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Abbreviations
HEAT	� Acronym for four proteins (but not restricted to) 

that possess this specific domain:Huntingtin, 
Elongation factor 3, protein phosphatase 2A

IRS-1	� Insulin receptor substrate-1

Introduction

The mammalian Target of Rapamycin (mTOR) pathway 
is a central converging point of a diverse range of cellular 
growth signals, including hormones/growth factors, nutri-
ents, energy status, and mechanical strain. The mTOR 
protein associates with other proteins to form mTOR com-
plexes 1 and 2 (mTORC1 and mTORC2). mTORC1 is char-
acterized by its association with Raptor (regulatory associ-
ated protein of mTOR), whilst mTORC2 is associated with 
Rictor (rapamycin insensitive companion of mTOR) [44]. 
Raptor and Rictor are both binding and scaffold proteins 
that direct mTOR activity towards specific substrates [49, 
60, 80], therefore, providing specificity in determining cel-
lular functionality. In the case of mTORC1, mTOR speci-
ficity is directed to p70 S6 Kinase (p70S6K) and 4E-BP1 
[16, 37], which makes mTORC1 a central node regulating 
protein synthesis, cell size, and proliferation [36, 37, 98] 
that is highly responsive to nutrients and energy stress [7, 
60]. On the other hand, mTORC2 directly phosphorylates 
AKT [81] regulating aspects of cell survival and the organ-
ization of actin cytoskeleton [80, 95].

4E-BP1 and p70S6K possess the conserved TOS 
(TOR signaling) motif that is essential for activation 
by mTOR [82, 83]; although mTOR exhibits differing 
kinase activity towards these targets [16, 20, 21]. Whilst 
mTOR-dependent phosphorylation of downstream effec-
tors is a well-characterized signaling event [16, 82], there 
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is frequent uncertainty regarding the functional signifi-
cance of phosphorylation of the mTOR protein itself. The 
mTOR protein has multiple residues that can undergo 
phosphorylation. Phospho-specific antibodies have been 
developed and are frequently used in experimental and 
clinical studies. Antibodies that recognize the Ser2481 
and Ser2448 phosphorylation residues of mTOR are 
widely reported in the skeletal muscle biology literature, 
from basic cell culture experiments to applied exercise/
nutrition physiology studies in humans. Indeed, it has 
been fifteen years, since the first studies reported meas-
urements of Ser2448 phosphorylation in muscle tissue 
[10, 76]. Since then, the biomedical and muscle research 
field has experienced a substantial growth of scientific 
papers reporting measurement of Ser2448 phosphoryla-
tion (Fig. 1) purportedly to assess mTOR kinase activa-
tion or as a proxy measure of induction of the mTOR 
pathway. However, the relevance of this phosphosite to 
the kinase activity of mTOR is frequently not consid-
ered. Thus, the role of the Ser2448 phosphorylation site 
in control of mTOR activity will be discussed herein 
and further how new insights in muscle physiology can 
be gained from revaluation of past studies utilizing this 
phosphorylation site.

Where Ser2448 is located within mTOR?

The (m)TOR protein is a highly evolutionarily conserved 
serine/threonine kinase protein from yeast to humans [26, 
35, 46]. Multiple phosphorylation sites are present on the 
mTOR protein structure including Serine 1261, Serine 
1415, Serine 2159, Threonine 2164, Threonine 2446, Ser-
ine 2448, and Serine 2481 (Fig. 2) [32, 99]. The Ser1261 
residue lies within mTOR HEAT-repeat motif, is phospho-
rylatable on both mTORC1/mTORC2, and its phosphoryla-
tion appears to increase mTORC1 kinase activity [1]. The 
Ser1415 is a recent discovered phosphorylatable site by 
IKKα directly following activation by AKT that increases 
mTORC1 activity [25]. The Ser2159 and Thr2164 residues 
lie within the kinase domain and phosphorylation of these 
residues promotes activation of mTORC1 [32]. The oth-
ers remaining phosphorylatable mTOR residues (Thr2446, 
Ser2448, and Ser2481) are found in the FIT domain (Found 
In TOR) spanning TOR residues 2427 to 2516 [88, 99], 
between the kinase domain and the FATC domain [51, 
99]. Initially, it was thought that Ser2481 and Ser2448 
were phosphorylation residues specific for mTORC2 
and mTORC1 respectively [23]. However, Ser2481 has 
already been found to be phosphorylated in mTORC1 [87] 

Fig. 1   Number of publications 
reporting Ser2448 per year. A 
timeline of key publications 
to understand the role of the 
Ser2448 residue of the mTOR 
protein is shown. Note that the 
first appearance of Ser2448 is in 
1998; however, Bunn et al. stud-
ied the region, where mTOR 
Ser2448 is located, which is a 
key study for the understanding 
of the role of phosphorylation 
at this site

Fig. 2   mTOR protein domains 
and localization of phosphoryl-
atable residues. Phosphorylat-
able residues and key domains 
within the mTOR protein are 
highlighted. FRB FKBP12-
rapamycin-binding domain, KD 
kinase domain, NRD negative 
regulatory domain, FIT found 
in TOR HEAT                   HEAT

NRD

FAT                       FRB         KD      FIT   FATC

mTOR
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and Ser2448 has also been found to be phosphorylated in 
mTORC2, despite a lack of an apparent correlation with its 
kinase activity [78]. Phosphorylation of Ser2481 residue 
has been shown to be an autophosphorylation residue as a 
proxy of mTOR’s own activity [87].

Although TOR proteins contain several domains that 
are conserved throughout eukaryotic evolution, the small 
FIT domain (where Ser2448 dwells) is a relatively recent 
acquisition in vertebrate evolution [88, 99] showing some 
divergences in taxonomic groups. The mTOR homolo-
gous proteins in yeast (TOR) and drosophila (dTOR) lack 
the residue Ser2448 [23, 98]. Within the FIT domain lies 
the Negative Regulatory Domain (NRD) which is defined 
as TOR residues 2430 to 2450 [50, 85]. Due to its recent 
acquisition during vertebrate evolution, the Ser2448 resi-
due and its contiguous area are potentially a fine-tuning 
mechanism for control of mTOR’s own activity.

Mechanisms of mTOR Ser2448 phosphorylation

It was originally proposed that Ser2448 was an AKT con-
sensus phosphorylation target [51, 71, 85]. However, 
in  vitro phosphorylation analysis failed to demonstrate 
direct phosphorylation by AKT, thus an undescribed pro-
tein kinase theoretically lying between AKT and mTOR 
was hypothesized to exist, which would be called TOR 
Kinase, or TORK [84], which has never been shown to 
exist. Instead, AKT is capable of activating mTORC1 by 
inhibition of its negative regulators. AKT phosphoryl-
ates and inactivates TSC1/2 that regulates Rheb activity 
(by stimulating GTP hydrolysis), which in turn binds to 
mTORC1 [57, 64]. In addition, AKT can phosphorylate 
PRAS40 [79, 91, 95]. Recently, it was also shown that AKT 
could additionally modulate mTOR activity, indirectly, via 
IKKα [25].

Evidence to further support the lack of direct signaling 
between AKT and Ser2448 mTOR is found in the skeletal 
muscle biology literature. The anabolic pathways leading 
to mTOR activation in response to mechanical stimulation 
were originally proposed to use the upstream pathway as 
growth factors (PI3K-AKT-mTOR) [9]. However, this has 
now convincingly been shown to be an AKT independent 
event [40, 47, 68, 75]. Therefore, if mechanical stimulation 
increases the phosphorylation of mTOR at Ser2448 [76] 
and p70S6K at Thr389 by a PI3K/AKT independent mech-
anism [33, 40, 54, 55, 65, 72, 73], then it is unlikely that 
phosphorylation of the mTOR Ser2448 site is a direct tar-
get of AKT. Indeed, Atherthon et al. [5], using stretching as 
a model for mechanical stimulation of myotubes, were able 
to demonstrate that phosphorylation of the mTOR down-
stream targets, p70S6K1 and 4EBP1, actually precedes 
phosphorylation of mTOR at Ser2448.

Direct phosphorylation of mTOR by AKT was proven 
not to be the case by two elegant studies, published in 
2005, which demonstrated that Ser2448 is actually phos-
phorylated by the mTOR downstream effector p70S6K 
[19, 53], as part of a feedback loop mechanism. Subse-
quently, the synthesis of the first specific p70S6K inhibi-
tor (PF-4708671) enabled further confirmation that 
Ser2448 is indeed part of mTOR-p70S6k feedback loop 
as this inhibitor simultaneously reduces the phosphoryla-
tion of the p70S6K downstream effector rpS6 and mTOR 
Ser2448 [74]. More recently, von Walden et  al. [92] has 
shown that this p70S6K inhibitor increases the phospho-
rylation of Thr389 on p70S6K, which demonstrate that 
inhibition of p70S6K activity increased mTOR activity in 
muscle cells, presumably by removing this negative feed-
back loop. The discovery that mTOR is phosphorylated at 
Ser2448 by p70S6K explains how mTOR has been previ-
ously observed to be phosphorylated at Ser2448 following 
stimulation with anabolic stimuli, including insulin, amino 
acids, and mechanical strain. The following question then 
is: does phosphorylation of Ser2448 by p70S6K increases 
or repress mTOR activity?

Role of NRD and Ser2448 phosphorylation 
in the regulation of mTOR kinase activation

Phosphorylation of mTOR Ser2448 is a common marker 
used in the cancer [43] and skeletal muscle literature [77] 
as an index of mTOR kinase activity and/or pathway signal-
ing. However, analysis of mTOR pathway activation solely 
by analysis of Ser2448 phosphorylation status in cancer 
studies has already been withdrawn by some researchers 
due to its unknown role [67]. Whilst heightened Ser2448 
phosphorylation may be associated with mTORC1 acti-
vation under certain conditions, it does not imply a cause 
and effect relationship [14, 19, 53, 78]. In fact, there is no 
evidence that phosphorylation of Ser2448 increases mTOR 
activity. Rather, there is evidence from cell culture experi-
ments utilizing mTOR mutant protein versions to sug-
gest that the NRD domain has a negative effect on mTOR 
activity. Deletion of this region (amino acids 2433–2450) 
increases mTOR activity [31, 66, 85], although recently, 
others have found that deletion of a slightly extended region 
(2443–2486) has the opposite effect to lower mTOR activ-
ity [97], and substitution of Ser2448 for the non-phospho-
rylatable alanine or the phosphomimetic glutamate had no 
clear effect on mTOR kinase activity [19, 85].

The residue Thr2446, such as Ser2448, is another 
phosphorylatable site within the NRD. Initially, it was 
hypothesized that Thr2446 was a target of AKT along 
with Ser2448, that would promote mTOR activity [85]. 
However, Thr2446 was subsequently been shown to be 
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a major target of AMPK, with its phosphorylation sup-
pressing mTOR activity [18]. These two close residues 
Thr2446 and Ser2448 (separated by only one amino 
acid) are unlikely to have divergent effects on mTOR 
function. At the time that Thr2446 was shown to be a 
target of AMPK (in 2004), the main concept was that 
Ser2448 was a downstream target of AKT. Therefore, 
it was hypothesized that these sites would have oppos-
ing effects on mTOR activity, since insulin treatment 
increased mTOR Ser2448 but not Thr2446, and star-
vation increased Thr2446 but not Ser2448. However, 
the discovery that Ser2448 is a p70S6K-dependent 
site explains how both residues function as nega-
tive regulators of mTOR activity. The deletion of the 
NRD increases mTOR activity not because it exerts 
an inhibitory effect on mTOR kinase activity as previ-
ously hypothesized, but rather, because mTOR becomes 
refractory to energy and nutritional cues. This explains 
why the mutant TOR protein-lacking NRD region [31] 
is protected from growth factor deprivation and why 
prevention of phosphorylation at Thr2446 and Ser2448 
via treatment with an antibody raised against the region 
2433–2450 increases mTOR kinase activity [13, 66]. Not 
surprisingly then, the loss of Ser2448 phosphorylation 
has been linked to cancer progression when currently 
accepted knowledge in the role of Ser2448 would expect 
otherwise [70]. This indicates that failure of p70S6K to 
feedback to mTOR to fine-tune its activity may lead to 
a constitutively active mTOR resistant to p70S6K feed-
back signals.

Since mTOR Ser2448 is a residue target of p70S6K, 
to the best of our knowledge, no studies so far have 
shown that p70S6K phosphorylation at Thr389 is further 
increased after the initial phosphorylation activity of 
mTORC1 towards p70S6K, which would indicate a posi-
tive feedback. Recently, however, it has been shown that 
a short isoform of p70S6K can also interact with mTOR 
protein and increase mTOR kinase activity [6]. Although 
this short isoform of p70S6K can bind to mTOR, it can-
not phosphorylate mTOR Ser2448 as it lacks a kinase 
activity. The mechanism proposed for the enhanced acti-
vation of mTOR by the short isoform of p70S6K was 
actually that this short isoform competes with p70S6K 
for the mTOR Ser2448 residue, thereby preventing the 
phosphorylation of Ser2448 and mitigating the negative 
feedback loop. The evidence presented points to a role 
of a negative feedback loop initiated by the activation 
of p70S6K. p70S6K has been previously shown to be 
the effector of an additional negative feedback loop by 
phosphorylating and inhibiting IRS-1 [90, 98]. Hence, 
p70S6K regulates mTOR pathway at multiple levels.

Alternative markers of mTOR activation

Contrary to the domain, where Ser2448 dwells, (m)TOR-
associated proteins known to regulate mTOR kinase 
activity are conserved in yeast TOR and dTOR, including 
TSC/Rheb, Raptor, and GβL amongst others [3, 26, 35]. 
PRAS40, besides not being conserved in some yeast, has 
a corresponding homology in drosophila [79]. Further-
more, the TOR complexes 1 and 2 seem also to be highly 
conserved in eukaryotic evolution throughout yeast to 
man [26, 46]. In addition, two independent research 
groups have identified the leucine sensor within cell, the 
enzyme Leucyl tRNA synthethase (LRS) [12, 48]. This 
enzyme activates mTOR through the Rag GTPase. This 
is another conserved mechanism both found in TOR [12] 
and mTOR pathways [48]. These data suggest that mTOR 
regulation and function are largely dependent on the pro-
teins that mTOR docks or associate with, rather than the 
phosphorylation of mTOR protein itself. Nevertheless, 
new phosphorylatable residues on mTOR have also been 
discovered and their roles in regulation of mTOR kinase 
activity investigated [1, 25, 32]. The residue Ser1261 
phosphorylation promotes mTORC1 activity. It is not 
found in yeast and plants, but contrary to Ser2448, is 
found in drosophila (d)TOR as a phosphorylatable Thre-
onine, suggesting that this might be a more conserved 
mechanism regarding mTOR activity than Ser2448 [1, 
28]. The residue Ser1415 also appears to be highly con-
served [25]. Two other residues within the kinase domain, 
Ser2159 and Thr2164, have also been discovered recently 
with positive roles in the mTOR kinase activity. Ser2159 
is only found in vertebrates, but Thr2164 is conserved in 
flies, plants, and yeasts [32]. Thus, these residues could 
be better markers than Ser2448 in the future, although the 
kinase responsible for Ser1261, Ser2159, and Thr2164 
phosphorylation are not yet known [32, 99].

Therefore, to better understand mTOR protein activ-
ity, researchers should aim for mechanisms that are more 
conserved throughout species that potentially represent 
a main mechanism of its regulation. In practical terms, 
it is recommended that researchers willing to determine 
a meaningful snap-shot of mTORC1 activation using 
western blotting should focus on classical mTORC1 
downstream targets: p70S6K and 4E-BP1. In addition, 
partner proteins may also add valuable data as PRAS40 
phosphorylation on AKT-dependent site and Rag pro-
teins. Moreover, whenever possible, immunoprecipita-
tion of mTORC1 and mTORC2 protein partners, Raptor, 
and Rictor, respectively, may help determine on which 
mTOR, the phosphorylation of Ser2448, is complexed 
with.
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Reinterpretation of exercise and muscle studies 
in light of a mTOR‑p70S6K‑mTOR negative 
feedback loop

Data supporting the role of mTOR in skeletal muscle 
growth appears overwhelming. To date, studies have 
focused on the mTORC1 downstream effectors, p70S6K 
and 4E-BP1, by measuring the mTOR-dependent phospho-
rylation sites at Thr389 on p70S6K, and Thr37/46, Ser65, 
and Thr70 on 4E-BP1 [82, 83]. Data on Thr389 p70S6K in 
particular seem quite convincing that mTORC1 activity is 
increased following exercise and that nutrition may play a 
role enhancing that response. However, the same is not true 
for mTOR’s own phosphorylation state. Many studies fail 
to demonstrate a consistent and reproducible Ser2448 phos-
phorylation response to a plethora of stimuli, whilst the 
mTORC1-dependent site Thr389 on p70S6K does. Titra-
tion of insulin [42] and IGF-1 [61] results in a clear dose-
dependent phosphorylation curve for p70S6K at Thr389, 
whereas mTOR at Ser2448 phosphorylation response is 
disconnected in both cases. In rat skeletal muscle, phos-
phorylation of p70S6K at Thr389 was found to increase 
during feeding and decrease during fasting, whilst a corre-
sponding effect for mTOR Ser2448 was not observed [86]. 
Furthermore, numerous past works measuring both mTOR 
Ser2448 and p70S6K Thr389 phosphorylation status have 
demonstrated that muscle load and/or nutritional interven-
tions have a far greater and more obvious stimulatory effect 
on p70S6K Thr389 than on mTOR Ser2448 [2, 4, 8, 11, 
17, 24, 27, 29, 30, 33, 34, 38, 39, 41, 45, 55, 59, 65, 69, 
89, 94]. Since the discovery of the identity of the Ser2448 
kinase by Holz and Blenis, and Chiang and Abraham [19, 
53] in 2005, it has been established that p70S6K, and not 
AKT, regulates phosphorylation of the mTOR Ser2448 site 
as part of a feedback loop mechanism. Although some lines 
of evidence had already pointed to this regulation having a 
suppressive effect, it was only recently that the work from 
Ben-Hur [6] made it clear that a negative feedback loop 
exists between p70S6K and mTOR Ser2448.

Studies in the muscle literature in particular can have 
different interpretations in light of the real significance of 
Ser2448 phosphorylation. This is particularly true for stud-
ies, where mTOR Ser2448 is analysed in isolation or when 
the phosphorylation state of Ser2448 appears in opposition 
to other downstream targets of the mTOR pathway. For 
example, Leger et al. [63] showed that 4E-BP1 and p70S6K 
phosphorylation were unaltered by 8  weeks of resistance 
exercise training. At the same time, phosphorylation of 
mTOR Ser2448 was found to be significantly increased. 
After 8  weeks of detraining, accompanied by a reduction 
in muscle mass, the phosphorylation at Ser2448 remained 
elevated, whilst p70S6K and 4E-BP1 phosphorylation 
were once again unchanged. The authors concluded that 

activation of the mTOR pathway was increased through-
out training based solely on mTOR Ser2448. This was 
despite the fact that heightened phosphorylation persisting 
throughout detraining and despite the lack of an effect of 
training/detraining on p70S6K and 4E-BP1. In addition, 
other researchers, expecting to observe phosphorylation of 
mTOR Ser2448 preceding Thr389 on p70S6K and having 
found the opposite, have suggested that phosphorylation 
at Thr389 could be a mTOR-independent event following 
resistance exercise [58]. With the knowledge that p70S6K 
and not AKT is the kinase of the mTOR Ser2448 site, such 
results may need to be reinterpreted.

Understanding the role of Ser2448 being a negative reg-
ulator of mTOR activity, subject to p70S6K activity in a 
negative feedback manner, aids in providing insight into the 
dynamic signaling events in muscle following either load-
ing and/or protein ingestion. Phosphorylation of p70S6K 
Thr389 has been shown to peak at 15 [65] and 30 min post 
exercise in humans [52] and in a resistance training model 
in rodents [11]. Others have also found robust phospho-
rylation of p70S6K Thr389 at the same early time points 
with no apparent response on mTOR Ser2448 [56]. Phos-
phorylation at Thr389 appears to peak no later than the first 
hour post exercise and decreases in the following hours [15, 
62]. Phosphorylation of mTOR Ser2448 should increase 
afterwards [5] and may thus contribute to the decrease in 
Thr389 of p70S6K. Thus, in studies that have taken biopsy 
timepoints exceeding 1  h or upwards, it is tempting to 
speculate that the feedback loop mechanism (p70S6K-
mTOR-p70S6K) may have already taken place. Consistent 
with this notion, Churchward-Venne et al. [22] have shown 
recently that Thr389 was not increased compared to base-
line at 1.5 h post resistance exercise when at the same time-
point, the other mTORC1 downstream 4E-BP1 was highly 
phosphorylated, as well as the p70S6K downstream effec-
tor S6rp at Ser240/244 also, demonstrating that mTOR/
p70S6K was activated before this timepoint. Convincingly, 
mTOR Ser2448 was also highly phosphorylated; indicat-
ing that the decrease or return to baseline levels of Thr389 
could have been due to the negative feedback mechanism. 
These results all are consistent with Ser2448 being a neg-
ative feedback mechanism dependent upon of p70S6K 
activation.

Concluding remarks

The Ser2448 residue of mTOR is part of a negative feed-
back loop mechanism in which activated p70S6K phos-
phorylates back onto mTOR to fine-tune its activity 
(Fig.  3). Whilst an increase in phosphorylation of this 
residue could potentially reflect an increase in the overall 
pathway, it does not apply for every cell and condition, as 
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in fact it is rather a read-out of p70S6K activity and thus 
a late event in the pathway. The use of Ser2448 phos-
phorylation as the only marker of mTOR kinase activ-
ity or pathway activation should be discouraged. New 
phosphorylation residues have been discovered, which 
may have greater relevance towards mTOR activity. But 
as of yet their regulation is incompletely understood and 
their function should be better known to be widely used. 
mTOR seems to be mainly regulated as a complex, i.e., 
in conjunction with its partners (raptor, rictor, PRAS40, 
DEPTOR, Ragulator, Rheb, etc), rather than by its own 
phosphorylation. Moreover, because Ser2448 may also be 
phosphorylated on mTORC2, the significance of measur-
ing global changes in Ser2448 phosphorylation is compli-
cated further. On this basis, efforts to understand mTOR 
activity and/or activation in skeletal muscle should also 
focus on the mTOR partners and downstream targets.

In conclusion, it is necessary to state that mTOR 
Ser2448 phosphorylation: (1) is a target of p70S6K and 
not AKT; (2) is not a cause of p70S6K activity but rather 
its consequence; (3) has a negative regulatory effect on 
mTOR kinase activity, and (4) it does not necessarily 
mirror an increase in mTOR kinase activity nor should 
be taken as a measure of mTOR activation. This last 
item is the most important for researches using Ser2448 
phosphorylation, since an erroneous assumption could 
generate misleading interpretations if other more proper 
markers are not used in parallel. Based on the present 
analysis, the interpretation from many studies in the 
muscle research literature assessing phosphorylation lev-
els of mTOR at Ser2448 may need to be revaluated.
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Fig. 3   p70S6K-mTORC1-p70S6k feedback loop mechanism. 
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(p70S6K and 4E-BP1), but also mTOR Ser2448. Since contractions 
can promote mTRO activity independently of AKT, Ser2448 cannot 
be a target of AKT, but as demonstrated by two independent studies 
(Chiang and Abraham, and Holz and Blenis) by p70S6K
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