due 
to the absence of obstructive intimal lesions in the periph-
eral pulmonary arteries [65, 66]. Furthermore, the chronic 
hypoxia model does not lead to RV failure, while MCT 
injection causes myocarditis affecting both ventricles and 
causing liver and kidney damage [67]. These limitations 
may explain why it is difficult to translate the reversal of 
PAH in animal models by several experimental compounds 
into therapies for PAH patients.

In recent years, second-generation animal models have 
been established based on the combination of multiple 
triggers: MCT plus pneumonectomy, MCT plus chronic 
hypoxia, and SU5416 plus chronic hypoxia. To circumvent 
the problem of the embryonic lethality of BMPR2 knock-
out mice, switchable rodent models have been developed, 
by means of BMPR2 conditional knock-out, whereby the 
mutation can be activated after birth [68–70]. Moreo-
ver, genetic rodent models have been developed includ-
ing overexpression of interleukin-6. These new models 
closely mimic the features and the severity of human PAH 
although not completely [71]).

Restoring BMPRII signaling as a therapeutic 
strategy

While hereditary PAH have been linked to heterozygous 
mutations in the BMPR2 gene, non-genetic forms of PAH 
show a reduction in BMPRII levels and activity [9]. Con-
sistent with this, heterozygous BMPR2 deletion in PAECs 
and pulmonary artery smooth muscle cells (PASMCs) 
mimics the PAH phenotype [69, 72]. Furthermore, mice 
expressing a dominant-negative BMPRII (lacking an intra-
cellular domain) in vascular SMC, develop vascular lesions 
in the lungs [68, 72].

There is strong evidence suggesting that BMPRII signal-
ing has a protective role in the vascular wall by promoting 
the survival of PAECs, inhibiting PASMCs proliferation 

and triggering anti-inflammatory responses [17, 73, 74]. 
Based on this, modulation of BMPRII signaling is consid-
ered a promising therapeutic approach for PAH. Impor-
tantly, the rescue of BMPRII expression may not exclu-
sively benefit PAH patients but also patients suffering from 
pancreatic and lung fibrosis where BMPRII deficiency has 
been implicated [43, 44]. BMPRII restoration can be tar-
geted at different levels: genetic-based therapies, transcrip-
tional and translational regulation, protein activity, and 
processing as well as SMAD downstream signaling modu-
lation [27, 75, 76] (Fig. 3).

Genetic‑based therapies

Exogenous BMPR2 gene delivery

One strategy to treat PAH patients is to rescue BMPRII 
expression through gene therapy targeting ECs. In pre-
clinical models, this was explored by Reynolds et al., who 
administrated a vector inducing BMPRII expression via 
tail-vein injection. The BMPR2 encoding virus targets the 
pulmonary endothelium by binding to the highly expressed 
pulmonary endothelial angiotensin-converting enzyme 
(ACE) using a bi-specific conjugate antibody. This BMPR2 
adenoviral vector restored BMPRII protein levels in human 
microvascular PAECs and attenuated the PAH phenotype 
in a chronic hypoxia model and MCT-treated rats [77, 
78]. Furthermore, BMPRII overexpression in lung tissue 
was shown to reverse the imbalance between BMPRII and 
TGFβ signaling thus restoring normal levels of pSMAD 
1/5/8 and the activation of PI3K and p38 MAP kinase [79]. 
In contrast, BMPRII administration via an aerosol route  
targeting PASMCs did not improve the PAH phenotype 
when tested in the MCT model [80]. The later result high-
lights the importance of BMPRII signaling in ECs but not 
SMCs. However, further investigations will be required to 
elucidate precisely how spatio-temporal control BMPRII 
overexpression might provide therapeutic benefit in the 
context of BMPR2 mutations. It should be noted that ade-
noviral vectors are only capable of transient gene expres-
sion since the delivered gene is not integrated into the host 
chromosome. Stable integration can be achieved and lenti-
viral vectors are potentially an attractive vehicle to deliver 
longer term transgene expression since they integrate into 
the genome and they can infect non-proliferating cells, 
when compared to retroviral vectors. An important poten-
tial limitation of this approach is that integrating vectors 
may generate gene mutations upon insertion and newer 
advances regarding self-inactivating vectors are needed 
[81, 82]. Adeno-associated virus and helper dependent ade-
noviral vectors (the latest generation of recombinant adeno-
viral vectors) are a promising alternative since they deliver 
longer durations of transgene expression when compared 
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to the first-generation vectors. Moreover, they show nei-
ther long-term adverse effects in liver nor an immunologi-
cal response [83, 84]. Taken together, exogenous BMPR2 
delivery is a possible therapy for PAH, but further improve-
ments in vector technology are required to translate this 
approach to the clinic for the treatment of pulmonary vas-
cular disease.

Transcriptional regulation

miRNA targeting BMPRII

In recent years, there has been an increasing interest in the 
role of epigenetics in the development of PAH [85, 86]. 
Epigenetics refers to heritable changes in gene expres-
sion that do not involve alterations in the DNA sequence. 

miRNAs are small non-coding RNAs that negatively, post-
transcriptionally regulate the expression of target genes by 
interfering with both the stability of the target transcript as 
well as its translation. miRNAs have emerged as essential 
players in the development (and diseases) of the cardiovas-
cular system. They also play an important role in vascular 
remodeling [87, 88]. miRNAs are expressed in the vascu-
lature and are essential for the regulation of vessel func-
tion. Many miRNAs control proliferation, differentiation, 
and apoptosis of ECs and SMCs by targeting components 
of the TGF-β/BMP signaling pathways. Several miRNAs, 
such as miR-145, miR-21 and the miR17/92 cluster, have 
been associated with the disrupted BMPRII pathway in 
PAH and can explain the incomplete penetrance of BMPR2 
mutations [89–91]). Figure 4 and Table 1 provides an over-
view of currently described miRNAs that target BMPR2 

Fig. 3   Rescuing the BMPRII 
signaling pathway in pulmonary 
arterial hypertension. Modula-
tion of BMPRII signaling is 
considered a promising thera-
peutic approach for PAH. This 
could be achieved by different 
methods aiming to increase the 
amounts of BMPRII present 
in the cell or to trigger BMP 
signaling. These approaches 
include exogenous BMPRII 
delivery, inhibition of miRNAs 
negatively regulating BMPRII 
stability and translation, inhibi-
tion of lysosomal degradation, 
and delivery of exogenous BMP 
ligands or BMP coactivators 
among others
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expression in vascular cells. In addition, Table  1 shows a 
list of other miRNAs that are predicted to target BMPR2 in 
silico.

Currently, there are different technologies to inhibit 
aberrantly overexpressed miRNAs including the use of 
antisense oligonucleotides, masking, sponges, erasers, 
or decoys [92, 93]. In addition, administration of miRNA 
mimics can enhance the expression of downregulated miR-
NAs [94]. These strategies are still under development 
and more research is needed to establish how modulation 
of miRNA function could offer therapeutic benefits in a 
clinical setting while avoiding off-target effects, especially 
in the liver, where systemically administrated miRNAs or 
modulating compounds preferentially accumulate [95].

The delivery routes mostly used to target lung dis-
ease are local intranasal and intra-tracheal administration. 
These naked miRNAs are directly delivered into the lung 
with minimal systemic side effects [96]. Nevertheless, this 
method remains ineffective and challenging due to the 
complexity of the lung [97]. Recent advances in delivery 
strategies, such as the use of liposomes, nanoparticles, or 
virus, combined with improvements in chemically modi-
fying miRNAs, represent promising strategies to improve 
lung miRNA delivery [98]. More than 20 miRNAs are cur-
rently in clinical trials, several in Phase III stage, highlight-
ing the potential of miRNA therapeutics to restore BMPRII 
in PAH [99]. To date, the potential for miRNAs as a thera-
peutic tool is relatively limited. Further studies focusing on 

the specificity, safety, efficiency, and stable systemic deliv-
ery of miRNAs into target cells or tissues will improve the 
process of translating these findings to the clinic.

Translational regulation

Read‑through premature STOP codons

Most BMPR2 mutations (~70%) are non-sense muta-
tions (frame-shift deletions and insertions) generated 
by the insertion of a premature termination codon (PTC) 
resulting in truncated reading frames which produce non-
functional proteins [7]. To prevent formation of truncated 
proteins, mutated transcripts are directly degraded through 
non-sense mediated decay (NMD) resulting in insufficient 
amounts of the functional protein, which is produced only 
by the wild-type allele (haplo-insufficiency) [100, 101]. 
NMD usually does not completely reduce the levels of 
mutated transcripts and as a result truncated proteins per-
sist, and may exert a DN effect [102].

An approach aimed to correct these types of mutations 
consists on the induction of PTC read-through. Read-
through of truncated mutations by aminoglycoside anti-
biotics, such as Gentamicin, has been extensively studied 
and has reached the clinical trial stage for genetic disorders 
such as cystic fibrosis [103] and Duchenne muscular dys-
trophy [104–110]. Aminoglycoside antibiotics bind to the 
decoding site of ribosomal RNA and eliminates the PTC 

Fig. 4   miRNAs targeting 
BMPRII in the vascular wall. 
The illustration shows hypoxia 
and BMPRII mutations as regu-
lators of miRNAs expression in 
endothelial or smooth muscle 
cells. These miRNAs negatively 
regulate BMPRII expression 
resulting in increased cell 
proliferation and impaired 
apoptosis. Green arrows 
indicate activation, red arrows 
represent inhibition, and black 
arrows correspond to unknown 
regulation. EC endothelial cells, 
IL interleukin, miR micro RNA, 
mut mutant, SMC smooth mus-
cle cell, STAT signal transducer, 
and activator of transcription
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by incorporating an amino acid to generate full-length pro-
teins [111]. Importantly, this read-through function of ami-
noglycosides does not affect normal translation because 
of the presence of upstream and downstream regulatory 
sequences around a normal termination codon that ensure 
optimal efficiency of termination [112]. Gentamicin treat-
ment has been tested in lymphocytes derived from two 
PAH patients with PTC mutations [113, 114]. The results 
demonstrated increased amounts of full-length BMPRII 
protein, a reduction in the mutated BMPRII product and 
enhanced BMPRII downstream signaling. Although amino-
glycosides are commonly used in the clinic to treat infec-
tions and are safe when administered directly to the lung by 
inhalation, several side effects of long-term treatments and/
or high concentrations of the drug have been shown.

Recently, a high-throughput screening for compounds 
that suppress non-sense mutations identified a new small 
molecule named Ataluren (PTC124) which mediates 
read-through of premature stop codons without acute 
side effects [115]. Aldred et  al. have demonstrated that 
after Ataluren treatment, BMPRII protein levels were 
normalized and BMP-dependent phosphorylation of the 
downstream target R-SMADs was increased in PAECs 
and PASMCs from PAH patients. In addition, the hyper-
proliferative phenotype of these cells was reversed even 
in the presence of significant non-sense mediated mRNA 
decay. Although, further studies, including animal mod-
els, are required to explore the relevance of Ataluren 
in  vivo in a PAH context, the compound has emerged 
as a promising therapeutic strategy for a subset of PAH 
patients.

Table 1   miRNA targeting BMPRII expression

MicroRNA Cell type Function Model Expression References

miR-17/92 EC Interleukin-6 modulates the expres-
sion of the BMPRII through a novel 
STAT3–microRNA Cluster 17/92 
pathway

PAEC ∃ Brock et al. [13]

SMC Inhibition of miR-17 enhances 
BMPRII expression and improves 
heart and lung function in experi-
mental PH

PASMC Hypoxia-induced PH mice 
MCT-induced PH rats

? Pullamsetti et al. [164]

miR-20A SMC Treatment with antagomiR-20a 
restores functional levels of BMPRII 
in pulmonary arteries and prevents 
the development of vascular remod-
eling

PASMC Hypoxia-induced PH mice ? Brock et al. [165]

miR-21 EC Hypoxia and BMPRII signaling 
independently upregulate miR-21. In 
a reciprocal feedback loop, miR-21 
downregulates BMP receptor type II 
expression

PAEC Several rodent models of PH 
miR-21-null mice

# Parikh et al. [166]

SMC BMPRII was downregulated in 
PASMCs overexpressing miR-21

PASMC Hypoxia-induced PH mice # Yang et al. [167]

miR-125 EC Inhibition of miR-125a resulted in 
upregulated BMPRII expression 
accompanied by increased prolifera-
tion of EC

PAEC Hypoxia-induced PH mice 
Plasma PAH patients

# Huber et al. [168]

miR-143/145 SMC miR-145 expression is increased in 
primary PASMCs cultured from 
patients with BMPRII mutations and 
in the lungs of BMPRII-deficient 
mice

PASMC Hypoxia-induced PH mice 
BMPRII R899X knock-In Mice 
miR-145 knock-Out Mice Lugn tis-
sue PAH patients

# Caruso et al. 2012 [169]

miR-302 SMC Inhibition of miR-302 by BMP4 
increases BMPRII expression 
and facilitates the BMP signaling 
pathway

PASMC ? Kang et al. 2012 [170]

miR-181c cardiac Increased miR-181c expression 
in human cardiac samples from 
individuals with ventricular septal 
defects (VSD) was correlated with 
downregulated BMPRII levels

Human VSD cardiac samples # Li et al. [171]
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Protein processing regulation

Rescue of BMPRII trafficking

30% of BMPR2 mutations are missense mutations leading 
to single amino acid substitutions in a conserved domain 
affecting the overall function of the protein [7]. Mutations 
resulting in the substitution of cysteine residues in the 
ligand binding and kinase domains disrupt protein folding 
and trafficking of BMPRII to the cell surface leading to 
retention of the mutant receptor in the endoplasmic reticu-
lum (ER) [113, 116]. A potentially promising therapeutic 
strategy to increase the expression of BMPRII at the plasma 
membrane is to enhance the activity of chaperones which 
facilitate protein folding and trafficking. This can be done 
by means of chemical chaperones such as sodium phenyl-
butyrate (4-PBA), probenecid, and tauroursodeoxycholic 
acid (TUDCA). These have been shown to improve protein 
trafficking via several distinct mechanisms [117–126]. Dif-
ferent groups have demonstrated that treatment with chemi-
cal chaperones can partially restore cell surface expression 
of BMPRII in ECs. As a result, BMP-induced SMAD 1/5/8 
phosphorylation and the expression of the target gene ID1 
is restored [127–129]. These agents are showing promise 
in clinical trials for other diseases caused by misfolded 
proteins, such as cystic fibrosis. Since the currently used 
chemical chaperones are federal drug administration (FDA) 
approved drugs, there is an immediate translational poten-
tial to treat PAH patients [118, 130–133]. However, fur-
ther in vivo studies are required to test the viability of this 
approach.

Even though chemical chaperones have the potential to 
rescue the BMPRII mutants which are retained in the ER, it 
remains to be investigated whether the amount of BMPRII 
reaching the plasma membrane is enough to induce a clini-
cally relevant effect. Also, BMPRII with a protein-folding 
defect expressed at the cell surface may have a dominant-
negative activity and adverse effects on BMP signaling 
[127]. Moreover, patients harboring missense mutations 
that affect the activity of the receptor (kinase domain) may 
not benefit from this therapeutic strategy. Further research, 
taking this mutation variability into account, is required to 
determine which patients might benefit from this approach.

Inhibition of lysosomal degradation

The deciphering of mechanisms which regulate cell sur-
face expression levels of BMPRII are of potential clini-
cal importance, particularly those mechanisms that pre-
vent its rapid turnover and thereby restore downstream 
BMPRII signaling and function. In this context, several 
studies focused on the potential of targeting the degra-
dation of BMPRII by preventing lysosomal degradation 

[134]. Durrington et  al. have demonstrated that after 
Kaposi sarcoma-associated herpesvirus infection, 
BMPRII is ubiquitinated by K5 (membrane-associated 
RING E3 viral ubiquitin protein ligase) leading to lyso-
somal degradation in primary cultured pulmonary vascu-
lar cells [134]. In addition, cells treated with the lysoso-
mal inhibitor concanamycin A exhibit increase levels of 
BMPRII. Furthermore, through siRNA screening of the 
NEDD4-like family E3 ubiquitin protein ligases, it was 
found that knockdown of ITCH expression resulted in 
increased BMPRII protein levels [134]. Whether ITCH 
ubiquitinates BMPRII, leading to lysosomal degrada-
tion, has yet to be investigated. Satow et  al. have dem-
onstrated that BMPRII is degraded via the proteosomal 
pathway in HEK 293T cells, when it is associated with 
Dullard phosphatase [135]. This might suggest that more 
than one mechanism accounts for BMPRII proteasome-
mediated degradation. It is noteworthy that Satow et  al. 
used a BMPRII overexpression system, whereas Dur-
rington et  al. studied the degradation of endogenous 
BMPRII [134]. Different membrane trafficking pathways 
such as endocytosis, phagocytosis, micropinocytosis, and 
autophagy, use lysosomes for the digestion of diverse 
macromolecules [136]. Caveolae-mediated endocytosis 
affects multiple cellular signaling pathways by the redis-
tribution of transmembrane receptors and receptor-ligand 
complexes [137–139]. BMPRII localization has been 
found to be regulated by CAV1 in vascular SMC [137]. 
Recently, ELAFIN (endogenous serine protease inhibitor) 
treatment has been shown to prevent and reverse PAH in 
the SU-hypoxia rat model. This occurs via elastase inhi-
bition and by promoting the interaction of BMPRII with 
CAV1. Interestingly, when ELAFIN was combined with 
BMP9, there was enhanced co-localization of CAV1 and 
BMPRII on PAEC surfaces, which led at an increase in 
BMP9-dependent SMAD1/5 phosphorylation and induc-
tion of ID1 [137]. Furthermore, transgenic mice overex-
pressing human ELAVIN in the cardiovascular system 
(by placing ELAVIN expression under the control of the 
pre-proendothelin-1 promoter), exhibited reduced SMC 
proliferation and medial/intimal thickening after carotid 
artery wire injury [140] and were protected from hypoxic 
pulmonary hypertension [141]. In agreement with this, 
peptidyl trifluoromethylketone serine elastase inhibitors 
such as M249314 or ZD0892, have been used to prevent 
and reverse PAH in the MCT rat model [142]. However, 
the clinical use of these compounds was not pursued due 
to hepatotoxicity. ELAFIN has been shown to inhibit 
myocardial ischaemia-reperfusion injury induced during 
coronary artery bypass graft surgery [143]. Even though 
ELAFIN infusion was safe and resulted in >50% inhi-
bition of elastase activity in the first 24 h, myocardial 
injury was not reduced after 48 h. Based on the biology 
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of ischemia–reperfusion injury and PAH, we believe it 
is worth testing whether ELAFIN together with BMP9 
could reverses PAH in patients.

Interestingly, autophagy has also been found to be 
involved in PAH. Autophagy (literally, “self-eating” in 
Greek) is a highly regulated catabolic process that involves 
sequestration and lysosomal degradation of cytosolic 
components such as dysfunctional organelles, misfolded 
proteins, lipid droplets, and invading pathogens [144]. 
Autophagy can be considered to be a general housekeep-
ing mechanism maintaining the integrity of intracellular 
organelles and proteins. It is also triggered during devel-
opment, differentiation, infection, and stress conditions. 
Thus, autophagy can be activated in the presence of dam-
aged organelles, protein aggregates, intracellular patho-
gens, hypoxia, amino acid starvation, reactive oxygen spe-
cies, and DNA damage [145]. Long et al. have shown that 
in rats suffering from PAH induced by MCT treatment, 
there is increased autophagy together with a decrease of 
BMPRII protein expression [146]. Moreover, inhibition of 
autophagic degradation by the lysosomal inhibitors chloro-
quine and hydroxychloroquine [147] prevents the develop-
ment of PAH as well as its progression. The authors dem-
onstrated that chloroquine and ATG5 (an autophagy protein 
involved in the elongation and closure of the autophago-
somal membrane) knockdown inhibited proliferation and 
increased apoptosis of PASMCs and these effects corre-
lated with increased levels of BMPRII via lysosomal inhi-
bition. Although autophagy seems to be involved in the 
degradation of BMPRII, the exact mechanism by which 
this takes place has yet to be elucidated. Chloroquine and 
hydroxychloroquine have been widely utilized in malaria 
prophylaxis [148]. They have also been used to treat rheu-
matoid arthritis and lupus erythematosus (as anti-inflam-
matory agents) [148]. Since inflammation is thought to be 
a crucial second hit in PAH [149], these drugs might be 
effective at inhibiting PAH progression by impairing the 
degradation of BMPRII as well as inhibiting the inflam-
matory response. However, it is important to keep in mind 
that since lysosomal degradation is a ubiquitous cellular 
mechanism for regulating protein processing, this approach 
can lead to widespread and non-specific off-target effects 
independent of BMPRII signaling. Therefore, an improved 
understanding of the molecular mechanisms underlying 
BMPRII turnover is required for the development of more 
directed interventions.

BMPRII signaling regulation

Delivery of exogenous BMP ligand

As mentioned previously, BMP signaling in the vascular 
endothelium is mainly activated by BMP2, 4, 6, 9, and 10 

[32]. In particular, BMP9 and BMP10 appear to play an 
important role in the vasculature due to their presence in 
the circulation and based on the fact that they are known 
to signal through receptors expressed on the endothelium, 
such as ALK1 and BMPRII or ACVRIIB. Therefore, the 
stimulation of BMP signaling with exogenous recombi-
nant ligand is an interesting approach for PAH treatment 
[11, 150]. Long et  al. have shown that BMP9 prevents 
apoptosis and enhances the integrity of ECs in PAECs and 
blood outgrowth ECs from PAH patients. Furthermore, 
therapeutic BMP9 delivery prevents and reverses PAH in 
several mouse models [70]. BMP10 is the least studied 
BMP ligand; however, it may present a better treatment 
than BMP9 since it binds to ALK1 and BMPRII with 
higher affinity and because of its lack of osteogenic activ-
ity in  vitro [151]. Further studies have to be performed 
to evaluate the delivery strategies, efficiency, and poten-
tial side effects of BMP9 and BMP10 in vivo. Finally, the  
development of a small peptide mimetics of BMP9 or 
BMP10, with an increased affinity for the receptor, is a the-
oretical alternative for efficiently activating BMP signaling 
and thereby reversing PAH [150].

Enhance downstream SMAD signaling

An additional approach to reverse the effect of mutant 
BMPRII is use small molecules to enhance signaling of 
the wild-type functional proteins. Sildenafil is a phospho-
diesterase type-5 (PDE5) inhibitor currently used in the 
clinic for PAH treatment [152–154]. Its mode of action is to 
block the degradation of cyclic guanosine monophosphate 
(cGMP) resulting in corrective vasodilatory and anti-pro-
liferative effects in the arterial wall [155]. Furthermore, it 
has been described that protein kinase G (PKG) activated 
by cGMP, is a modulator of BMP signaling [156] and that 
PASMCs expressing a BMPRII mutant, showed an increase 
in BMP signaling after Sildenadil treatment via a cGMP/
PKG-dependent mechanism. In addition, in  vivo stud-
ies confirmed that Sildenafil treatment enhanced BMP  
signaling and partially reversed PAH development in the 
MCT rat model [157, 158]. Although Sildenafil therapy 
during 12 weeks improves multiple clinical symptoms 
in PAH patients, it appears to have no effect on reducing 
either mortality or serious adverse events [159]. Further-
more, the long-term efficiency and safety of Sildenafil 
therapy in PAH requires further studies based on large and 
well-designed clinical trials [159].

Another promising strategy is to identify compounds in 
drug libraries that activate BMP/SMAD signaling. FK506 
(Tacrolimus) was identified as the best BMP coactiva-
tor among 3756 FDA-approved drugs and bioactive com-
pounds (using a high-throughput BMP/SMAD-driven tran-
scriptional reporter assay) [160]. FK506 promotes BMP 



2989BMP type II receptor as a therapeutic target in pulmonary arterial hypertension﻿	

1 3

signaling and endothelial-specific gene regulation of genes 
such as APELIN. This occurs even in the absence of exog-
enous ligand via a dual mechanism of action: acting as an 
inhibitor of phosphatase CALCINEURIN and binding FK-
binding protein-12 (FKBP12), a repressor of BMP signal-
ing. FK506 promotes the release of FKBP12 from the type 
I receptor which leads to activation of SMAD1/5 down-
stream of BMP as well as MAPK signaling and ID1 gene 
regulation [161]. Furthermore, FK506 treatment increases 
ALK1 and ENDOGLIN expression in ECs [162]. Recently, 
a randomized, double-blind, placebo-controlled phase IIa 
trial was performed to investigate the efficacy of FK506 
treatment in three patients with end-stage PAH. The results 
suggest a potential clinical benefit of low-dose FK506 (the 
evidence being that patients demonstrated cardiac function 
stabilization and required less intensive hospital care for 
RV failure despite the severity of the illness). It was also 
found that changes in serologic biomarkers indicated that 
BMPRII had been successfully targeted [163]. However, 
these results are based on a limited group of patients and 
the efficacy of this therapy must be validated in appropri-
ate, well-designed clinical trials. FK506 (also known as 
Tacrolimus) is an immunosuppressive drug with a known 
pharmacokinetic and toxicity profile. It is widely used in 
solid organ transplantations to lower the risk of organ rejec-
tion [164]. High doses of FK506 caused systemic hyper-
tension and transplant vasculopathy in animal models 
[165]. Also, organ transplant patients treated with FK506, 
have an increased risk of renal injury, which might occur 
due to the inhibition of calcineurin expression in the kid-
ney [166–168]. In contrast, low doses of FK506 did not 
induce systemic hypertension in animal models, even after 
3 weeks of treatment. FK506 has shown significant clinical 
benefits, nonetheless long-term use of this agent for treat-
ing PAH still needs to be rigorously monitored for toxicity 
effects.

Conclusions and perspectives

Exogenous BMPRII delivery to ECs has been shown to 
be an effective means to restore BMPRII expression and 
function [77, 78]. An interesting approach, which is yield-
ing promising results in mice, is to deliver BMPRII spe-
cifically to ECs using BMPRII adenoviral vectors carry-
ing a bi-specific conjugate antibody that targets the virus 
to ACE, a membrane-bound protease highly expressed on 
pulmonary endothelial cells [77, 78]. One of the draw-
backs of this strategy is the use of two components namely, 
adenovirus and antibody. Additional restrictions related 
to the use of viral transduction such as safety, specificity, 
and delivery of sufficient protein to revert the phenotype 
must also be taken into consideration. The utilization of 

CRISPR/Cas9 may overcome some of these limitations, for 
instance by minimizing the risk that the foreign gene will 
be integrated in the wrong place in the genome. Further-
more, it will place the gene under the control of its natu-
ral promoter. However, the delivery of CRISPR/Cas9 into 
the patient is still challenging and the Cas9 enzyme could 
cleave at unwanted locations. Similarly, the use of miRNAs 
targeting BMPRII has to be evaluated for off-target effects 
and an effective delivery system has to be found in order 
to consider this approach as a promising treatment. A solu-
tion for both plasmid DNA and miRNA delivery might be 
the use of liposomes [169] or iTOP (induced transduction 
by osmocytosis and propanebetaine), which is an active 
uptake mechanism in which NaCl-mediated hyperosmo-
larity together with propanebetaine triggers the uptake of 
macromolecules [170]. Another therapeutic strategy is the 
use of FDA-approved drugs that have been found to be ben-
eficial in PAH mice models or similar diseases. Ataluren, 
for example, allows the cellular machinery to read-through 
premature stop codons [115]. Although most of the BMPR2 
mutations (~70%) are non-sense mutations, not all patients 
will benefit from this approach. Nevertheless, further 
in vivo studies are worth pursuing in the context of PAH. 
Likewise, clinical trials using chloroquine have to be per-
formed to test its effectiveness in PAH patients. The use of 
chloroquine has to be carefully evaluated because blocking 
lysosomal degradation might trigger non-specific off-target 
effects when used as a long-term treatment. An alterna-
tive drug showing significant clinical benefits for PAH is 
FK506/Tacrolimus. However, it still needs to be monitored 
for side effects since it is an immunosuppressive drug (cur-
rently utilized after allogeneic organ transplant). Moreover, 
the effectiveness of FK506 at low doses has to be rigor-
ously tested.

It is important to highlight that although several drugs 
showed beneficial outcomes in animal models, most of the 
drugs have failed in the clinic. In light of this, we should 
focus on a more personalized approach which takes into 
account the co-existence of modifier genes, infections, 
toxic exposure, inflammation, or alterations in estrogen 
metabolism. Combining treatments which target not only 
BMPRII signaling but also inflammation and hypoxia 
should improve outcomes. Lastly, the use of human ex vivo 
models such as lung or vessel on a chip [171] could be ben-
eficial for drug discovery and efficacy testing in the context 
of PAH. We anticipate that such models may improve the 
relevance of pre-clinical results by using patient derived 
cells, especially since animal models of PAH are frequently 
difficult to translate into clinical practice.

Taken together, previously discussed data suggest that 
modulation of BMPRII signaling in PAH is a promising 
alternative that could prevent and reverse pulmonary vascu-
lar remodeling. However, different therapeutic approaches 
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aimed at to increasing the levels of BMPRII signaling are 
needed, and these approaches will depend on the particular 
genetic background of each patient. In addition, for more 
efficient treatments, targeting other genetic and environ-
mental factors that contribute to the disease must be taken 
into consideration. In this regard, modulators of the inflam-
matory response and estrogen metabolism could be used to 
help restore BMPRII signaling.
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