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molecular mechanisms governing mitochondrial dynamics 
and integrate recent insights into how changes in mitochon-
drial shape affect cellular migration, differentiation, apop-
tosis, and opportunities for the development of novel tar-
geted cancer therapies.
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Introduction

Mitochondria are double membrane organelles that consist 
of an outer mitochondrial membrane (OMM), inner mem-
brane space (IMS), inner mitochondrial membrane (IMM), 
and matrix. The IMM has numerous folds called cristae 
and are sites for electron transport chain (ETC) assembly 
and oxidative phosphorylation (OXPHOS). Mitochondria 
also contain a genome (mitochondrial DNA; mtDNA) that 
exists in the matrix as thousands of copies of circular, dou-
ble stranded DNA. mtDNA is comprised of 16,569 base 
pairs that encode for 13 protein ETC subunits, 22 transfer 
RNAs, and 2 ribosomal RNAs. Other proteins that function 
in mitochondria are encoded by the nuclear genome and 
contain a mitochondrial localization signal in their amino-
terminus that allows for efficient delivery of the polypep-
tide to mitochondria. In addition to producing energy in 
the form of adenosine triphosphate (ATP), mitochondria 
also regulate biogenesis of iron-sulphur clusters, oxida-
tion–reduction (redox) status, synthesize macromolecule 
precursors, and initiate apoptosis.

Mitochondria have a unique ability to regulate their 
morphology in response to various cellular stimuli. For 
example, during nutrient deprivation, mitochondria fuse 
together and create interconnected filamentous networks 

Abstract Mitochondria are dynamic organelles that sup-
ply energy required to drive key cellular processes, such 
as survival, proliferation, and migration. Critical to all of 
these processes are changes in mitochondrial architecture, a 
mechanical mechanism encompassing both fusion and frag-
mentation (fission) of the mitochondrial network. Changes 
to mitochondrial shape, size, and localization occur in a 
regulated manner to maintain energy and metabolic home-
ostasis, while deregulation of mitochondrial dynamics 
is associated with the onset of metabolic dysfunction and 
disease. In cancers, oncogenic signals that drive excessive 
proliferation, increase intracellular stress, and limit nutrient 
supply are all able to alter the bioenergetic and biosynthetic 
requirements of cancer cells. Consequently, mitochondrial 
function and shape rapidly adapt to these hostile conditions 
to support cancer cell proliferation and evade activation 
of cell death programs. In this review, we will discuss the 
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to share nutrient precursors, mtDNA, ETC components, 
and maintain OXPHOS. Conversely, mitochondrial fis-
sion produces smaller, fragmented mitochondria, which 
is important for mitochondrial movement to regions of 
high energy demand or to allow for equal mitochondrial 
distribution to daughter cells following mitosis [1]. Mito-
chondrial dysfunction has been associated with a number 
of degenerative diseases, such as Leigh’s disease and Par-
kinson’s disease [2], while disruption to mitochondrial 
dynamics has also been implicated in several neuropa-
thies and cardiomyopathies [2]. Mitochondrial function 
and cellular metabolism in cancer have been an area of 
intense research over several decades; however, recently a 
number of studies have implicated a role changes in mito-
chondrial architecture during tumorigenesis.

Over the past decade, we have gained knowledge about 
how mitochondrial dynamic proteins are regulated at the 
transcriptional, translational, and post-translational levels 
as well as the cell-specific and intracellular contexts in 
which different mitochondrial morphologies are favoured. 
Nevertheless, there are a number of questions regarding 
how mitochondrial dynamics are regulated in cancers. 
For example, are mitochondrial dynamics regulated by 
oncogenic signaling? Do mitochondrial dynamics play a 
role in tumorgenic processes, such as differentiation and 
migration? What is the relationship between mitochon-
drial shape and the cell death machinery and what are the 
clinical opportunities for targeting mitochondrial dynam-
ics proteins in cancer? We outline here some recent bio-
chemical and cellular studies that have provided insights 
to these questions.

Mitochondrial dynamics machinery

Pioneering work by Lewis and Lewis over a century 
ago established that mitochondria constantly move and 
divide [3]. Since then, technological advances, such as 
mitochondrial-specific dyes (i.e., tetramethylrhoadamine, 
ethyl ester [TMRE]), and fluorescently-labelled pro-
teins (i.e., green fluorescent-mito) [4, 5], have allowed 
researchers to depict a more accurate representation of 
fused and fragmented mitochondrial architecture and 
describe how these particular shapes directly relate to 
mitochondrial function. Mitochondrial dynamics is regu-
lated by a number of highly conserved large guanosine 
triphosphatases (GTPases). Fusion of the OMM is medi-
ated by mitofusin 1 and mitofusion 2 (Mfn1 and Mfn2), 
while IMM fusion is regulated by Optic Atrophy 1 
(OPA1). On the other hand, mitochondrial fission is con-
trolled by dynamin-related protein 1 (DRP1).

Outer mitochondrial membrane fusion

Mfn1 and 2 co-localize to the OMM and regulate mito-
chondrial fusion (Figs. 1a, 2a). Both mitofusins are broadly 
expressed in a range of tissues, although the relative levels 
of either protein can vary dramatically. For example, Mfn1 
is ubiquitously expressed in most tissues, whereas Mfn2 has 
higher expression in skeletal muscle, brain, and heart, sug-
gesting a dominant role for Mfn2-mediated fusion in these 
tissues. Generation of homozygous Mfn1 or Mfn2-null 
mice revealed an embryonic lethal phenotype [6]. How-
ever, while the mechanism underlying Mfn1 −/− lethality 
required further investigation, Mfn2 −/− mice died mid-ges-
tation due to reduced trophoblast giant cells in the placenta 
and resulted in improper placental development, indicating 
that Mfn1 and Mfn2 are not functionally redundant [6, 7]. 
In humans, heterozygous missense mutations within Mfn2 
are associated with an autosomal peripheral neuropathy 
called Charcot-Marie-Tooth hereditary neuropathy type 
2 A (CMT) [8]. Electron micrographs of sural nerve speci-
mens from CMT patients contain small, rounded mitochon-
dria, suggesting that defects in mitochondrial fusion may 
contribute to CMT pathology [9, 10]. Collectively, these 
studies highlight the importance of mitofusins to embryo-
genesis and the development of specific tissues.

Genetic ablation of Mfn1 and/or Mfn2 significantly frag-
ments the mitochondrial network and causes severe cellular 
defects, including disruption to mitochondrial membrane 
potential (ψ∆m), decreased respiration, and ATP produc-
tion, which subsequently reduces cell proliferation [6, 
7]. A consequence of fusion is the intermixing of matrix 
contents, including mitochondrial proteins, mtDNA, and 
nutrients, which promotes mitochondrial homogeneity and 
maintenance of OXPHOS, by diluting out any dysfunc-
tion proteins and mutated mtDNA [11, 12]. Cell fusion 
experiments between wild-type and Mfn1- or Mfn2-null 
cells revealed that mitochondrial fusion can only occur 
when mitofusins are present on opposing mitochondria, 
implying the formation of trans complexes during mito-
chondrial tethering [13, 14] (Fig. 2a). Interestingly, hetero-
typic dimers (i.e., Mfn1:Mfn2) are more efficient at fusion 
compared to homotypic complexes [14], while post-trans-
lational modifications can also regulate mitofusin activity 
[15–17] (Fig. 1a). The reason for the efficacy of heterotypic 
interactions may be related to the additional function Mfn2 
plays in tethering mitochondria to the endoplasmic reticu-
lum (ER) to regulate  Ca2+ homeostasis [18, 19].

Inner mitochondrial membrane fusion

Similar to mitofusins, OPA1 expression is also essential for 
mammalian development as homozygous deletion of OPA1 
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Fig. 1  Dynamins are large GTPases that regulate mitochondrial 
fusion and fission. Schematic of Mfn1, Mfn2, OPA1, and DRP1 pro-
tein structures. a Amino-terminal region of Mfn1 and Mfn2 contain 
a GTPase domain. A centralized transmembrane (TM) domain ena-
bles insertion of the protein into the OMM. Flanking the TM region 
are two coiled–coiled (CC1, CC2) domains that permit homo- or 
hetero-dimerization of Mfn1 and Mfn2 proteins, and allow for fusion 
between adjacent mitochondria. b OPA1 consists of an amino-termi-
nal mitochondrial localization signal, followed by two transmembrane 

domains, and a CC1 domain. The GTPase region is centrally located 
and is followed by a second CC domain (CC2), and GTPase effec-
tor domain (GED) at the carboxyl-terminus. OPA1 is proteolytically 
processed to produce long (L-OPA1) and short (S-OPA1) isoforms. 
c DRP1 consists of an amino-terminally located GTPase domain; 
followed by a middle domain that is involved in self-assembly and 
a variable CC region called “Insert B”. At the carboxyl-terminus is 
a GED, which is involved in intra-molecular interactions with the 
GTPase domain
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in mice leads to the early embryonic lethality [20]. In addi-
tion, mutations in OPA1 frequently occur in dominant optic 
atrophy (DOA), where the retinal ganglion cells degener-
ate causing vision loss [21]. Myotubes from DOA patients 
have fragmented mitochondria, indicating that the disease 
phenotype manifests as a consequence of the role OPA1 
play in coordinating IMM fusion and cristae remodelling 
[22].

OPA1 undergoes proteolytic processing to produce two 
distinct isoforms (Figs.  1b, 2a) that are critical to initiate 
fusion and maintain cristae junctions (Fig.  2a). Fusion of 
IMM and OMM is a temporally linked, multi-step pro-
cess controlled by transmembrane adaptor proteins that 
span both membranes [23]. In yeast, the adaptor protein is 
Ugo1, and while a mammalian homolog has not yet been 

discovered, OPA1 interacts with Mfn1 and Mfn2 [24] 
(Fig.  2a), indicating that OPA1-adaptor complexes form 
bridges between the IMM and OMM, and thus facilitate 
lipid mixing during fusion.

Mitochondrial fission

DRP1-mediated mitochondrial fission is regulated by a 
range of post-translational modifications, including phos-
phorylation, ubiquitination, sumoylation, and nitrosyla-
tion [25–33] (Fig.  1c). Fission is a coordinated process 
that requires recruitment of cytosolic DRP1 to the OMM 
followed by self-assembly into spherical oligomers that 
wrap around and sever mitochondria (Fig. 2b). Genetically 

Fig. 2  Mechanisms of mitochondrial fusion and fission. a Fusion of 
the OMM is mediated by Mfn1 and Mfn2. The orientation of Mfn1 
and Mfn2 domains suggests that the amino and carboxyl termini face 
the cytosol to facilitate interactions with other mitofusins on adjacent 
mitochondria, while the TM domain is embedded within the OMM 
and IMS. The mitofusin GTPase domain is required to pull the two 
opposing OMMs together resulting in bilayer fusion. Fusion of the 
OMM requires homo- or heterotypic interactions between Mfn1 and 
Mfn2, although heterotypic dimers (i.e., Mfn1:Mfn2) are more effi-
cient at fusion compared to homotypic complexes. IMM fusion is 
coordinated by OPA1. L-OPA1 isoforms are anchored within the 
IMM and have their GTPase and GED exposed to the IMS. Proteo-
lytic cleavage of L-OPA1 results in the generation of S-OPA1, allow-
ing both to coordinate IMM fusion. OPA1 interacts with both Mfn1 

and Mfn2 to form a bridge between the IMM and OMM, and is 
required for lipid mixing during fusion. b DRP1 regulates mitochon-
drial fission. Soluble, cytosolic DRP1 exists in the cytosol as dimers 
or trimers. Following activation via phosphorylation at Ser616, DRP1 
translocates to the OMM where it binds to adaptor proteins (e.g., 
MFF, MiD49, MiD51, and FIS1). At the OMM, DRP1 undergoes 
conformational change, so that the middle domain and GED form a 
stalk-like structure. The DRP1 GTPase domain faces away from the 
OMM and connects with other DRP1 proteins on mitochondria. Once 
a DRP1 helix has completely spiralled around mitochondrion, GTP 
hydrolysis causes constriction of the helix and scission of the OMM 
and IMM. Actin polymerization also occurs at ER-mitochondrial 
junctions and facilitates migration of individual mitochondrion away 
from each other during fission
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engineered mice ablated for Drp1 are embryonically lethal 
due to abnormal placental and cardiomyocyte develop-
ment [34, 35]. Conditional brain Drp1−/− mice had defec-
tive cerebellar development and died within 2 days of birth, 
while specific heart Drp1−/− mice developed lethal cardiac 
dysfunction, which similar to the fusion proteins signifies 
the importance of mitochondrial dynamics to embryogen-
esis [35–38]. Despite the physiological defects exhibited 
in Drp1-null mice during development, Drp1−/− mouse 
embryonic fibroblasts (MEFs) are still capable of undergo-
ing cell division and partition their mitochondria to daugh-
ter cells. At the point of cytokinesis in Drp1-null cells, 
mitochondria undergo forced fragmentation at the mid-
body and unequal distribution to daughter cells [39]. In 
addition, the rate of cell division following loss of DRP1 is 
dramatically lower compared to wild-type cells [35], sug-
gesting that while DRP1 may function as a core component 
of mitochondrial fission, there appears to be some unidenti-
fied members that can complete this process. Indeed, recent 
findings from Lee et al. identified the DRP1-related protein, 
dynamin-2 (Dyn-2) as a fundamental component of the fis-
sion machinery in mammalian cells [40]. DRP1 oligomeri-
zation at the OMM constricts the mitochondrial mem-
brane to a specific diameter that permits recruitment and 
assembly of Dyn-2, which then further drives membrane 
constriction and completes mitochondrial fission [40], sug-
gesting that mitochondrial fission in Drp1−/− MEFs may be 
mediated by Dyn-2.

Given the importance of mitochondrial dynamics to 
fundamental biological processes, such as development, a 
critical question to answer is do the mitochondrial dynam-
ics machinery also play a significant role in the progression 
of diseases, such as cancer.

Oncogenic signaling and cancer metabolism

While tumors can contain hundreds of genomic mutations 
and chromosomal rearrangements, typically only two to 
eight genomic events cause the progression of cancer by 
providing specific growth advantages and evasion of cell 
death programs [41]. Some of these mutations occur in 
proto-oncogenes (i.e.,  RASG12V and B-RAFV600E), copy 
number amplification (i.e., MYC), or deletion of tumor sup-
pressors (i.e., PTEN). However, overexpression of onco-
genes in the background of functional tumor suppressors is 
not sufficient to induce cellular transformation and tumo-
rigenesis, but instead arrests the cell cycle in a senescent-
like state [42]. For example, benign melanocytic naevi 
that acquire B-RAFV600E mutations will undergo limited 
proliferation or attrition via oncogene-induced apoptosis 
before entering senescence [43–45]. Some naevi are able 
to overcome oncogene-induced senescence by acquiring 

additional somatic mutations (usually from exposure to 
ultraviolet radiation) in signaling pathways that control 
proliferation (i.e., NF1), cell cycle (i.e., CDKN2A), cell 
growth (i.e., PTEN), or apoptosis (i.e., TP53). Progres-
sion from benign to malignant lesions requires additional 
changes in cellular metabolism to support increased bioen-
ergetic and biosynthetic demands that occur from excessive 
proliferation.

Over seven decades ago, Otto Warburg linked mitochon-
drial function to tumorigenesis by observing that cancer 
cells undergo aerobic glycolysis, which is the fermentation 
of glucose to lactate in the presence of oxygen [46, 47]. It 
is now becoming clear that many oncogenic and tumor sup-
pressor networks converge on mitochondria and alter cellu-
lar metabolism to support excessive tumor cell proliferation 
[48]. Rapidly dividing cancer cells require three main meta-
bolic adaptations: (1) increase ATP production to maintain 
energy demand, (2) increase biosynthesis of macromol-
ecules, and (3) regulation of redox states. To facilitate these 
requirements, cancer cells frequently reprogram their meta-
bolic circuitry with the Warburg effect being the best char-
acterized metabolic phenotype. Under the Warburg effect, 
ATP production primarily occurs through glycolysis, which 
paradoxically offers a more rapid means of generating ATP, 
but overall is less efficient than OXPHOS in terms of total 
ATP molecules produced per molecule of glucose. Instead, 
glycolysis is favoured because of the effective shuttling of 
carbon into macromolecule biosynthetic pathways, such as 
the pentose phosphate pathway [49]. This is done by lim-
iting pyruvate utilization by mitochondria via decreasing 
mitochondrial pyruvate carriers and/or reducing the activ-
ity of pyruvate kinase, which catalyzes the final step of gly-
colysis to produce pyruvate. As a consequence, glycolytic 
intermediates upstream of pyruvate accumulate and can be 
utilized in other anabolic processes.

The effect of oncogene and tumor suppressor networks 
on cancer metabolism has been extensively reviewed else-
where [50–52]. In the following sections, we look at three 
of the most frequently mutated pathways in cancer (mito-
gen activated protein kinases (MAPK), phosphoinositide 
3-kinase (PI3K)-AKT, and MYC) and how they affect 
mitochondrial shape and function.

Oncogenic signaling and regulation 
of mitochondrial dynamics

While the underlying mechanisms regulating mitochon-
drial dynamics in cancer still remain unknown, a number of 
recent studies have revealed that hyper-activated oncogenic 
pathways act as potent signals to remodel mitochondrial 
shape and metabolism during tumorigenesis. Oncogenic 
cancer metabolism is associated with decreased OXPHOS, 
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ATP production, increased ROS, and glycolytic flux. As 
specific mitochondrial morphologies are associated with 
different energetic states of cells, it, therefore, stands to rea-
son that oncogene-mediated metabolic reprogramming will 
induce changes in mitochondrial shape to support chang-
ing metabolism. Indeed, primary fibroblasts display fused 
mitochondria and rely on OXPHOS, while B-RAFV600E-
driven melanoma cells contain a fragmented mitochon-
drial network and increased glycolytic metabolism [53]. 
Furthermore, changes in the expression of mitochondrial 
dynamics that promote mitochondrial fission have been 
discovered in many cancer patient samples, indicating a 
potential role in tumorigenesis. For example, OPA1 levels 
are decreased in 50% of hepatocellular carcinoma samples 
compared to patient-matched normal tissue [54]. Similarly, 
Mfn2 is downregulated in human gastric tumors [55], while 
sonic hedgehog signaling induces glycolysis in medullo-
blastomas in mice by decreasing the expression of Mfn1 
and Mfn2 [56]. Conversely, DRP1 levels are upregulated in 
B-RAFV600E-positive nevi and melanoma, pancreatic, thy-
roid, and breast cancers [53, 55, 57–59].

The aforementioned studies indicate that loss of fusion 
components or gain of DRP1 to promote mitochondrial 
fragmentation frequently occurs in cancers, suggesting that 
a fragmented mitochondrial phenotype is essential to many 
tumors. A key question, therefore, is how oncogenic sign-
aling might regulate mitochondrial dynamics to facilitate a 
fragmented mitochondrial network.

Oncogenic MAPK (RAS‑RAF‑ERK) signaling acts 
to promote mitochondrial fission

The mitogen activated protein kinases (MAPK) pathway 
is frequently mutated in many cancers with most of the 
activating mutations occurring in the small GTPase RAS 
or its downstream target serine/threonine kinase rapidly 
accelerated fibrosarcoma (RAF) [60]. Inactivation of path-
way inhibitors, such as nuclear factor 1 (NF1), disabled 
homolog 2-interacting protein (DAB2IP), and RAS pro-
tein activator like 2 (RASAL2), have also been observed in 
cancers and act to further perpetuate RAS-RAF signaling 
[60]. RAS activates a downstream kinase cascade starting 
with RAF, followed by mitogen activated protein kinase 
kinase (MEK) and extracellular signal regulated kinases 
(ERK). Activated ERK phosphorylates a large number of 
substrates, including kinases and transcription factors, that 
execute various cellular programs related to cell cycle, pro-
liferation, metabolism, and evasion from apoptosis.

Mitochondrial fission has previously been associated 
with upregulation of the MAPK pathway [61]. This asso-
ciation was confirmed by in vitro phosphorylation assays 
between ERK and DRP1 which determined that DRP1 is, 

indeed, an ERK substrate, and indicated that mitochondrial 
fission can proceed through the MAPK pathway [61, 62]. It 
was only until two recent studies demonstrated that the spe-
cific ERK phosphorylation site on DRP1 at serine residue 
616 (DRP1 Ser616), resulting in DRP1 activation and mito-
chondrial fission [53, 58] (Fig. 3a). Oncogenic  RASG12V or 
B-RAFV600E also increases DRP1 mRNA levels, which can 
be reversed by pharmacological inhibition of B-RAFV600E, 
MEK, and ERK (i.e., PLX-3042, GSK1120212, and 
PD0325901), respectively [53].

Inhibition of MAPK signaling in B-RAF- or N-RAS-
mutant melanomas promotes a metabolic shift towards 
OXPHOS, and increased mitochondrial biogenesis. This 
occurs through upregulation of melanocytic-specific tran-
scription factor MITF, which, in turn, increases expres-
sion of the transcriptional coactivator peroxisome pro-
liferator-activator receptor gamma coactivator-1 alpha 
(PGC-1α), a key mediator of mitochondrial biogenesis 
[53, 63, 64]. Increased PGC-1α levels have been observed 
in melanoma patient samples following administration 
of the B-RAFV600E inhibitor, PLX-4720. When dichoto-
mized into high and low PGC-1α, it was found that high 
PGC-1α expression correlated with increased OXPHOS 
markers [63]. Another study also showed that inhibition 
of B-RAFV600E with PLX-3042 increased PGC-1α levels, 
which subsequently decreased the expression of numer-
ous pro-metastatic genes [65]. While high PGC-1α expres-
sion has been associated with poor prognosis [63], Luo 
et al. revealed that low PGC-1α levels facilitated dissemi-
nation of tumor cells from the primary site [65]. Interest-
ingly, PGC-1α expression increased in corresponding lung 
metastasises, which indicates that decreased mitochondrial 
mass and OXPHOS in primary melanoma supports a pro-
metastatic program, while high PGC-1α and mitochondrial 
biogenesis promotes cell proliferation at metastatic sites 
[65]. Importantly, combining B-RAFV600E and OXPHOS 
inhibitors (i.e., oligomycin, TTFA) significantly decreased 
melanoma cell viability both in vitro and in mouse xeno-
graft models, suggesting that combinatorial RAF-mito-
chondrial inhibition may be a novel strategy to treat cancers 
that revert back to oxidative metabolism. Curiously, little 
is known about how oncogenes directly regulate mito-
chondrial biogenesis and mitophagy to control cancer cell 
metabolism.

An alternative mechanism linking RAS signaling to 
mitochondrial fission was identified in HEK-293 and 
HeLa cells undergoing mitosis [66]. The GTPase RalA, 
an important downstream RAS substrate that is independ-
ent of the MAPK-ERK pathway [67, 68], and its effector 
RalBP1 actively promote mitochondrial fission by bind-
ing to Cdk1 and increasing DRP1 Ser616 phosphoryla-
tion during mitosis [66]. Collectively, oncogenic RAS pro-
motes mitochondrial fragmentation through two separate 
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pathways: ERK-DRP1 and RalA-RalBP1-Cdk1-DRP1, 
indicating that selective pressures within RAS-driven 
tumors promote fragmented mitochondria and force cellu-
lar metabolism towards glycolysis. In fact, the requirement 
for DRP1 is so strong that DRP1 expression is absolutely 
essential to facilitate oncogenic  RASG12V-mediated cellular 
transformation [53]. DRP1-mediated fragmentation results 
in decreased ψ∆m, OXPHOS, and ATP production, sug-
gesting that the requirement of DRP1 for  RASG12V-induced 
transformation is due to metabolic reprogramming caused 
by mitochondrial fragmentation [53] (Fig. 3a). Meanwhile, 

Kashatus et  al. demonstrated that knockdown of DRP1 
in  RASG12V-positive pancreatic xenografts significantly 
reduced tumor volume and progression [53, 58]. It should 
be mentioned that humans express four different RAS iso-
forms (H-RAS, N-RAS, and two K-RAS splice variants—
K-RAS4A and K-RAS4B), all of which function in a simi-
lar manner at the plasma membrane [69]. Oncogenic RAS 
isoforms are distributed non-randomly across a range of 
tumors, indicating diversity between the RAS isoforms in 
different tissues [69]. For instance, H-RAS mutations are 
more frequently detected in melanoma and head and neck 

Fig. 3  Role of mitochondrial dynamics in cancer processes. a, b 
Oncogenic signaling results in DRP1-dependent mitochondrial frag-
mentation. RAS and PI3K signaling up-regulates MYC, which sub-
sequently promotes expression of pro-fusion and mitochondria bio-
genesis proteins. MYC gene amplification can also phenocopy these 
events in the absence of upstream stimuli. Mitochondrial shape also 
plays distinctive roles in regulating cellular metabolism. Fused mito-
chondria have increased oxidative metabolism, ATP production, and 
decreased ROS. Oncogenic signaling that fragments mitochondria 
increases glucose uptake, ROS, and decreases OXPHOS, which leads 

to a metabolic switch to glycolysis. Mitochondrial morphology is 
interchangeable between fused and fission states, and has implica-
tions for apoptosis, drug resistance, and clinical applications, such as 
biomarker discovery and targeted therapies. c Cell migration requires 
mitochondrial fission to enable movement of mitochondria to regions 
of the cell that have higher ATP requirements (i.e., lamellipodia). d 
Fused mitochondria are common in adult fibroblasts and stem cells, 
but mitochondrial network fragmentation is an initiating event follow-
ing induction of pluripotency (i.e., iPCs) and cancer stem cells main-
tenance
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cancers, while K-RAS mutations are associated in lung, 
colorectal, and pancreatic tumors [69]. Despite these dif-
ferences, it appears that RAS isoforms and tumor type 
(i.e., H-RAS, B-RAF in melanoma or K-RAS in pancreatic 
cancer) will result in DRP1 activation and mitochondrial 
fragmentation.

The fact that DRP1 is an important mediator of MAPK-
driven tumorigenesis across multiple stages highlights two 
distinct impacts of DRP1 activity: (1) metabolic repro-
gramming during transformation and (2) requirement for 
equal mitochondrial distribution in rapidly proliferating 
cells. Together, these features offer a potential therapeutic 
window for cancer treatments that has yet to be exploited. 
It should also be noted that, recently, Mfn1 was discovered 
to be a substrate of ERK [70]. Specifically, ERK phospho-
rylated Mfn1 at tyrosine residue 562 (Tyr562), which is 
located within the first coiled-coil domain of Mfn1 [70]. 
Interestingly, either epidermal growth factor (EGF) stimu-
lation or genetic engineering of cell lines to constitutively 
active MEK result in Mfn1 Tyr562 phosphorylation, fol-
lowed by homotypic (Mfn1:Mfn1) interactions, and a 
fragmented mitochondrial phenotype [70]. However, the 
authors did not investigate these affects in DRP1-null cell 
lines, and, therefore, an effect of hyper-activated MAPK 
signaling will presumably feed onto DRP1 resulting in the 
same mitochondrial phenotype. Nevertheless, the fact that 
Mfn1 can be phosphorylated by ERK provides another 
layer of mitochondrial dynamic regulation, which, in the 
context of MAPK-driven cancers, may be physiologically 
relevant and should be further investigated.

PI3K‑Akt signaling activates mitochondrial fission 
and promotes mitophagy

The PI3K pathway is composed of a number of lipid 
kinases that receives and transmits from growth factors, 
cytokines, and other extracellular stimuli to regulate cel-
lular processes that include proliferation, survival, metab-
olism, and motility. Hyper-activation of PI3K signaling 
occurs in many solid tumors with somatic loss or epige-
netic silencing of the PI3K inhibitor PTEN being the most 
common genetic alteration [71]. Somatic mutation, copy 
number gain, or amplification of the PI3K catalytic subunit 
alpha (PI3KCA) can be found in up to 40% of tumors, mak-
ing it the second frequently mutated gene in this pathway 
[71].

Tumors with constitutive PI3K-AKT signaling actively 
increase glucose uptake to fuel glycolysis, which analo-
gous to RAS-driven tumors, suggests that PI3K-Akt sign-
aling fragments the mitochondrial network. Indeed, cells 
with oncogenic PI3K mutations contain a fragmented 
mitochondrial network that clusters around the nucleus 

[72] (Fig.  3a), while inhibition of PI3K signaling (e.g., 
PX-866 and GDC0941) rapidly fuses the mitochondrial 
network [72]. Although cancers upregulate nutrient trans-
porters to continually fuel biosynthetic processes and 
rapid proliferation, nutrient and oxygen deprivation is a 
characteristic hurdle that many tumors face. As a means 
to overcome these challenges cancer cells rely on PI3K-
AKT signaling to promote autophagy, a self-sustaining 
system that enables the cell to consume non-essential 
macromolecules to meet changing bioenergetic and bio-
synthetic needs. Mammalian target of rapamycin com-
plex 1 (mTORC1), a downstream AKT target, is one of 
the best characterized regulators of autophagy. Under 
conditions where growth signals are abundant, PI3K acti-
vates mTORC1 via AKT to promote protein, lipid, and 
nucleic acid synthesis while inhibiting the autophagy 
machinery [73]. Conversely, mTORC1 can be inhibited 
through a number of mechanisms, including nutrient 
and oxygen deprivation, and the energy sensor adeno-
sine monophosphate-activated protein kinase (AMPK), 
which is activated by a high AMP/ATP ratio. Inhibition 
of mTORC1 results in the release of its inhibitory control 
over autophagy, and allows the cell to maintain critical 
energy and macromolecule levels for proliferation and 
survival.

Mitophagy is a specialized form of autophagy where 
dysfunctional mitochondria are selected for degradation. 
Mitophagy can either proceed through two pathways; the 
PTEN-induced kinase 1 (PINK-1)-PARKIN E3 ubiquin 
ligase pathway [74] and the BNip3 pathway [75]. Conse-
quently, the selective removal of damaged mitochondria 
also protects the cell from unwarranted release of pro-apop-
totic mediators (i.e., cytochrome c, ROS) and reduces futile 
ATP usage [76, 77]. Although the mechanisms of how the 
cell distinguishes functional from dysfunctional mitochon-
dria remain unclear, the loss of ψ∆m and mitochondrial 
fragmentation are events that precede mitophagy. Moreo-
ver, p53 inhibits PARKIN-mediated mitophagy in mouse 
heart and pancreatic β cells, suggesting a role for p53 in 
the regulation of energy metabolism, although this particu-
lar function has yet to be investigated in cancer cells [78, 
79]. In the case of nutrient deprivation, healthy mitochon-
dria are protected from mitophagy by fusing together and 
occurs through PKA-mediated inhibition of DRP1 [80]. 
In contrast, dysfunctional mitochondria are characterized 
by membrane depolarization, which causes the proteolytic 
cleavage and degradation of OPA1 as well as PARKIN-
mediated degradation of Mfn1 and Mfn2 that consequently 
leads to mitochondrial fragmentation and turnover by 
mitophagy [81–83]. Interestingly, the PI3K inhibitors wort-
mannin and 3-methyladenine block mitophagy under nutri-
ent deprivation conditions, suggesting that this pathway is 
required for mitophagy to proceed [84, 85]. How PI3K-Akt 
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signaling may regulate mitochondrial dynamics under these 
conditions requires further investigation.

MYC overexpression promotes mitochondrial 
fusion and biogenesis

MYC is downstream of many signaling pathways that reg-
ulate cell growth, proliferation, and metabolism. The two 
pathways described above (MAPK and PI3K-AKT) are 
prime examples of upstream MYC effectors as they can 
stimulate MYC expression [60] (Fig.  3b). Non-cancerous 
cells tightly regulate MYC transcriptionally and post-tran-
scriptionally by controlling the half-life of MYC mRNA 
and protein [86]. In addition, multiple cellular checkpoints 
are in place that can cause cell cycle arrest or death if MYC 
expression is deregulated [86]. The loss of these controls 
coupled with hyper-activation of growth promoting signals 
(i.e., oncogenic RAS, PI3K) increases MYC expression and 
can induce tumorigenesis. Equally, gene amplification that 
increase MYC copy number or chromosomal translocations 
that pair MYC with strong enhancers or promoters are fre-
quent genetic alterations in cancers, thus severing the reli-
ance of MYC from upstream stimuli.

Oncogenic MYC is also an activator of mitochondrial 
biogenesis by upregulating PGC-1β expression, thus cou-
pling increased mitochondrial mass with rapid proliferation 
[51]. The involvement of MYC in mitochondrial biogenesis 
also suggests that it may play a role in regulating mitochon-
drial dynamics. MYC knockout MEFs have fragmented 
mitochondria, while re-expression of MYC promoted fusion 
by upregulation of OPA1 and Mfn2, although DRP1 and 
FIS1 levels were also increased [87] (Fig. 3b). Because this 
study did not investigate the status of DRP1 Ser616 and 
Ser637 phosphorylation, it, therefore, appears that a con-
sequence of MYC-mediated mitochondrial biogenesis is 
increased fusion.

More recently, MYC signaling in triple-negative breast 
cancer cells induces mitochondrial fusion by upregulating 
phospholipase D Family member 6 (PLD6, which is also 
known as mitoPLD) [88]. Localization of PLD6 at the 
OMM facilitated cleavage of cardiolipin to phosphatidic 
acid, which is subsequently cleaved to diacylglycerol by the 
Lipin family of phosphatases [89]. A new report indicated 
that DRP1 GTPase activity is blocked following interac-
tions with phosphatidic acid and mitoPLD on the OMM 
[90], implying that MYC is able to couple lipid metabolism 
at the OMM and mitochondrial dynamics.

Although tumorigenesis can be initiated via oncogenic 
MAPK or MYC signaling, it is interesting to note that both 
pathways result in different mitochondrial phenotypes (i.e., 
oncogenic MAPK induces mitochondrial fission, while 
MYC promotes fusion). These different mitochondrial 

shapes can be explained by the distinct mechanistic dif-
ferences between MYC and MAPK signaling, whereby 
MYC is broadly responsible for gene expression, while 
MAPK signaling regulates protein activity by integrating 
plasma membrane receptor signals with multiple down-
stream kinase effector proteins. MYC controls the expres-
sion of genes involved in cell cycle progression, growth, 
and metabolism, including hundreds of genes that regu-
late mitochondrial mass and biogenesis [51]. Oncogenic 
MYC increases the biosynthetic, respiratory, and meta-
bolic capacity of cancer cells to support rapid proliferation, 
which as mentioned above is coupled with mitochondrial 
fusion. In contrast, hyper-activation of MAPK signaling, 
either through increased receptor signaling or constitutively 
active RAS and B-RAF mutations, amplifies downstream 
kinase cascades that culminate in increased ERK activity, 
immediate activation of DRP1, inactivation of MFN1, and 
mitochondrial fission along with paralleled changes in gene 
transcription [53, 58, 70]. Although mitochondria display 
bioenergetic and structural plasticity in response to spe-
cific oncogenic stresses, understanding how these signal-
ing pathways differentially influence mitochondrial shape 
and function to promote tumor progression requires further 
investigation.

Mitochondrial dynamics, movement, 
and metastasis

Tumor progression towards malignancy involves cancer 
cells generating the capacity to migrate to surrounding tis-
sues and eventually metastasize to distal regions through-
out the body. Cell migration is regulated by growth fac-
tors and cytokines that transmit signals through oncogenic 
pathways, such as MAPK and PI3K-AKT. These oncogenic 
signals can upregulate genes that promote changes in cell 
polarity, morphology, cytoskeletal dynamics, and cell 
adhesion that collectively can increase migratory capacity 
[60]. Concurrently, mitochondria actively migrate along 
cytoskeletal filaments to different cellular topographies that 
have high energetic demands. For example, cell migration 
requires formation of lamellipodia, an F-actin rich region 
at the leading edge of cells. Formation of F-actin poly-
mers is a highly energetic process that requires extensive 
cytoskeletal reorganization, abundant ATP production, and 
 Ca2+ buffering; hence, the requirement for mitochondria at 
lamellipodia is critical for cellular migration (Fig. 3c).

Access to microtubule-based motor proteins, such as 
dynein and kinesins, provides mitochondria with an appro-
priate scaffold that allows contact and movement along the 
cytoskeleton. Mitochondrial retrograde movement (towards 
the cell body) is regulated by dynein, whereas antero-
grade movement (away from the cell body) is dependent 
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on kinesin. Besides microtubules, actin filaments and 
actin-based motors have also been implicated in mito-
chondrial movement over short distances. Two new studies 
have shown that actin polymerization occurs at ER-mito-
chondrial fission sites where the actin-nucleating protein 
Spire1C localizes and tethers mitochondria to the actin 
cytoskeleton [91]. Accumulation of mitochondria on actin 
filaments is closely followed by DRP1 localization and oli-
gomerization on the OMM [92] (Fig. 2b). The fragmented 
mitochondria remain tethered to the actin cytoskeleton and 
are now able to be transported to other locations. The step-
wise coordination of mitochondrial shape and cytoskeletal 
reorganization indicates that fragmentation and packaging 
of mitochondria as smaller parcels improve the efficiency 
of mitochondrial movement.

The spatial distribution of mitochondria in cancer cells 
and how mitochondrial dynamics regulates cellular migra-
tion has only recently been investigated. Several studies 
have demonstrated that mitochondrial fission is required 
to maintain the migratory and invasion potential of breast, 
thyroid, and glioblastoma cancer cells [59, 93, 94]. Breast 
cancer cells that migrated at a faster rate expressed higher 
total DRP1 and DRP1 Ser616 levels, while Mfn1 expres-
sion is lower compared to cancer cells with a low migra-
tory capacity [93]. DRP1 knockdown or overexpression of 
Mfn1 or Mfn2 significantly decreased the migratory and 
invasive potential of cancer cells, suggesting that a highly 
fragmented mitochondrial network may be a selective pres-
sure in tumors with a higher metastatic potential [59, 93]. 
It can, therefore, be hypothesized that cancers with high 
metastatic potential would contain high DRP1 activity as 
a means of maintaining a fragmented mitochondrial net-
work. Indeed, increased DRP1 levels positively correlate 
with increased glioma tumor grade as well as invasive 
breast cancer and lymph node metastasis [93, 95], whereas 
decreased Mfn2 is associated with increased gastric tumor 
stage and decreased overall survival [93]. It is interesting 
that decrease Mfn2 levels would be associated with tumor 
progression as Mfn2 is involved in tethering mitochondria 
to the endoplasmic reticulum to promote  Ca2+ homeosta-
sis. Loss of Mfn2 would likely cause disruption to orga-
nelle contacts and decrease the capacity of mitochondria to 
buffer  Ca2+. Oscillations in localized  Ca2+ concentrations 
are considered important for cell movement, coupled with 
the fact that mitochondrial movement is halted in areas 
with high  Ca2+ levels. This suggests that mitochondria with 
diminished capacity to sense and modulate  Ca2+ levels may 
have inhibited movement to lamellipodia regions and pro-
mote cell migration. Further investigations are required to 
elucidate the underlying mechanisms that link Mfn2 with 
cell migration.

Similar to MAPK signaling, the PI3K-Akt pathway can 
also regulate cancer cell migration and invasion [96, 97]. 

Caino et  al. recently investigated the underlying mecha-
nisms of how PI3K antagonists paradoxically reactivate 
AKT and promote tumor progression. The authors found 
that PI3K inhibition increased the number, size, and per-
sistence of lamellipodia in patient-derived glioblastoma 
spheroids [72]. Interestingly, inhibition of PI3K signal-
ing induced mitochondrial elongation along the cytoskel-
eton towards lamellipodia, which contrasts with studies 
described above that stated mitochondrial fragmentation is 
required for cell migration [72]. This finding was also con-
firmed in A549 lung adenocarcinoma and LN299 glioblas-
toma cells, suggesting that the response to PI3K inhibition 
is not cell-type specific [72]. Knockdown of the mitofusins 
revealed that only Mfn1 was required for elongation of the 
mitochondrial network to lamellipodia to facilitate focal 
adhesion turnover and increased cellular migration [72]. 
Mitochondrial fusion increases respiration; however, the 
role respiration plays in cell migration remains controver-
sial [98, 99]. A recent report proposed that localization of 
the inhibitor of apoptosis protein survivin to mitochondria 
promoted prostate and breast cancer cell migration and 
invasion in vivo and in vitro by stabilizing complex II of the 
ETC, supporting mitochondrial trafficking to lamellipodia 
and promoting focal adhesion turnover [100]. Mitochon-
drial fusion increases ETC assembly, oxidative metabolism, 
and ATP production, suggesting that enhanced OXPHOS 
function plays an active role in cell migration. Indeed, 
Caino and colleagues determined that combined inhibition 
of PI3K and mitochondrial ETC activity diminished mito-
chondrial positioning at lamellipodia and cell invasion [72]. 
These findings indicate that Mfn1-mediated mitochondrial 
fusion and increased ATP production are important to sup-
port cell migration.

Mitochondrial determinants in stem cells and cell 
differentiation

In the sections above, the role of mitochondrial dynamics 
has been described in processes of cell proliferation, meta-
bolic reprogramming, and migration. However, new infor-
mation relating both mitochondrial function and architec-
ture to stem cell biology is beginning to offer novel insights 
into how mitochondria maintain quiescent cell populations 
throughout ageing and cancer [101].

Somatic stem cells (SSCs) are rare, undifferentiated 
cells that exist within different tissues and give rise to 
functionally mature progeny to ensure tissue homeostasis 
[102]. The morphology of mitochondria in SSCs is a fused, 
elongated network containing electron-dense matrix with 
numerous cristae folds [103]. This is in stark contrast to the 
mitochondrial network from embryonic stem cells, which 
form immature, small puncta with poorly developed cristae 
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[102]. Recent studies have found that mitochondrial fusion 
and oxidative metabolism are essential in maintaining the 
SSC niche. For example, IMM fusion mediated by OPA1 
is critical for regulating tight cristae junctions and the prox-
imity of ETC complexes to each other in memory T cells 
compared to effector T cells [104], while Mfn2 specifi-
cally maintains populations of haematopoietic stem cells 
with lymphoid pluripotency [105]. Likewise, depletion of 
Mfn1, Mfn2, or OPA1 impaired neural stem cell renewal 
[106]. These studies suggest that SSCs contain fused mito-
chondrial networks as a means of maintaining OXPHOS 
and ATP supply, while keeping ROS levels to a minimum. 
In agreement, the transcription factor forkhead box O3a 
(Foxo3a) is a critical regulator of mitochondrial biogen-
esis, OXPHOS, and redox status in hematopoietic stem 
cells [107]. Loss of Foxo3a resulted in increased mitochon-
drial fragmentation, metabolic switch to glycolysis, and 
decreased pluripotency, indicating that regulation of mito-
chondrial shape is important to maintaining the stem cell 
niche [107]. In contrast, mitochondrial fragmentation is a 
key early marker of inducible pluripotent stem cell (iPCs) 
reprogramming [108]. iPC technology allows researchers to 
artificially reprogram adult cells, such as fibroblasts, to an 
embryonic stem cell-like state. The mitochondrial fragmen-
tation observed in iPCs was driven by decreased Mfn1 and 
Mfn2 expression and accompanied by decreased OXPHOS, 
increased glycolysis, and lactate production [108] (Fig. 3d). 
Moreover, mitochondrial fragmentation in iPCs also corre-
sponded to activation of MAPK signaling, which contrib-
uted to glycolysis by upregulating glucose transporters and 
HIF-1α, a known regulator metabolism and cell reprogram-
ming [108].

The tumor initiating cell or cancer stem cell (CSC) 
hypothesis states that the presence of cancer cells with stem 
cell-like properties is responsible for tumor growth, cellu-
lar heterogeneity within cancers, and treatment resistance. 
Normal SSCs and CSCs share many properties, including 
self-renewal while maintaining an undifferentiated state 
and expression of similar cell surface markers [109]. How-
ever, very few studies have compared the metabolic pro-
files of CSCs to either SSCs or differentiated cells. Several 
reports have suggested that CSCs from ovarian, breast, and 
colon cancers are more glycolytic than differentiated cells 
based on increased glucose uptake, lactate production, and 
expression of glycolytic enzymes, which indicate that these 
cells have fragmented mitochondria [110–112]. Conversely, 
CSCs with fused mitochondrial networks rely more on 
OXPHOS as they have increased ψ∆m, enhanced oxygen 
consumption rates, and increased mitochondrial biogen-
esis through expression of PGC-1α [113, 114]. Moreover, 
knockdown of PGC-1α reduced the stemness properties of 
breast CSCs, suggesting that maintenance of mitochondrial 
populations in CSCs is critical for pluripotency [115].

A recent report investigated if mitochondrial shape influ-
ences the metabolic growth of brain tumor initiating cells 
(BTICs) [116]. These cells have similar properties to nor-
mal neural stem cells, in that they share cell-autonomous 
regulatory pathways that control continual proliferation 
and differentiation, but differ in their metabolic features. 
For example, BTICs increase glycolytic flux and glucose 
uptake by upregulating GLUT3 [116]. Moreover, it was 
found that BTICs tend to have higher DRP1 Ser616 and 
reduced Ser637 levels compared to non-BTICs, while sur-
vival of BTICs depended on the expression of DRP1, indi-
cating that the coupling of glycolysis to mitochondrial frag-
mentation is essential in these neuronal CSCs [116].

The distinction between fused and fragmented mito-
chondrial networks across different CSCs may be reflected 
in the specific tissues where they reside, nutrient, and oxy-
gen supply or if they carry different oncogenic mutations. 
The utilization of iPCs technology may provide clues as 
to why different CSCs have heterogeneous mitochondrial 
morphologies. The switch from OXPHOS to glycolysis fol-
lowing induction of pluripotency was partially attributed to 
activation of MAPK signaling [108]. Prieto et  al. demon-
strated that ERK-mediated DRP1 Ser616 phosphorylation 
was responsible for the early wave of mitochondrial frag-
mentation during cellular reprogramming [117]. However, 
once pluripotency was reached the mitochondrial network 
quickly refused, indicating a desired return to oxidative 
metabolism and quiescence, indicating plasticity in mito-
chondrial shape during the intermediary steps of cell repro-
gramming [117]. Oxidative metabolism may be favoured 
by quiescent cells as a means of maintaining mitochondrial 
ψ∆m, ATP production, and mtDNA content. Therefore, 
CSCs that display different mitochondrial morphologies 
may simply reflect various energetic states of CSC differ-
entiation. For instance, CSCs that require upregulation of 
macromolecule biosynthetic pathways during differentia-
tion will fragment their mitochondrial network and switch 
cellular metabolism to glycolysis, while quiescent CSCs 
will retain fused mitochondria and OXPHOS. The plastic-
ity of metabolic profiles in CSCs and their relative depend-
ence on mitochondrial dynamics may offer new therapeutic 
avenues for cancer treatments, particularly as CSCs display 
extreme resistance to most conventional cancer treatments 
[118, 119].

Mitochondrial dynamics and apoptosis

One aspect of oncogenic and tumor suppressor signaling 
pathways is their ability to regulate cellular sensitivity to 
mitochondrial-dependent apoptosis by converging on the 
the B-cell chronic lymphatic leukemia/lymphoma (BCL-2) 
family of pro- and anti-apoptotic proteins. The underlying 
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mechanisms of transcriptional, translational, and post-
translational regulation of the BCL-2 family in cancers 
have extensively been reviewed [120–125]. Here, we will 
discuss how the mitochondrial dynamics machinery inter-
sects with the BCL-2 family to regulate apoptosis.

The mitochondrial-dependent or intrinsic pathway 
of apoptosis is activated as a result of intracellular cell 
stress or damage (i.e., nutrient deprivation, DNA dam-
age), which engages the BCL-2 family of pro-apoptotic 
proteins, including BCL-2 antagonist killer 1 (BAK), and 
BCL-2 associated × protein (BAX), which cooperates to 
form pores in the OMM. Pore formation, also referred to as 
mitochondrial outer membrane permeabilization (MOMP), 
allows the release of pro-apoptotic factors (i.e., cytochrome 
c) that interact with adaptor protein apoptotic protease acti-
vating factor 1 (APAF-1) and trigger recruitment and acti-
vation of cysteine-aspartic proteases (caspases). Caspase-
dependent cleavage of numerous substrates is the final 
stage of apoptosis, which results in the efficient packaging 
and elimination of targeted cells.

One of the most salient morphological features of apop-
tosis is the fragmentation of the mitochondrial network. 
While a number of early studies indicated mitochondrial 
fragmentation and clustering at perinuclear region to occur 
just prior to cytochrome c release, suggesting that regulated 
mitochondrial fission may be responsible for apoptosis [5, 
126–128]. This is supported by the fact that DRP1 is heav-
ily recruited to the OMM, while BAX translocation to mito-
chondria co-localizes with DRP1 at fission sites, imply-
ing that DRP1 marks regions of the OMM where MOMP 
will occur [5]. However, given that Drp1−/− MEFs are still 
able to undergo mitosis and apoptosis indicates that DRP1-
dependent mitochondrial fragmentation is not necessary for 
intrinsic apoptosis to proceed. Instead, initiation of apopto-
sis involves regions of mitochondria where the ER wraps 
around and marks sites for division. These ER-mitochon-
drial contact sites, known as ER-associated mitochondrial 
division (ERMD), are important for phospholipid synthesis 
and  Ca2+ signaling [18], and serve as “hot-spots” for DRP1 
recruitment and fission. Given the co-localization between 
DRP1 and BAX at the OMM, the ER-mitochondrial inter-
face may also represent a membrane microenvironment that 
is critical for BAX oligomerization and MOMP.

Non-apoptotic, soluble BAX associates with Mfn2 
at ER-mitochondrial junctions and promotes mitochon-
drial fusion [14]. Increased mitochondrial fission dur-
ing apoptosis is thought to be a consequence of decreased 
soluble, inactivated BAX coupled with increased mem-
brane inserted, and oligomerized BAX at the OMM. 
Bax−/−Bak−/− cells have fragmented mitochondria, which 
fuse upon re-expression of either BAX or BAK [129]. 
Moreover, BAX re-expression in Bax−/−Bak−/− cells reor-
ganised Mfn2 OMM localisation to ER-mitochondrial 

junctions and increased Mfn2 GTPase activity [129]. In 
this context, the non-apoptotic functions of BAX are to 
promote ER-mitochondrial tethering and  Ca2+ homeostatsis 
by increasing Mfn2 activity. Conversely, Mfn2 can be con-
sidered an anti-apoptotic effector by sequestering soluble 
BAX from the cytosol and preventing its activation. Indeed, 
overexpression of a dominant active Mfn2 mutant protected 
against staurosporine-induced apoptosis, while reciprocal 
Mfn2 knockdown enhanced apoptosis [130, 131]. It would 
be interestingly for future studies to determine if mitochon-
drial dynamics are involved in the formation and regulation 
of ERMDs during tumorigenesis.

Sphigolipid metabolites derived from ER and mitochon-
drial membranes promote BAX and MOMP [132, 133], 
suggesting that the shuttling of lipid effector molecules 
through ERMD sites where BAX is localized may increase 
the likelihood of MOMP. In this context, changes in mito-
chondrial dynamics can either positively or negatively 
regulate BAX activity. Montessuit and colleagues showed 
that DRP1 promoted BAX oligomerization through a pro-
cess of membrane tethering and hemifusion [134]. This 
process was independent of the DRP1 GTPase domain, but 
instead relied on the positively charged arginine residue at 
amino acid 247 (DRP1 Arg247) to interact with negatively 
charged cardiolipin phospholipids. Expression of DRP1 
R247A mutants significantly decreased the interaction 
between DRP1 and cardiolipin in liposomes and impaired 
BAX oligomerization [134]. As previously mentioned, the 
interaction between DRP1 and cardiolipin inhibits mito-
chondrial fragmentation [90], but instead results in mem-
brane tethering and hemifusion, which may provide the 
appropriate membrane curvature and lipid mixing consid-
ered to be important for recruitment of activated BAX and 
MOMP [134]. Indeed, activated BAX is localized to addi-
tional membranes, such as the Golgi, where following cell 
stress (i.e., DNA damage), it rapidly disassociates from 
anti-apoptotic proteins and retro-translocates to the OMM 
[135, 136].

In addition to OMM microenvironment and lipid com-
position, a recent report demonstrated that modification 
of mitochondrial membrane curvature through dynamics 
proteins can regulate BAX-mediated MOMP [137]. By 
comparing mitochondrial networks between Mfn1−/− and 
Mfn2−/− MEFs, it was demonstrated that Mfn1−/− cells 
contain hyper-fragmented mitochondria and were intrin-
sically resistant to ER stressors, whereas mitochondria 
from Mfn2−/− MEFs were short, swollen tubular struc-
tures and retained sensitivity to induction of apoptosis 
[137]. The hyper-fragmented mitochondrial phenotype in 
Mfn1−/− cells was mediated by DRP1, and either genetic 
or pharmacological DRP1 inhibition resulted in fusion of 
the mitochondrial network and re-sensitization to apop-
totic stimuli [137]. It was found that hyper-fragmented 
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mitochondria from Mfn1−/− cells were resistant to BAX 
accumulation on the OMM, thus preventing MOMP. Fol-
lowing a series of biochemical and in cellulo experiments, 
it was demonstrated that mitochondrial shape and mem-
brane curvature were primarily involved regulating the 
release and insertion of the carboxyl terminal tail of BAX 
in the OMM [137]. Collectively, these studies indicate that 
fission per se is not required for apoptosis to proceed, but 
rather remodelling the OMM to facilitate efficient BAX oli-
gomerization and MOMP. Deregulation of mitochondrial 
dynamics proteins in cancers, therefore, represents a new 
means of evasion from cell death programs and develop-
ment of drug resistance.

Translation of mitochondrial dynamics 
from the bench to bedside

Given the importance of mitochondria in multiple aspects 
of tumorigenesis, targeting mitochondrial function and 
more specifically mitochondrial dynamics has been pro-
posed as an effective strategy to induce apoptosis in can-
cer [52, 138]. To the best of our knowledge, no specific 
inhibitors target mitofusins or OPA1, which may, in part, 
be due to their overlapping functions to fuse mitochon-
dria. There is, however, a small molecule (hydrazone M1) 
that actively promotes mitochondrial fusion in Mfn1−/− or 
Mfn2−/− MEFs, but not in Mfn1−/−; Mfn2−/− double knock-
out or OPA1−/− cells [139]. Mechanistically, hydrazone M1 
treatment increases the expression of ATP synthase subunit 
α and β, while oligomycin-mediated inhibition of ATPase 
synthase blocked the pro-fusion function of M1 [139]. 
These findings indicate that increase ATP synthase activity 
and subsequent ATP production are important for fusion, 
although the underlying mechanism remains unclear. Nev-
ertheless, it would be curious to determine if pharmacolog-
ical induction of mitochondrial fusion has any anti-tumor 
properties. Conversely, two pharmacological inhibitors 
against DRP1 have been developed. Mitochondrial division 
inhibitor (mDIVI-1) came out of a yeast screen of 23,000 
compounds that inhibited DRP1 GTPase activity and self-
assembly in mammalian cells [140]. Years later, another 
group developed a specific peptide (P110) that interfered 
with DRP1-Fis1 interactions and decreased DRP1 GTPase 
activity in neurons [141].

By inhibiting DRP1, both mDIVI-1 and P110 enforce 
mitochondrial fusion, increase ψ∆m, enhance ATP produc-
tion, decrease ROS, and protect against apoptosis in neu-
ron and cardiomyocytes. These cytoprotective properties 
may be therapeutically effective against cardiovascular and 
neurodegenerative disorders like ischemic heart disease 
and Parkinson disease [140–142]. Of the two drugs, only 
mDIVI-1 has extensively been studied in a cancer setting, 

and in contrast to the cytoprotective effects, mDIVI-1 pos-
sesses cytotoxic properties across a wide range of neo-
plasms [142]. Given that DRP1 is upregulated in many 
cancers and is required for oncogenic transformation, indi-
cates that cancer cells may be exquisitely sensitive to DRP1 
inhibition. This hypothesis has thus far held true as phar-
macological and genetic inhibition of DRP1 decreased the 
in vitro and in vivo growth of glioblastomas, melanoma, 
hepatocellular carcinoma, and mesothelioma [57, 116, 143, 
144].

Besides directly inhibiting DRP1, mDIVI-1 also has 
off-target effects unrelated to mitochondrial function, such 
as interfering with DNA replication and impairing mitotic 
spindle assembly that together result in G2/M cell cycle 
arrest [142]. Furthermore, mDIVI-1 synergizes with cis-
platin to induce apoptosis in Drp1-null cells, highlight-
ing the ability of mDIVI-1 to kill cells in the absence of 
DRP1 [145]. Importantly though, mDIVI-1 does not affect 
cell survival or proliferation in non-transformed fibroblasts 
and epithelial cells, suggesting that it specifically acts upon 
cancer cells. Nonetheless, the pharmacokinetics and direct 
targets of mDIVI-1 remain poorly defined, particularly as 
the effects of this drug are dependent on cell and disease 
type [142]. Therefore, to define the therapeutic potential 
for DRP1 inhibitors in clinical trials, there is an urgent 
need to further elucidate the pharmacodynamics and phar-
macokinetic properties of mDIVI-1 as well as to develop 
new chemical screens to identify more specific and potent 
DRP1 inhibitors.

Mitochondrial dynamics as biomarkers

Biomarkers that dichotomize tumors into categories that 
predict prognosis and therapeutic responses play an impor-
tant role within the clinical setting. The clinical utility of 
mitochondrial dynamics as biomarkers for cancer progres-
sion is only in its infancy and requires substantial future 
efforts. However, early work indicates that upregulation of 
DRP1 may be predictive of breast cancer progression and 
metastasis [54], while an increased DRP1 Ser616 to Ser637 
phosphorylation ratio (meaning increased DRP1 activity) 
predicts cisplatin resistance and relapse in lung adenocar-
cinoma patients [146]. In addition, DRP1 Ser616 phos-
phorylation status dichotomized wild-type B-RAF from 
B-RAFV600E-positive dysplastic nevi and melanoma [53, 
57], while another study found DRP1 Ser616 positively 
correlated with ERK phosphorylation in human pancreatic 
adenocarcinoma [58], indicating that DRP1 Ser616 status 
significantly relates to oncogenic MAPK signaling may 
be useful in determining which lesions may develop into 
cancer. Finally, DRP1 Ser616 was significantly expressed 
in BTICs, while evaluation of total DRP1 and DRP1 S616 
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in normal brain and glioblastoma specimens demonstrated 
strong positive correlation between DRP1 Ser616 and can-
cer progression [116]. These findings suggest that DRP1 
Ser616 status is a contributing factor to cancer and may 
be a useful biomarker to predict cancer progression and 
response to treatment.

Concluding remarks and future directions

Our knowledge of mitochondrial biology in tumorigenesis 
remains rudimentary. However, significant efforts in recent 
years have illuminated the area of mitochondrial dynam-
ics as critical for cancer progression and survival. Out-
lined in this review, we have summarized the importance 
of individual mitochondrial dynamics components across a 
range of biological processes that are essential for cancers. 
Oncogenic MAPK and PI3K-AKT cause DRP1-dependent 
fragmentation of the mitochondrial network, which, in 
turn, may be a key component of metabolic reprogram-
ming during tumorigenesis. Maintaining mitochondria in a 
fragmented state is also important as tumors progress and 
migrate away from primary tissues. Similarly, CSCs that 
change their mitochondrial networks from fused to frag-
mented states are essential during cellular differentiation 
and tumor growth. These alterations in mitochondrial shape 
influence the sensitivity of cancer cells to engage the pro-
apoptotic machinery and may contribute to increased resist-
ance to chemotherapy.

While mitochondrial dynamics have now been impli-
cated in multiple cancer processes, we still know very little 
about the mechanisms that connect mitochondrial architec-
ture and metabolism to different stages of tumor progres-
sion. Moving forward, it will be important to find answers 
to the following questions. Although DRP1-mediated mito-
chondrial fragmentation occurs in many cancers, do the 
fusion mechanics play a role in tumorigenesis and response 
to cellular stress? What role do tumor suppressors, such as 
p53, play in regulating mitochondrial dynamics and what 
are the regulatory signals that control mitochondria in 
cancer stem cells? How do mitochondrial dynamics regu-
late metabolic heterogenity and cell migration, and are 
these processes mechanistically linked? Are mitochondrial 
dynamics proteins viable therapeutic targets for cancer 
treatment and can their expression and activity status be 
used as predictive diagnostic and/or prognostic biomarkers? 
As our understanding of mitochondrial dynamics expands, 
we anticipate learning more about mitochondrial biology 
and its role in cancer as well as how this ancient organelle 
interacts with other cellular compartments, including the 
ER and nucleus. New discoveries in these areas have impli-
cations for cancer, and will also impact upon our knowl-
edge of fundamental cell biology.
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