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JNK  c-Jun amino-terminal kinase
mTORC1  Mechanistic target of rapamycin complex 1
PI3K  Phosphatidyl inositol 3-kinase
PGCs  Primordial germ cells
Dpc  Day post coitus
Wpc  Week post conception
FOXL2  Forkhead box L2
WNT4  Canonical wingless-type MMTV integration 

site family member 4
RA  Retinoic acid
RARs  RA receptors
RXRs  Retinoid X receptors
RALDHs  Retinaldehyde dehydrogenases
Act  Activin
TGF  Transforming growth factor
DSBs  DNA double-strand breaks
PAR6  Partitioning-defective Protein 6
AJs  Adherens junctions
Cads  Cadherins
GJs  Gap junctions
NICD  Notch intercellular domain
ADAM10  A disintegrin and metalloproteinase domain10
Bax  Bcl2-associated X protein
Casp2  Caspase 2
FSH  Follicle-stimulating hormone
PCD  Programmed cell death
SOHLH2  Spermatogenesis- and oogenesis-specific 

helix-loop-helix transcription factor 2
AQP8  Water channel aquaporin-8
Fst  Follistatin
Inh  Inhibin
LGR5  Leucine-rich repeat-containing G-protein-

coupled receptor 5
Bcl-2  B-cell lymphoma 2

Abstract In fetal females, oogonia proliferate immedi-
ately after sex determination. The progress of mitosis in 
oogonia proceeds so rapidly that the incompletely divided 
cytoplasm of the sister cells forms cysts. The oogonia will 
then initiate meiosis and arrest at the diplotene stage of 
meiosis I, becoming oocytes. Within each germline cyst, 
oocytes with Balbiani bodies will survive after cyst break-
down (CBD). After CBD, each oocyte is enclosed by pre-
granulosa cells to form a primordial follicle (PF). Notably, 
the PF pool formed perinatally will be the sole lifelong 
oocyte source of a female. Thus, elucidating the mecha-
nisms of CBD and PF formation is not only meaningful for 
solving mysteries related to ovarian development but also 
contributes to the preservation of reproduction. However, 
the mechanisms that regulate these phenomena are largely 
unknown. This review summarizes the progress of cellu-
lar and molecular research on these processes in mice and 
humans.
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Preface

In mammals, a fixed population of primordial follicles 
(PFs) is generally established in the ovaries during early 
life that serves as the sole source of developing follicles 
and oocytes throughout reproductive life [1, 2]. Despite 
substantial prolongation of female life expectancy during 
the past century, the female reproductive lifespan remains 
approximately 51 years. The physiological reason for this 
limit is the gradual and irreversible exhaustion of the PF 
pool and decreased egg quality with increasing age. In 
general, because of the adverse effects of environmen-
tal, genetic or other unknown factors, the PF pool shrinks 
steadily, thus shortening the reproductive lifespan [3]. 
Primary ovarian insufficiency (POI), the clinical term for 
premature ovarian failure (POF), which is characterized 
by the disappearance of menstrual cycles associated with 
premature follicular depletion, is a condition affecting at 
least 1% of women under the age of 40 years worldwide 
[4, 5]. Most recent reports show that upon mutation, many 
genes responsible for the formation of PFs are also associ-
ated with POI [6, 7]. Therefore, clarifying the mechanisms 
underlying the PF reserve is one of the most important top-
ics in female reproductive research. Alternatively, because 
cancer therapy can adversely affect germ cell survival and 
cause POF and infertility [8], the requirement for fertility 
preservation in young cancer patients has increased signifi-
cantly since the beginning of this century, although a better 
prognosis has been achieved after cancer therapy [9]. Clini-
cally, cryopreservation of ovarian tissue before cancer ther-
apy is becoming one of the most effective ways to preserve 
fertility [10, 11]. Nearly, 80% of human PFs were shown 
to survive after ovarian tissue cryopreservation using the 
slow-freezing method in the 1990s [12, 13], although this 
method is not currently the most effective.

Excitingly, with the progress of research on the molecu-
lar mechanisms of PF activation, in vitro activation of PFs 
has become feasible. Mammalian target of rapamycin com-
plex 1 (mTORC1) signaling in the granulosa cells of PFs 
is responsible for secreting the Kit Ligand (KITL) to acti-
vate phosphatidyl inositol 3-kinase (PI3K) within oocytes, 
which in turn activates PF development in neonatal mouse 
ovaries and human ovarian cortical tissue in vitro [14–17]. 
This novel in  vitro activation approach has been success-
fully used in human POF patients, and one healthy baby 
has been delivered in 2013 [18].

Applying pluripotent stem cells to reproduce functional 
gametogenesis in vitro is currently one of the key goals in 
developmental and reproductive biology. Physiologically, 
functional oocytes derive from intact follicles, imply-
ing that the communication between germ cells and ovar-
ian somatic cells within follicles is pivotal for full oocyte 
development. However, the mechanisms underlying this 

process are not fully elucidated. Thus, the identification of 
effective ways to preserve PFs to the greatest extent may 
not only ensure the preservation of fertility for cancer 
patients in the future, but may also help to postpone ovar-
ian aging in healthy women. Understanding the formation 
mechanism of PFs will become the basis for better control-
ling the in vitro reconstitution of oogenesis, cryopreserva-
tion, and the activation of PFs within ovarian tissues. This 
review aims to summarize the recent progress regarding PF 
formation in mice and humans to provide a better under-
standing of the mechanisms controlling female fertility 
reserves.

Asynchronous PF formation

In mice, immediately after the primordial germ cells 
(PGCs) migrate to the gonad at 10.5 days post coitus (10.5 
dpc) during embryonic development, they form into cysts 
(multi-nucleated syncytial clones) by rapidly dividing until 
13.5 dpc. In humans, germ cell mitosis begins at 5 week 
post conception (5 wpc) and ends at 10–16 wpc [19–22]. 
The number of germ cell divisions in Drosophila is mark-
edly different from that in mice. In Drosophila, germ 
cells undergo four rounds of mitosis, whereas the number 
of divisions is variable in mice [23]. Unlike spermatogo-
nia, which initiate meiosis postnatally, the oogonia (now 
referred to as oocytes) within cysts initiate meiosis at 
approximately 13.5 dpc in mice and 13 wpc in humans [20, 
24].

In mammals, the initiation of meiosis is strikingly asyn-
chronous both temporally and spatially [6]. First, along 
with the increasing number of germ cells initiating meiosis, 
some oogonia still express stem cell markers and continue 
to proliferate until at least 16 wpc in humans [21, 25]. Sec-
ond, this asynchronous development reflects the initiation 
of meiosis via anterior-to-posterior patterns along the axis 
of the ovary beginning at 12.5 dpc in the mouse [26, 27]. 
Third, this asynchronous development is also reflected in 
the depth of maturation of both germ cells and pre-granu-
losa cells in the cortical and medullar regions of the ovary. 
The onset of programmed germ cell cyst breakdown (CBD) 
starts in the medullary (dorsal) region and moves to the 
cortical (ventral) side; that is, CBD starts in the medullary 
region prior to the time of birth and expands toward the 
cortical surface region of the ovaries in humans and rodents 
[28–30]. Fewer mature germ cells are located at the periph-
ery of the ovary, with progressively more mature germ cells 
being found in the medulla area of fetal ovarian tissue [31].

Accordingly, asynchrony also occurs in ovarian 
somatic cell development. Forkhead box L2 (FOXL2)-
positive pre-granulosa cells undergo two waves of dif-
ferentiation that contribute to two discrete populations 
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of follicles [32]. The source of both populations of pre-
granulosa cells is the ovarian surface epithelium. The 
first wave of differentiation supports bipotential somatic 
cell differentiation, which is involved in forming the ear-
liest PFs that develop within the medulla region. Conse-
quently, such PFs undergo rapid maturation and die. The 
second wave of differentiation occurs at the ovarian cor-
tex, where PFs are formed and arrested until puberty and 
beyond [32]. Additional studies support the conclusion 
that there are two waves of perinatal PF formation in the 
rodent and human ovary [17, 33–36]. Based on a visual 
in vivo follicle tracing system, Zheng et al. demonstrated 
that the fates of the two classes of PFs follow distinct, 
age-dependent developmental paths, and play different 
roles throughout the reproductive lifespan [37]. Pre-gran-
ulosa cells recruited in fetal mouse ovaries form the ini-
tial PFs in the medullary region. Once formed, these PFs 
are synchronously activated and become the first wave of 
follicles activated after birth [38, 39], which contributes 
to the onset of puberty and to fertility until 3 months of 
age. Pre-granulosa cells recruited in postnatal mouse ova-
ries form PFs in the cortical region, which are gradually 
activated as a means of providing mature oocytes over 
the entire course of the reproductive life of the animal 
[32, 38, 40, 41]. As a result, PFs from the second wave 
gradually replace those from the first until they become 
the sole source of follicles from 3 months onward [37]. 
The spatiotemporal patterns of major cellular events that 
occur during CBD and PF formation in the mouse ovary 
are shown in Fig. 1.

Prerequisite cellular events for the establishment 
of PFs

In mammals, PF formation consists of a series of cellular 
events, including the formation of germline cysts through 
oogonia mitosis, meiosis initiation, CBD, and PF assembly 
when germ cells are arrested at the dictyate stage of mei-
osis I. The entire process involves at least two cell types: 
the germ cells within the cyst and the surrounding pre-
granulosa cells [42]. Studies have demonstrated that timely, 
synchronized development of ovarian somatic cells and 
oocytes as well as their mutual communication determine 
PF formation and oocyte survival in mice [43, 44]. Com-
munication occurs not only between ovarian somatic cells 
and oocytes but also between the somatic cells themselves 
[45, 46]. Accordingly, the basic criteria for the formation of 
PFs in mouse include two prerequisites: sufficient numbers 
of squamous pre-granulosa cells that express the FOXL2 
protein and a readily available oocyte arrested at the diplo-
tene stage [32, 47–53].

Pre‑granulosa cell recruitment and differentiation

Ovarian differentiation is a coordinate event, possibly 
driven by secreted factors, including canonical wingless-
type MMTV integration site family member 4 (WNT4) and 
Rspondin 1 [RSPO1, an LGR5 (Leucine Rich Repeat Con-
taining G Protein-Coupled Receptor 5) receptor ligand], 
transforming growth factor (TGF) beta superfamily-bind-
ing proteins, such as Follistatin (Fst), and transcriptional 
regulators, such as β-Catenin and FOXL2 [54]. FOXL2 is 
a winged helix/forkhead domain transcription factor that 
is extensively expressed within somatic cells from as early 
as 12.5 dpc until PF formation in the mouse. It participates 
in various molecular events in fetal ovary development 
[55, 56]. FOXL2 is considered as one of the most impor-
tant agents during granulosa cell differentiation and ovary 
maintenance [52, 55–57]. The first hint that FOXL2 was 
involved in ovarian development came from an analysis in 
2001 of human patients suffering from eyelid malformation 
and POF, which was found to be due to a mutation of the 
Foxl2 gene [58]. In the mouse, Foxl2 deficiency impairs 
CBD by affecting granulosa cell differentiation and proper 
formation of the basal lamina around forming follicles [49].

Physiologically, at 17.5 dpc, only FOXL2-positive pre-
granulosa cells start to invade cysts and separate germ cells 
to form the PF structure [30]. However, the development 
of pre-granulosa cells is complex. A series of studies have 
demonstrated that the ovarian surface epithelium, which 
is LGR5 positive, may be a major source of pre-granulosa 
cells [32, 59, 60]. Activated WNT4 and RSPO1 are piv-
otal for ovarian pre-granulosa cell differentiation [61, 62]. 
LGR5 not only enhances WNT/RSPO1/β-Catenin signal-
ing pathways in various morphogenetic processes, and it is 
also a marker of stem cells in the ovarian surface epithe-
lium [60, 63]. In general, LGR5-positive cells are restricted 
to the cortical region of ovaries from 12.5 dpc to perinatal 
stages. Based on the specific expression patterns of Lgr5 
and Foxl2, it has been confirmed that LGR5-positive cells 
are recruited to differentiate into FOXL2-positive pre-
granulosa cells, starting at the initiation of folliculogenesis 
(approximately 1 dpp) [60, 64–66]. Accordingly, FOXL2-
positive cells first emerge in the medulla and then gradu-
ally emerge in the cortical region of the ovary (Fig. 1) from 
16.5 dpc to 4 dpp in mice [30].

Oocyte meiosis

In mice, meiosis in the germ cells starts at approxi-
mately 13.5 dpc and progresses from leptotene to diplo-
tene stages until arrest at 18.5 dpc. Retinoic acid (RA) 
derived from the somatic environment of either mesone-
phroi or the fetal ovary is the key signal for the induction 
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of meiosis in mice as well as humans [67–71]. RA is the 
active derivative of vitamin A, and participates in the 
regulation of embryonic development, cellular prolif-
eration, and differentiation, as well as reproductive sys-
tems [71, 72]. By binding to intracellular RA receptors 
(RARs) and retinoid X receptors (RXRs), RA stimulates 
the expression of Stra8 (stimulated by retinoic acid 8), 
which promotes both the replication of germ cell chroma-
tin and the transition of oogonia to meiotic division [67, 
68, 73, 74] (Fig. 2a). As a result, various signals that reg-
ulate the homeostasis between RA synthesis by retinalde-
hyde dehydrogenases (RALDHs) and RA degradation by 
CYP26 (CYP26A1, CYP26B1, and CYP26C1) control 

Stra8 expression and the timing of meiosis initiation [75, 
76] (Fig. 3a).

In this context, TGF beta superfamily-binding proteins 
have been demonstrated to participate in the initiation of 
oogonium meiosis. Activin A (Act A) and RA may cooper-
ate in promoting meiosis in female germ cells [77] (Figs. 2, 
3). In  vitro, Act A accelerates the progression of oocytes 
throughout meiotic prophase I stages, which is related 
to increased expression of premeiotic and meiotic genes 
(including Dazl, Spo11, Stra8, Scp3, and Rec8) in ovarian 
tissues [77]. An earlier study also suggested that CYP26B1 
is a novel target of Act [78], because Act A-depend-
ent SMAD3 signaling downregulates the expression of 

Fig. 1  Schematic representation showing the spatiotemporal pat-
terns of major cellular events during cyst breakdown (CBD) and 
primordial follicle (PF) formation in the mouse ovary. a After cyst 
formation, the oocyte with an established Balbiani body in its cyto-
plasm will survive, whereas the nurse cells surrounding the oocyte 
may subsequently undergo apoptosis. b Adherens junctions (AJs) 
between oocytes are sustained by the Wnt4/β-Catenin (β-Cat) sign-
aling pathway before CBD and are disassembled via c-Jun amino-
terminal kinase (JNK) signaling after CBD. c Before PF assembly, 
oocyte-derived factors, such as Jagged 1, induce Notch signaling acti-
vation in pre-granulosa cells to promote their differentiation and pro-
liferation. After Jagged1 binds to the extracellular domain of Notch, 
the proteolytic cleavage of Notch2 is mediated by a disintegrin and 
metalloproteinase domain 10 (ADAM10). After cleavage, the Notch 
intercellular domain (NICD) is released and translocates to the 

nucleus to interact with the transcriptional complex to activate target 
genes. d Maternal hormones, including estrogen (E2), progesterone 
(P4), and follicle-stimulating hormone (FSH), exert their inhibitory 
actions on oocyte apoptosis, CBD and PF formation through classi-
cal (nuclear receptor) or non-classical (membrane receptor) path-
ways. Forkhead box L2 (FOXL2) is one of the most important agents 
driving granulosa cell differentiation and ovary maintenance. Only 
FOXL2-positive pre-granulosa cells start to invade cysts and sepa-
rate germ cells to form PF structures. The differentiation of FOXL2-
positive pre-granulosa cells derives from G protein-coupled receptor 
(LGR5)-positive cells. LGR5-positive cells are restricted to the corti-
cal region of the ovaries from 12.5 dpc to perinatal stages. FOXL2-
positive cells first emerge in the medulla and then gradually emerge 
in the cortical region of the ovary from 16.5 dpc to 4 dpp in the mice
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Cyp26b1 and upregulates the expression of Rars [67, 68, 
78, 79].

In addition to RA and Act, WNT4 and Rspondin signals 
from ovarian somatic cells have been demonstrated to pro-
mote not only the meiotic initiation of female germ cells 
but also oogonial proliferation and survival [54, 80, 81] 
(Fig. 3b). Nuclear β-Catenin is involved in ovarian develop-
ment through either RSPO1-mediated pathways or WNT4 
signaling [82, 83], thereby inhibiting Sox9 expression or 
promoting Wnt4, Bmp2, and Fst expression, respectively 
[54]. In somatic cells, RSPO1 promotes ovarian differen-
tiation via the activation of WNT/β-Catenin signaling. In 

Rspo1-deficient mouse ovaries, germ cell proliferation, 
expression of Stra8, and entry into meiosis are all impaired 
[81].

Is oocyte entry into meiosis and arrest at the dictyate 
stage necessary for PF formation? The answer seems to be 
yes. Meiotic progression is not merely concomitant with 
CBD but also causative [84]. During meiosis, germ cells 
experience DNA double-strand breaks (DSBs) to undergo 
recombination, which potentiates genetic diversity in prog-
eny. The extraordinary DSB tolerance of each oocyte could 
be one of the characteristics of oocytes in a meiotic state 
[85]. For instance, mutations in genes involved in the crea-
tion and repair of DSBs, such as MutS homolog genes 
(MSHs) and disrupted meiotic cDNA 1 (DMC1), nega-
tively affect fertility and lead to POI [86, 87]. Premature 
loss of mouse germ cells is observed by 4 dpp in Msh4-
deficient ovaries and by 2 months in Msh5-deficient ova-
ries [88, 89]. Dmc1 deficiency causes a reduction in mouse 
follicle numbers and follicles, resulting from the failure of 
chromosome synapsis [90]. Spo11 (S. cerevisiae homolog)-
deficient female mice exhibit a smaller PF pool, showing 
evident germ cell defects by 15.5 dpc [91]. In the ovaries 
of Stra8-deficient mice, although some germ cells evidently 
survived embryonic development despite the meiotic ini-
tiation block at E13.5–E14.5, the attrition of the germ cells 
accelerates from the fetal to postnatal stages, and the ovary 
is devoid of germ cells by 6–8 weeks of age in this mouse 
model [92].

In addition, it has been demonstrated that PF formation 
is closely related to the progress of meiosis. SCP1 (syn-
aptonemal complex protein-1) is expressed specifically 
in oocytes in females, and its expression declines precipi-
tously within 24 h after birth when CBD begins. Further-
more, Paredes et  al. have shown that loss of SCP1 in rat 
oocytes facilitates follicle assembly [93]. TAF4B, a gonad-
enriched subunit of the TFIID complex is critical for oocyte 
and granulosa cell survival and PF formation in the mouse 
[94, 95]. TAF4B correlates with ovarian health and oocyte 
survival in women as well [96, 97]. In addition, TAF4b-
deficient female mice are infertile and suffer from POF, 
which includes persistent estrous, elevated serum FSH lev-
els, and reduced PF numbers [94, 95, 98]. Accordingly, the 
TAF4B protein has been demonstrated to be responsive to 
both estrogen and FSH receptors and acts to orchestrate the 
correct timing of germ cell CBD and PF pool establishment 
during a critical window of development [95, 99, 100]. 
Interestingly, TAF4B stimulates the expression of c-Jun 
in the granulosa cells of rats [101], whereas c-Jun Amino-
terminal Kinase (JNK) is important for oocyte survival and 
CBD, which will be discussed later. Notably, Grive et  al. 
demonstrated that PF assembly may not only follow the 
arrest of meiosis I progression but also be dependent upon 
the proper completion of these steps [95]. In accordance 
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ADAM10 is responsible for the cleavage of the Notch receptor in 
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GTPase Rac1 may facilitate the import of STAT3 to the nucleus to 
activate the expression of oocyte-specific proteins that are secreted 
from the oocyte
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with this hypothesis, the most recent study on this topic 
proposed that proper oocyte meiosis is essential for PF for-
mation under physiological conditions. The meiotic arrest 
of mouse oocytes at the dictyate stage is indispensable for 
the formation of PFs [102].

Germ cell cyst formation

The germ line cyst is a structure that is highly conserved 
among species. The peak number of cysts occurs at 14.5 
dpc in mice and 20 wpc in humans, the point at which mei-
osis begins. At the end of mitosis, each cyst is composed 
of up to 30 germ cells (oogonia), which are connected via 
intercellular bridges due to incomplete cytokinesis in mice 
[103–106]. Contrary to the notion that intercellular bridges 
are likely restricted to cells of the same genotype [32], 
some of the growing cysts will break down into smaller 
cysts by 17.5 dpc and then associate with other unre-
lated cysts to form aggregated cysts prior to meiosis [33, 
107–109]. Although the role of the cysts is still not well 
understood, it is clear that the structure of the cysts facili-
tates organelle exchange between germ cells. According 
to Lei’s and Pepling’s results, mouse oogonia develop into 
oocytes through both organelle enrichment from sister cyst 
(nurse-like) germ cells and Balbiani body establishment, 
whereas the other nurse-like germ cells die [106, 110] 
(Fig. 1a).

Cyst structure may contribute to the development of 
perfect oocytes with high quality, which is vital for PF 
formation [95, 106]. The Balbiani body (named after the 

nineteenth century Dutch microscopist), or mitochondrial 
cloud, in the cytoplasmic region near the nucleus is a large, 
distinctive organelle aggregate that has been found in the 
developing oocytes of many species, including humans 
[111, 112]. The advantage of the acquisition of additional 
organelles may be to ensure that oocytes grow into the larg-
est cells in the mammalian body despite possessing four 
copies of the DNA complement. Although evidence is 
lacking, the Balbiani body may also serve a physiological 
secretory function in oocytes [106]. In addition, cytoplas-
mic RNA transfer between germ cells may enrich repro-
gramming factors and protective factors, such as piRNAs 
that repress transposition in the oocyte [113–115]. Alterna-
tively, through intercellular cytoplasmic bridges, the oocyte 
nucleus may be relieved of metabolic and biosynthetic 
duties, which could either contribute to inactivation of the 
nucleus or reduce its susceptibility to mutagenesis [116].

Although it is difficult to anticipate which germ cell 
within the cyst will undergo apoptosis, or what kind of 
germ cells are selected to form into PFs, studies have 
provided some clues about the possible fate of the liv-
ing germs cells that are doomed to perinatally form PFs. 
For example, the size of an oocyte that escapes apoptosis 
could be relatively larger than the surrounding nurse cells, 
although this size difference is difficult to identify based on 
appearance [106]. In relation to this possibility, the Balbi-
ani body within the living oocyte could be a candidate bio-
marker, according to Pepling’s research; the oocyte within 
a PF generally contains a Balbiani body [112]. Regard-
ing molecular biomarkers, partitioning-defective protein 
6 (PAR6), one of the proteins that is important for cell 

Fig. 3  Actions of Act, WNT4, 
and RSPO1 in pre-granulosa 
cell development. a Oocyte-
secreted Act acts on ovarian 
somatic cells to prevent kitl 
expression as well as regulates 
retinoic acid (RA) synthesis and 
degradation. b In pre-granulosa 
cells, WNT4 and RSPO1 
signals activate the β-Catenin 
protein, which is responsible for 
the expression of many genes 
during CBD and PF formation, 
including Kitl, Fst, and Wnt4
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polarity, could be a potential marker for identifying germ 
cells that will be selected to form PFs in the mouse ovary 
[117]. PAR6 plays a role in the asymmetric distribution of 
cytoplasmic determinants and the regulation of cytoskel-
eton positioning and asymmetric division [118]. In Dros-
ophila, only the germ cell expressing PARs within a cyst 
becomes the oocyte, whereas the others undergo degener-
ation. Mutated PAR disrupts the early polarization of the 
oocyte and leads to failure to maintain its identity in both 
C. elegans and Drosophila [119–121]. In the mouse, from 
17.5 dpc onward, PAR6 expression shifts from the ovarian 
somatic cells to the oocytes, and its expression level con-
tinues to rise in the nuclei of some oocytes at 19.5 dpc and 
in of all oocytes at 3 dpp. Importantly, the expression of 
PAR6 decreases gradually after the PF pool is established. 
During PF pool establishment, the number of PAR6-pos-
itive germ cells remains steady and is consistent with the 
number of follicles formed at 3 dpp. Wen et al. suggested 
that the unknown signals inducing oocyte-expressing PAR6 
may derive from somatic cells through gap junctions [117]. 
However, because detailed information is absent, substan-
tial research will be needed to explain the mechanism of 
PAR6 involvement in PF formation via shifting expression 
from pre-granulosa cells to oocytes.

Cell–cell adhesion during CBD and PF formation

Cell–cell adhesion is critical for various aspects of multi-
cellular existence, such as morphogenesis, tissue integ-
rity, and differentiation, including in the fetal ovary [105, 
122]. Adherens junctions (AJs) are intercellular structures 
responsible for cell–cell adhesion mediated by Cadherins 
(Cads) through the calcium-dependent homophilic interac-
tion of their extracellular domains. AJ formation is associ-
ated with cytoplasmic Catenin (α, β and p120) proteins, as 
the cytoplasmic tail of Cad itself exhibits no catalytic activ-
ity [123]. Therefore, any possible signaling for the activa-
tion of cell–cell adhesion must occur upon the recruitment 
of signaling molecules to the site of the Cad-Catenin com-
plex [124].

During embryonic development, the dynamic cellular 
behaviors, such as rearrangement, movement, and shape 
changes, are regulated by AJs, which constitute a physi-
cal bridge between the Cad complex and the cortical actin 
filaments [125]. In the fetal ovary, elongated pre-granulosa 
cells extend between germ cells within the same cyst, often 
making direct contact with intercellular bridges, indicat-
ing that they are important for CBD and PF formation [23, 
126].

A proper spatiotemporal expression of Cads is required 
for CBD [127]. Among the Cads, E-Cad was first determined 
to mediate AJ formation by recruiting PI3K-p85 to the cell 

membrane, which contributes to activation of the PI3K/
AKT pathway and up-regulation of epithelial ovarian can-
cer growth [128, 129]. Physiologically, E-Cad is intensely 
expressed during the cyst period, but its expression decreases 
when CBD occurs in the fetal ovaries of mice [127, 130] and 
human [131] (Fig. 1b). Along with CBD and PF formation, 
a V-shaped E-Cad expression pattern is observed in mice. 
E-Cad is intensely expressed at oocyte–oocyte contact sites 
inside cysts in 17.5 dpc ovaries. Its expression soon decreases 
and diffuses at 19.5 dpc but rises again from 2 dpp until 4 
dpp. Subsequently, E-Cad is widely expressed in oocytes 
as well as somatic cells [130]. In hamsters, blocking E-Cad 
accelerates CBD and PF formation, which is in consistent 
with the finding that overexpression of E-Cad suppresses 
CBD in the mouse fetal ovary [127, 130].

Gap junction (GJ) establishment is also essential for 
murine PF assembly (Fig.  2b). The GJ structure was first 
observed in fetal ovaries at 17.5 dpc [132]. Earlier studies 
indicated that GJs formed between pre-granulosa and germ 
cells and that they at least contained GJ1 (also known as 
Connexin 43) [132, 133]. According to the most recent 
report on this topic, GJ structures between the oocyte and 
surrounding pre-granulosa cells are formed at approxi-
mately 19.0 dpc, and communication between them is 
established from 19.5 dpc to 1 dpp [134]. Among the 20 
GJs (Gja through Gjd), 12 elevated genes belong to three 
distinct patterns that rise and fall from 15.5 dpc to 5 dpp, 
which imply that GJs are closely related to PF formation 
and that complex compensatory actions may occur between 
them [134, 135]. Consistent with this view, global inhi-
bition of GJs not only prevented PF assembly in  vitro in 
perinatal ovaries but also resulted in the failure of antral 
follicle development in kidney transplant cultures [134]. 
However, deficiency of either Gja1 or Gja4, the two most 
essential GJs for follicle growth [136, 137], did not affect 
PF formation [130, 138, 139]. After systematic inhibition 
of GJs, ovarian somatic cell-specific genes (such as Notch2, 
Foxl2, and Irx3) were found to be down-regulated, whereas 
oocyte-specific genes (such as Ybx2, Nobox, and Sohlh1) 
and the progress of oocyte meiosis were not, demonstrating 
that GJ communication may be more important for somatic 
cell differentiation than for oocyte development [134]. 
Because of the complexity of GJ genes, future studies 
should concentrate on the cell-type-dependent functions of 
each GJ during the transformation of oogonia into oocytes 
and PF formation [44, 60].

Cross‑talk between germ cells and pre‑granulosa 
cells

Mutual communication between oocytes and surrounding 
pre-granulosa cells is pivotal for CBD and PF formation 
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[140–142]. The contact between germ cells and somatic 
cells is established around ring canals connecting two 
oocytes within the cyst as early as 13.5 dpc in the mouse 
ovary [110]. Disruption of either germ cell- or somatic cell-
specific factors (FIG1α and Wnt4, respectively) leads to 
defects in follicle formation [143, 144]. Studies have shown 
that many molecules are involved in this process [105]. 
Unfortunately, it is still unclear how such factors participate 
in the reorganization of the two distinct cell types into one 
functional unit through cross-talk.

Notch signaling could be one of the most important 
pathways participating in folliculogenesis in the perina-
tal mouse ovary. Notch signaling involves four recep-
tors, Notch1, 2, 3, and 4, and their ligands, Jagged1 and 2 
and delta-like 1, 3, and 4 [145]. Jagged1 and Notch2 are 
expressed in the oocyte and pre-granulosa cells, respec-
tively, from 0 to 6 dpp, suggesting that germ cell CBD 
is partially coordinated through cellular interactions via 
Notch signaling [146–150]. Immediately after Jagged1 
binds to the extracellular domain of Notch, proteolytic 
cleavage of the Notch2 receptor begins [145, 150]. Fol-
lowing cleavage, the Notch intercellular domain (NICD) 
is released and translocates to the nucleus to interact with 
the transcriptional complex to activate target genes, such 
as Hes1, Hey2, and Hey1 [151] (Figs. 1c, 2c). Thus, defi-
ciency of Notch, Notch receptor modulator Lunatic fringe 
(Lfng) or Hes1 results in subfertility and consequent multi-
oocyte follicles (MOFs) [147–150, 152].

The regulatory roles of a disintegrin and metallopro-
teinase domain 10 (ADAM10), the main physiological 
α-secretase [153], are responsible for the cleavage of the 
Notch receptor in both LGR5-positive and FOXL2-positive 
cells, and hence control the development of pre-granulosa 
cells in perinatal ovaries [66, 154–157] (Fig. 1c). However, 
it is possible that not all the components of Notch signaling 
are involved in the regulation of CBD and PF formation, as 
Notch3, Notch4, and Delta-like 3 mutants are fertile, and 
Delta-like 1 and Delta-like 4 are not expressed in neonatal 
ovaries [105]. Although oocyte-specific factors (GDF9 and 
BMP15) have been demonstrated to regulate the translation 
of Notch2 via mTORC1 activation in pre-granulosa cells 
[157], there is a lack of detailed information about the exact 
action of Notch signaling. Specifically, conditional geneti-
cally modified animals will be necessary to evade the prob-
lems of embryonic lethality and complex complementary 
actions between Notch signaling that have occurred in the 
past studies [105].

Several studies have noted cross-talk between somatic 
cells and oocytes via the receptor tyrosine kinase c-kit 
(KIT), which together with the KITL, is important for the 
control of oocyte reawakening. Activation of KITL in gran-
ulosa cells passes signals to oocytes to stimulate PF activa-
tion [6, 158]. However, as KIT signaling occurs in the fetal 

ovary as early as 7.5 dpc and is continuously expressed 
during ovary development [159, 160], it must exhibit addi-
tional functions in fetal ovary development. Indeed, KIT 
signaling has been demonstrated to play an important role 
in perinatal oocyte CBD, the determination of oocyte num-
bers, and PF formation in mice and humans [161, 162]. The 
regulation of KITL may be related to Act, one of several 
identified TGFβ family members with major roles in fol-
liculogenesis [163–166]. In humans, oocytes express Act 
A before CBD, which repress the expression of membrane-
bound KITL (KITL2) in neighboring somatic cells, thus 
preventing the expression of c-Kit in oocytes, because 
KITL itself can induce the expression of c-kit in germ cells 
[84]. After CBD, along with the decrease in Act expression 
in the oocyte, KITL2 expression is increased, which in turn 
induces the expression of KIT and may subsequently pro-
mote PF assembly [161, 167]. Lower KIT levels are then 
proposed to block either meiotic arrest or PF activation [6, 
84, 166].

JNK is involved in the regulation cell proliferation, 
migration, and apoptosis [167–169]. Studies have dem-
onstrated that the JNK signaling pathway is one of the 
candidate pathways participating in CBD [170–172], pos-
sibly by regulating E-Cad junctions between oocytes in 
the mouse [130] (Fig.  1b). JNK specifically localizes to 
oocytes, and its activity is increased as CBD progresses. 
Interestingly, the action of JNK is inversely correlated 
with WNT4 expression in the perinatal ovary [130]. In 
Drosophila epithelial cells, activated JNK relates to E-Cad 
inactivation and loss of cell polarity [173, 174]. In Xeno-
pus, JNK signaling antagonizes the canonical Wnt3a path-
way by regulating β-Catenin transport [175]. JNK was 
recently found to regulate AJ formation, as the inhibition 
of JNK kinase activity promoted localization of the E-Cad/
β-Catenin complex to cell–cell contact sites [176, 177]. 
In the mouse, when JNK signaling activity increases, the 
WNT4 level simultaneously decreases. In  vitro, attenua-
tion of JNK signaling leads to WNT4 upregulation, but 
knockdown of WNT4 does not significantly rescue JNK 
inhibition-induced CBD failure, as WNT4 regulates E-Cad 
expression, whereas JNK signaling does not. Therefore, 
the reciprocal change leads to E-cad junction disassembly 
and gradual germline CBD. JNK signaling is maintained at 
high levels until 4 dpp when the oocytes are released from 
the cysts completely and surrounded by pre-granulosa cells 
to form PFs [130]. Hence, the homeostasis between JNK 
and WNT4 activity is fine tuned for cyst structure main-
tenance and breakdown during the early stage of ovarian 
development.

The small GTPase family member Rac1 may also 
play an indispensable role in controlling PF formation 
in the mouse ovary (Fig.  2d). Rac1 acts as a molecular 
switch by cycling between an active GTP-bound state 
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and an inactive GDP-bound state. In its active state, 
Rac1 actively regulates cell shape, adhesion, movement, 
endocytosis, secretion, and growth [178, 179]. Rac1 is 
involved in meiotic spindle stability and anchoring in 
oocytes as well as embryo implantation and embryonic 
epithelial morphogenesis [180–183]. In the fetal mouse 
ovary, Rac1 is exclusively expressed in germ cells prior 
to follicle assembly and in the oocytes of PFs [157]. 
In vitro, disruption of Rac1 retards CBD, whereas Rac1 
overexpression accelerates the formation of PFs. In vivo 
inhibition of Rac1 results in the formation of MOFs 
which are similar to those associated with Gdf9 and Bmp 
mutations in mice [184]. Rac1 may induce the nuclear 
import of STAT3 through physical binding to activate the 
expression of oocyte-specific genes, including Jagged1, 
GDF9, BMP15, and Nobox [157, 185, 186], indicating 
that signals from the oocyte to the pre-granulosa cells 
are vital for CBD and PF formation [187]. The action of 
Rac1 in CBD and PF formation may also be related to 
E-Cad, as E-Cad can regulate the localization and func-
tion of Rho GTPases, including Rac and Cdc42, through 
a mechanism described as ‘outside-in signaling’ [181]. 
However, more animal models are needed to clearly elu-
cidate the mechanism of Rac1 in this process.

S100A8, an oocyte-specific chemokine and calcium-
binding S100 protein family member, has been demon-
strated to direct the migration of ovarian somatic cells 
during mouse PF assembly [188]. Regarding the initial 
motivation for PF assembly, apoptosis within cysts is 
important for yielding isolated oocytes for PF forma-
tion, as demonstrated by the BCL2-associated X protein 
(Bax) mutant mouse model [106, 189]. However, studies 
of Bax and caspase 2 (Casp2) mutant mice indicate that 
the formation of PFs may be organized by some stimulus 
other than apoptosis, such as the migration or invasion 
of pre-granulosa cells from outside-to-inside the cysts to 
envelop the oocyte [190, 191]. In contrast to observations 
made in the 1990s showing that the oocyte itself is motile 
[192, 193], a recent in  vitro study demonstrated that 
oocytes are functionally immotile during PF formation 
[188]. S100A8 is significantly expressed in the oocytes of 
cysts at 19.0 dpc, the point at which PF assembly is about 
to begin. In addition, S100A8 significantly promotes the 
number of migrating ovarian somatic cells in  vitro, the 
majority of which are FOXL2-positive cells, implying 
that pre-granulosa cells are motile. In addition, knock-
down of S100A8 not only inhibits follicle reconstruction 
in a dose-dependent manner but also prevents PF assem-
bly in mice [188]. S100A8 exhibits multiple receptors for 
performing various functions [194, 195]. Hence, future 
work should concentrate on defining the ovarian cell-spe-
cific receptors of S100A8 to explore its roles in ovarian 
development.

Hormones regulating CBD and PF formation

In the mouse, circulating hormones and steroid factors, 
such as diethylstilbestrol [196], bisphenol-A [197] or phy-
toestrogen genistein [198], as well as estrogen, estradiol, 
and progesterone [199–202], have negative roles in regu-
lating CBD and PF formation (Fig.  1d). In addition, neo-
natal mice treated with steroids exhibit a significantly 
higher incidence of MOFs in adult ovaries, implying that 
the occurrence of these aberrant follicles results from 
incomplete CBD [198]. Consequently, under physiological 
conditions, CBD may be initiated by a dramatic neonatal 
decrease of estrogen and progesterone, which are derived 
from the maternal milieu [84, 105, 199] of pregnancy, or 
from the fetal ovary itself [203]. Estrogen and progesterone 
may act through classical and non-classical mechanisms to 
modulate CBD and PF formation [105]. Through binding 
to estrogen receptors, elevated estrogen, trans-acting tran-
scription factor 1 (SP1), and β-Catenin are involved in reg-
ulation of the expression of various genes and cause POF 
[204, 205]. Estrogen receptor inhibition assures the forma-
tion of PF-like structures in vitro [205, 206]. In the ham-
ster and baboon, however, estrogen appears to have posi-
tive effects on PF formation [207–211]. Similarly, although 
estrogen receptors are found in human germ cells at the 
time of PF formation [212], the situation is quite differ-
ent in humans compared to mice, as steroid hormones are 
maintained at high levels during PF formation in the sec-
ond trimester of embryonic development [213–215]. These 
differences may be related to the different concentrations 
before and after CBD or to species specificity [105, 216]. 
Unfortunately, the exact cause is still unclear.

Follicle-stimulating hormone (FSH) may coordinate the 
action of estrogen in the fetal mouse ovary, while PFs are 
being established [5, 105, 217, 218]. FSH has been detected 
in the serum of neonatal mice and hamsters [219, 220]. The 
FSH receptor, possibly stimulated by FSH or estrogen, is 
expressed in the fetal ovaries of both mice [221] and ham-
sters [218]. In the hamster, FSH is involved in inducing PF 
formation and cAMP production in the ovary [218], the lat-
ter of which is important for early oogenesis and folliculo-
genesis in mice [102]. Neutralization of FSH results in the 
inhibition of PF formation [222]. These observations are in 
line with the findings in the mouse, in which PF formation 
is improved by FSH in vitro [223], and the oocyte-specific 
genes Fig1α and Nobox are promoted in a low-estrogen 
environment [217]. Therefore, the coordination of FSH and 
estrogen may be crucial for the proper timing of CBD and 
PF formation [5].

The downstream targets of estrogen and progesterone 
may be the TGFβ family member hormones, such as Inhibin 
(Inh), Act, and Fst [84]. First, these factors are involved in 
PF formation. In the human fetal ovary, Act is produced by 
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germ cells in cysts. The level of Act is reduced when CBD 
begins and is undetectable in oocytes in PFs [215, 224]. 
Treatment of neonatal mice with Act A results in a greater 
number of PFs entering the initial follicle pool in vitro and 
in vivo [77, 225]. Although Act receptors are expressed by 
both germ and somatic cells in the human fetal ovary [215], 
the active forms of their downstream transcriptional regula-
tor SMADs are detectable only in the somatic cells, indi-
cating that these cells are the targets of Act signaling [224]. 
In addition, as the natural antagonist of Act, Fst is specifi-
cally expressed in fetal ovary. Conditional knockout of Fst 
in the granulosa cells of the mouse ovary results in an obvi-
ous loss of fertility and reduction of litter numbers [226]. 
FST288, the strongest Act-neutralizing isoform of Fst, may 
be involved in germ cell CBD and PF assembly by inhib-
iting somatic cell proliferation via Notch signaling [227]. 
Second, an appropriate ratio between Inh-Act-Fst plays a 
powerful role in regulating germline CBD and PF forma-
tion. Acts and Inhs are homo- or hetero-dimeric cysteine 
knot proteins that share a common β subunit [228]. Expo-
sure of neonatal mice to estrogens suppresses the levels of 
both Act in the ovary and Inh A in serum [200]. Similarly, 
in the baboon, estrogen regulates fetal ovarian folliculo-
genesis by controlling the ratio of Act:Inh within the ovary 
throughout the second half of gestation [211]. Disruption 
of the Inh-Act-Fst pathway is observed in TAF4b-deficient 
mice, indicating that these hormones function downstream 
of TAF4b in regulating PF formation [229]. Therefore, the 
effects of Act on germ cell survival and/or proliferation 
occur indirectly through juxtacrine/paracrine interactions 
with surrounding somatic cells rather than through auto-
crine interactions with germ cells [166] (Fig. 3).

Germ cell survival

In many mammalian species, large numbers of oocytes 
die along with the CBD before individual PFs assemble 
[25, 110, 230, 231]. During this process, the cytoplasmic 
bridges between the remaining nuclei are either retracted 
or cleaved, likely through the protease action of the sur-
rounding somatic cells [84]. In mice, the maximum number 
of germ cells is observed in the mouse ovary at the time 
at which oocytes enter meiotic prophase [232], whereas 
oocyte death is most pronounced at the time of birth, the 
point at which when PF formation is at its peak. As a result, 
by 4 dpp in the mouse, approximately 6.4 germ cells on 
average in each cyst survive from the initial 30 (20%) as 
primary oocytes [109, 110, 232–234]. In humans, attri-
tion of the ovarian reserve begins at approximately 24 wpc 
when the number of oocytes starts to decline significantly 
[235]. Consequently, the ovarian lifespan is perinatally 

determined through a delicate balance of oocyte survival 
and apoptosis [87, 161].

An earlier depletion of the ovarian reserve results in ear-
lier loss of estrogen production by the ovary. Estrogen is 
of great importance for bone, cardiovascular, and cognitive 
health as well as overall mortality in women [236]. Hence, 
understanding the mechanism of germ cell loss during this 
time is pivotal for identifying suitable strategies to preserve 
the size of the ovarian pool. However, detailed information 
regarding oocyte death remains limited.

Programmed cell death (PCD) is an important physi-
ological process during embryonic development. Germ 
cell death can be apoptotic or nonapoptotic, depending 
on the stimulus or stage of development [237]. There are 
three types of PCD: type I (apoptosis), type II (autophagy), 
and type III (non-lysosomal vesiculate degradation) [232, 
238]. According to in vivo and in vitro findings, fetal germ 
cell death occurs via a number of mechanisms during 
CBD, including Caspase 2-dependent apoptosis [34, 110, 
239–243], highly conserved cytoprotective autophagy [241, 
244–247], and direct extrusion from the ovaries (ovarian 
shedding) [245, 246].

Apoptotic and autophagic proteins appear to coexist 
in fetal oocytes [85] (Fig. 4). Recent reviews showed that 
autophagy exhibits an unresolved close relationship with 
apoptosis, as the initiation of either autophagy or apopto-
sis requires disruption of the same B-cell lymphoma/leuke-
mia-2 (Bcl-2)/Bcl-xL complexes, which bind to either Bec-
lin1 (autophagy pathway) or Bax/Bak (apoptosis pathway) 
[248, 249]. However, the autophagy protein p62 has been 
shown to interact with caspase-8, TRAF, and ERK [248]. 
Autophagy degrades damaged mitochondria and caspases 
and provides membranes for caspase processing in the 
regulation of apoptosis [249]. In addition, JNK1 is involved 
in the regulation of oocyte apoptosis and autophagy via 
phosphorylation of Bcl-2 [250]. The mutual relationship 
between autophagy and apoptosis before and after PF for-
mation requires substantial further study.

The regulators of apoptosis consist of two groups of 
proteins: proapoptotic (Bax, Bak, Bad, Bid, PUMA, Noxa, 
Nix, Xiap, and Bim) and antiapoptotic (Bcl2, Bcl-xL, and 
Mcl1) [251]. In most cases, survival or apoptosis results 
from a balance between the expression of survival (antia-
poptotic) and proapoptotic factors [84, 235]. Apoptosis 
has been recognized as the main cause of the attrition of 
the ovarian PF pool in both humans and mice [84, 191, 
252, 253]. Freshly formed cysts sustain ongoing apopto-
sis and later fragment into smaller cysts [106]. Apoptosis 
is triggered by either physiological (developmental cues) 
or cellular (environmental in origin) stressors [232]. For 
instance, plummeting levels of estrogen immediately after 
birth in mice may be responsible for oocyte apoptosis [65, 
198, 217, 254]. Most recently, deficiency of Mcl-1 in the 
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mouse oocyte was shown to result in premature exhaustion 
of the ovarian reserve, characterized by early PF loss due 
to activation of apoptosis [161, 255]. In humans, Mcl-1 is 
expressed in germ cells of different sizes at the periphery 
of the ovary at 14–16 wpc and in the oocytes within newly 
formed PFs at 21 wpc, indicating a possible role of Mcl-1 
in PF formation [256]. Mcl-1 may be essential for the con-
servation of the postnatal PF pool as well as the survival of 
growing follicles and effective oocyte mitochondrial func-
tion [255]. The roles of other apoptosis-related proteins in 
PF formation also require further study.

As the mitochondrial load has been positively correlated 
with the prevention of apoptosis [257], intercellularly trans-
ferred proteins, nutrients, or mitochondria may themselves 
serve as the trigger for apoptosis of the nurse cell, and con-
versely, for protection of oocytes with a Balbiani body from 
apoptosis. In addition to the proteins that could be involved 
in the regulation of oocyte death, recent studies have indi-
cated that miRNAs are involved in PF assembly by regu-
lating either pre-granulosa cell proliferation [217, 258] or 
oocyte apoptosis [259]. These findings provide insight into 
new possibilities for systematically evaluating the roles 
of novel miRNAs in the regulation of target genes during 
CBD and PF assembly.

The term “autophagy” comes from the Greek words 
“auto” (self) and “phagein” (to eat). Autophagy is a 

highly conserved intracellular process that maintains cel-
lular homeostasis through the removal of useless or dam-
aged cytoplasmic organelles and large molecules [260]. 
Autophagy is both a unique cell-death pathway and an 
adaptation to stress that promotes cell survival [249]. 
Recently, autophagy has been demonstrated to be active 
in the life and death decisions of oocytes, particularly 
around the time of PF assembly [246, 247, 261]. Com-
promised autophagy within the perinatal ovary due to 
deficiency of autophagy-related genes (i.e., Atg7 or Bec-
lin1) results in the premature loss of female germ cells by 
1 dpp in mice, which is similar to POI in humans [247, 
262]. Therefore, autophagy appears to be a cell protective 
method for maintaining the endowment of female germ 
cells prior to establishing PF pools in the ovary [247].

Importantly, if starvation is prolonged before oocytes 
are enclosed in a PF, the lack of nutrients or growth fac-
tors may activate protective autophagy or even result in 
cell death [85, 262] (Fig. 4a). In addition, the mTOR pro-
tein, which senses the availability of nutrients and energy 
substrates within the intracellular milieu, is the major 
regulator of autophagy in response to nutritional fac-
tors (Fig. 4b). A decrease in the above-mentioned factors 
results in the inactivation of mTOR and, thus, initiates 
Beclin1-mediated autophagy [241, 260]. The inducer of 

Fig. 4  Schematic representa-
tion of autophagy and apoptosis 
regulation as well as the meiosis 
initiation mechanism during 
CBD and PF formation. a Cellu-
lar stress induced by starvation, 
ROS (reactive oxygen species), 
and other factors causes the dis-
placement of Bcl-2 from either 
Beclin-1 or Bax, thereby trig-
gering autophagy or apoptosis, 
respectively. Activated JNK is 
responsible for the phosphoryla-
tion of Bcl-2. The autophagy–
apoptosis interactions are not 
fully understood. b Amino acid 
deprivation, hypoxia, and an 
elevated AMP/ATP ratio acti-
vate AMPK (5′-AMP-activated 
protein kinase), which in turn 
activate TSC2 (tuberous sclero-
sis complex 2), thus preventing 
the action of mTORC1 from 
inhibiting autophagy. c Increase 
of KIT levels in oocytes induced 
by KITL or SOHLH2 may 
activate mTORC1 to inhibit 
apoptosis through the PI3K/
AKT signaling pathway
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autophagy and the prerequisite for activating the process 
during CBD and PF formation remains a mystery.

KIT is directly involved in and important to the early 
survival of oocytes (Fig. 4c). As noted above, c-Kit is only 
expressed in oocytes during CBD, but KITL is expressed 
in both oocytes and ovarian somatic cells when PFs are 
formed. The inhibition of KIT results in a reduction in 
CBD, an increase in oocyte numbers, and a reduction of 
cell death. Activation of KIT promotes CBD and decreases 
oocyte numbers [161]. In vitro, KIT inhibitors reduce CBD 
and the growth of oocytes in both the fetal and neonatal 
ovary [224, 263]. Previous reports have indicated that natu-
rally mutated KIT ligands in the mouse result in the for-
mation of ovaries with fewer germ cells [264, 265]. When 
activated by KITL, KIT is autophosphorylated at tyrosine 
719, which is also the primary binding site for the p85 of 
PI3K. Autophagy is regulated through the PI3K/AKT-
mTOR pathway as well [260, 266]. Alternatively, sper-
matogenesis- and oogenesis-specific helix-loop-helix tran-
scription factor 2 (SOHLH2) is effective in upregulating 
c-kit expression and inhibiting oocyte apoptosis, possibly 
through activation of the KIT/PI3K/AKT/Foxo3a signaling 
pathway [267].

In addition, the presence of a particular number of asso-
ciated granulosa cells is important for sustaining oocyte 
survival [66, 268]. For example, neurotrophins, a family 
of growth factors, are involved in cell survival and ovary 
development. Surviving oocytes are contained in follicles 
that exhibit sufficient granulosa cells to provide the oocyte 
with sufficient neurotrophins [66, 269]. Feng et al. (2016) 
reported that the proper differentiation and proliferation 
of ovarian supporting cells are essential for the establish-
ment of the PF pool. In particular, the recruited number of 
somatic cells and speed of recruitment may determine the 
final size of the female reproductive reserve [66]. Further-
more, water channel aquaporin-8 (AQP8), which is a major 
plasma membrane water channel protein that is exclusively 
expressed in granulosa cells and in the neonatal mouse 
ovary, has been reported to be responsible for the forma-
tion of MOFs [270]. Several studies have demonstrated that 
deficiency of AQP8 may regulate pre-granulosa cell func-
tion during folliculogenesis by decreasing apoptosis and 
impairing cell migration [270–272].

Death receptor signaling factors, such as Tumor Necro-
sis Factor (TNF)/TNF receptor 1 and Fas ligand/Fas, are 
expressed in neonatal rodent ovaries and regulate oocyte 
death [232]. A lack of TNF in ovarian somatic cells results 
in malfunction of CBD and PF formation in rodents, 
whereas the deletion of TNFα or Fas in mice increases the 
number of PFs at birth [273–275].

Finally, Wnt4 and Fst are both specifically expressed in 
somatic cells of the fetal ovary. Based on Wnt4 acting as 
an initiator of Fst expression, FOXL2 and Bmp2 cooperate 

to ensure the correct expression of Fst [276]. Fst may be 
responsible for preventing the action of Act B, which 
causes masculinization and female germ cell loss [54]. 
Germ cells in the ovarian cortex are almost completely 
lost in both Wnt4- and Fst-deficient gonads before birth, 
indicating that Wnt4 acts through Fst in the early ovary to 
regulate vascular boundaries and endothelial cell migration 
from the mesonephros and to maintain germ cell survival 
at the pachytene and diplotene stages (approximately 16.5 
dpc) in the ovary [276, 277].

Summary

PF formation in mammals is systematically engineered by 
signals inside and outside the ovary. Previous studies have 
elucidated many important hormones and factors that play 
roles in CBD and PF assembly through endocrine, parac-
rine and autocrine actions. However, additional in  vivo 
assays are needed to accurately elucidate what occur under 
physiological conditions. Moreover, it is still unclear which 
organizers are the most important in disassembling ger-
mline cysts and regulating PF formation. According to the 
most recent reports, reconstituted follicles, fertile oocytes, 
and full-term developed pups have been obtained from 
in  vitro-generated PGCs [205, 206]. However, the low 
rate of generation of pups produced from the MII oocytes 
(ranging from 3.5% [205] to 14–40% [206] in  vitro vs 
61.7% in vivo) implies that the physiological mechanism of 
oogenesis is far from being well understood. Future work 
focusing on the mechanism that precisely controls this pro-
cess is pivotal for potential translation of these findings to 
produce high-quality PFs in vitro for clinical applications.
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