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Abstract Parkinson’s disease (PD), dementia with Lewy

Bodies (DLB), and multiple system atrophy (MSA) are

three major synucleinopathies characterized by a-synu-

clein-containing inclusions in the brains of patients.

Because the cell types and brain structures that are affected

vary markedly between the disorders, the patients have

different clinical manifestations in addition to some over-

lapping symptoms, which are the basis for differential

diagnosis. Cognitive impairment and depression associated

with hippocampal dysfunction are frequently observed in

these disorders. While various a-synuclein-containing

inclusions are found in the hippocampal formation,

increasing evidence supports that small a-synuclein

aggregates or oligomers may be the real culprit, causing

deficits in neurotransmission and neurogenesis in the hip-

pocampus and related brain regions, which constitute the

major mechanism for the hippocampal dysfunctions and

associated neuropsychiatric manifestations in

synucleinopathies.
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Introduction

Synucleinopathies are a group of neurodegenerative disorders

characterized by the formation of a-synuclein (a-syn)-con-

taining inclusions in selective populations of neurons and/or

glia. These disorders consist of Parkinson’s disease (PD),

dementia with Lewy bodies (DLB), multiple system atrophy

(MSA), and some other rarer disorders such as neurodegen-

eration with brain iron accumulation type 1 and other

neuroaxonal dystrophies [1]. There are three major patho-

logical forms of a-syn-containing inclusions associated with

synucleinopathies. These consist of Lewy bodies (LBs) and

Lewy neurites (LNs) found in neurons of patients with PD and

DLB [2, 3], and glial cytoplasmic inclusions (GCIs) present in

oligodendrocytes of patients with MSA [4]. Despite all these

disorders have a-syn-containing inclusions deposited in the

brain, the cell types and brain structures that are affected vary

markedly between the disorders. This leads to different clin-

ical manifestations, which are the basis for differential

diagnosis. However, these disorders also present some shared

symptoms such as chronic and progressive decline in motor,

cognitive, behavioral, and autonomic functions [5].

In this review article, we concentrate on PD, DLB, and

MSA, the three major synucleinopathies. We first compare

the clinical features and pathological changes of these

disorders. We then discuss how these disorders affect

hippocampal functions, causing neuropsychiatric manifes-

tations associated with hippocampal abnormalities.

Common features of the synucleinopathies

The synucleinopathies share some common features in

both clinical manifestations and pathological changes.

Clinically, they all present a chronic and progressive
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decline in motor, cognitive, behavioral, and autonomic

functions. Pathologically, they all have a-syn-containing

intracellular inclusions, with LBs and LNs present in

neurons of PD and DLB patients and GCIs in oligoden-

drocytes of MSA patients [1, 6, 7]. However, there are also

subtle differences between these disorders in either clinical

manifestations and pathological changes, which are the

basis for differential diagnosis.

Clinical features

PD PD is one of the most common neurodegenerative

diseases, affecting about 1.5% of people over the age of

65 years in Europe [8] with considerable worldwide vari-

ation in prevalence [9]. The cardinal clinical manifestations

are motor symptoms, including bradykinesia, rigidity, rest

tremor, and postural and gait impairments [10], by which

PD is diagnosed. Based on the features of motor symptoms,

PD can be classified into the tremor-dominant PD, which is

relatively absent of other motor symptoms, and the non-

tremor-dominant (akinetic/rigid) PD, which includes phe-

notypes described as akinetic-rigid syndrome and postural

instability gait disorder. In addition, a subgroup of PD

patients manifest as a mixed or an indeterminate phenotype

with several motor symptoms of comparable severity

[11, 12]. The tremor-dominant PD is often associated with

a slower rate of progression and less functional disability

than the non-tremor-dominant PD [13].

In addition to motor symptoms, PD patients also exhibit

various non-motor symptoms. These include olfactory

dysfunction, cognitive impairment, psychiatric symptoms

(depression, visual hallucinations and anxiety), insomnia,

rapid eye movement (REM) sleep disorder (RBD) [14],

autonomic dysfunction (constipation, orthostatic hypoten-

sion, and urinary incontinence),Kibnd pain, and fatigue

(Table 1). Some of the non-motor symptoms, such as

impaired olfaction, constipation, depression, excessive

daytime sleepiness, and RBD, occur before the onset of the

motor symptoms [15]. Autonomic deficits preferentially

occur in individuals with non-tremor-dominant PD subtype

early in the disease [16, 17]. Although the non-motor

symptoms are not used for disease diagnosis, they are

important prognosis markers and subtype defining features

[17].

DLB DLB is the second major synucleinopathy,

accounting for around one in 25 dementia cases diagnosed

in the community and one in 13 cases in secondary care.

However, the true prevalence of DLB is likely to be much

higher because its diagnosis is often missed, although there

is evidence that new criteria aid case identification [18].

Clinically, DLB can be differentiated from PD with

dementia (PDD) depending on the time that the dementia

occurs. DLB is diagnosed when cognitive impairment

precedes parkinsonism or begins within a year of parkin-

sonism. PDD is diagnosed when parkinsonism precedes

cognitive impairment by more than 1 year [19]. Despite of

refined diagnostic criteria for DLB, large autopsy studies

indicate that DLB is often misdiagnosed in the clinical

setting [20]. One of the reasons is that many older indi-

viduals have more than one neurodegenerative syndrome.

For example, around one-half of DLB cases have visual

hallucinations and RBD prior to or around the onset of

memory loss [21–23]. In addition, around one-quarter of

patients have anxiety and depression [22, 23]. Retrospec-

tive case–control studies have shown that a history of

depression [24] or delirium [25] prior to the diagnosis of

dementia is more common in DLB than in AD.

The motor symptoms in DLB are similar to those in PD

and are usually assessed using the Unified Parkinson’s

Disease Rating Scale (UPDRS) [26]. Compared to patients

with PDD, patients with DLB have less asymmetry and

resting tremor, a more rapid progression of motor symp-

toms and a poorer response to levodopa [19, 20, 27].

Moreover, DLB patients are particularly sensitive to

developing extrapyramidal symptoms (EPS) and also to the

potentially fatal complication of neuroleptic sensitivity,

which affects approximately 50% of DLB patients [28]. In

addition, gait abnormality and postural instability can be

prominent in DLB [29] (Table 1).

Autonomic dysfunction is frequent in DLB and the

severity is intermediate between those of MSA and PD.

Most of patients with DLB have autonomic disorders, such

as orthostatic hypotension, heat intolerability, dryness of

cutaneous epithelium, mouth mucous membranes, and

urination disorders [30].

MSA MSA is an adult-onset sporadic, progressive neu-

rodegenerative disorder characterized by any combination

of autonomic failure, parkinsonism, cerebellar ataxia [31].

The prevalence of MSA is 4.4 per 100,000 [32]. MSA,

together with progressive supranuclear palsy (PSP), is

called Parkinson Plus Syndrome. The Neuroprotection and

Natural History in Parkinson Plus Syndromes (NNIPPS)

diagnostic criteria are consistent and valid. They can be

used to distinguish MSA from PSP with high accuracy

[33]. MSA is usually diagnosed based on clinical features

(autonomic failure/urinary dysfunction plus either parkin-

sonism poorly responsive to levodopa or cerebellar ataxia)

[34]. However, the accuracy of the clinical diagnosis of

MSA is unsatisfactory due to the complexity of the clinical

features and pathological changes, which sometimes

overlap with those of other synucleinopathies [34]. The

positive predictive value (PPV) at the later stage of MSA is

reported to range from 60 to 90% [35]. A definite diagnosis

relies on postmortem pathological examinations [36].

According to clinical features, MSA is subdivided into

MSA-C, for those with predominant degeneration in
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Table 1 Comparison of clinical features for PD, DLB and MSA

Rely on Classification Features

PD Subtypes

Age at Onset YOPD (young(early)-onset PD) Aged 20-40 years

[194]

More often with rigidity and dystonia

Higher frequency of levodopa-related motor complications

&1/3 represent PARK2-associated PD

Excellent response to levodopa

Slower progression of disease

LOPD(late(old)-onset PD)

Aged[60 years

[194]

Presented more often with the PIGD pattern

Rapid progression of disease

Lower frequency of levodopa-related motor complications

Motor phenotype Tremor-domainant PD

[194]

Good prognosis with slow progression

Essential tremor

Benign tremulous parkinsonism

Good response to levodopa

Wearing off

Increased fMRI activity in CTC circuitry

Degeneration in medial SN, ventral GPi, thalamic serotonin, and midbrain

‘‘Eagle wing’’ configuration of DAT SPECT

Postural instability and gait dominant (PIGD) PD

[194]

Poor prognosis with rapid progression

Bradykinesia and rigidity

Dementia

Depression

Anosmia

Levodopa

Degeneration in ventrolateral SN

‘‘Egg-shaped’’ configuration on DAT SPECT

NMS-dominant phenotypic

variants

Cognitive subtype

[195–197]

Older age (C72 years)

Non-tremor-dominant motor phenotype associated with falls

Poor semantic fluency score (\ 20)

Lower pentagon copying score (0\1\2)

Microtubule-associated protein tau (MAPT) H1/H1 genotype possibly a

biomarker

Apathy subtype

[198]

High scores on apathy rating scales

Relatively severe motor symptoms

Concomitant depression

Lower cognitive

Fatigue and anhedonia

Response to dopaminergic drugs

Depression/Anxiety subtype [199, 200] Anxious-depressed

subtype

Younger age/Early age of onset

Significant motor disability/higher UPDRS scores

Postural instability/falls subtype

Motor fluctuations

Cognitive impairment

Increased levels of anxiety and depression

Depressed subtype Older age/Late age of onset

Shorter duration

PIGD

Significant motor impaiment

High levels of depression

Anxious subtype Young age of onset

Advanced disease with motor fluctuations

PIGD

Cognitive impairment

High levels of anxiety
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Table 1 continued

Rely on Classification Features

REM sleep behavior disorder subtype

[201, 202]

Symmetric disease onset

Increased periods of freezing

Autonomic dysfunction

Prone to higher prevalence and severity of orthostatic symptoms

Higher rate of depression

Visual frequency of falls

Impairment of color vision

Impairment of color vision

Lower limb pain subtype [203, 204] Male[ female

All age groups

Moderate to advanced PD

Pain in anterior proximal aspect of lower limb

Unrelated to non motor fluctuations

Responsive to opiates

Olfactory subtype

[205, 206]

A. Severe loss of olfaction (anosmia) Dyskinesias

Progressive weight loss

Longer premotor disease duration

B. Moderate loss of olfaction Urinary dysfunction No further weight loss with disease progression

Lower risk of dyskinesias

Shorter premotor disease duration

Autonomic subtype Urinary dysfunction [16] Early noradrenergic deficit

Postural hypotension

Dementia with Lewy body(DLB) subtypes

DLB Diagnostic specificity is high (mean, 92%),

sensitivity is lower (mean, 49%) [207]

Fluctuating impairments in attention, visual

recognition and construction are more indicative

of DLB [207]

Lower tau deposition [117]

28% frequency of GBA mutation [208]

Male[ female [209]

No depression [210]

Initially preserved memory function/cognitive

fluctuations [211]

Variable response to levodopa [1, 5]

MSA subtypes

MSA-P 16%(Japan)-58%(Europe) of MSA cases [212, 213]

Predominant parkinsonian syndrome [36]

More frequent of cognitive impairment [214, 215]

Less frequent of pyramidal signs [212]

Autonomic clinical features [216, 217]

MSA-C 42% (Europe)-84% (Japan) of MSA cases

Predominant cerebellar syndrome

Less frequent of cognitive impairment

More frequent of pyramidal signs

Autonomic clinical features
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cerebellar circuitry with ataxia, and MSA-P for those with

predominant degeneration in the basal ganglia with

parkinsonism [37, 38]. The MSA-P phenotype is the most

common variant in Europe and USA, accounting for about

65% of all cases [39, 40, 41]. The most frequently occur-

ring motor symptom in this phenotype is rigidity, followed

by bradykinesia, tremor and postural instability [42].

Patients with this phenotype usually show poor response to

levodopa. In Japanese population, MSA-C phenotype is

present in 83.8% of MSA patients at first examination and

in 48.6% of the patients at last follow-up [43]. These

patients usually present ataxia of gait, instability, and falls

but also with ataxia of limbs and speech, intention tremor,

and disorders of extraocular movements such as square

wave jerks, saccadic pursuit, nystagmus, overshoot or

undershoot dysmetria, or slow pursuit (Table 1).

Like PD and DLB, MSA patients also develop various

non-motor symptoms, with the most common one being the

autonomic failure. The symptoms associated with the

autonomic failure include orthostatic hypotension and

urogenital disturbances such as increased frequency,

enhanced urgency, incontinence and/or retention associated

with male erectile dysfunction and female genital

hyposensitivity [44]. Pyramidal signs such as Babinski

signs, spasticity, hyperreflexia due to pyramidal tract

degeneration are found in around half of the patients [45].

More than one-thirds of patients have sleep disorders and

dementia [46]. The sleep disorder is accompanied by the

specific sleep-related inspiratory stridor. The patterns of

cognitive deficits are widely overlapped with those in other

parkinsonian disorders [46].

Pathological features

PD Pathologically, PD is characterized by the loss of

pigmented dopaminergic neurons in the substantia nigra

pars compacta (SNpc) and the formation of a-syn-con-

taining inclusions in neuronal somata and neurites

designated LBs and LNs, or collectively known as Lewy-

related a-syn pathologies (LRP) [1, 6]. Although the motor

symptoms of PD are attributed to the loss of dopaminergic

neurons within the area of the substantia nigra pars com-

pacta (SNpc) [1], neuronal loss is also found in many other

brain regions, such as the ventral tegmental area (VTA),

the locus coeruleus (LC), nucleus basalis of Meynert

(NBM), pedunculopontine nucleus (PPN), raphe nucleus,

dorsal motor nucleus of the vagus, amygdala, and

hypothalamus [5, 47].

The distribution and progression of LRP in PD was first

investigated by Braak and his colleagues [2], who proposed

a staging scheme based on the topographical location of

LRP in a large cohort [2], which has been improved by

subsequent studies. According to Braak staging, LRP

initially occur in the olfactory mucosa and enteric nervous

system, travel into the brain via the vagal and olfactory

nerves, and progress to particular brain structures in a

predictable pattern [2, 47]. This pattern begins in the dorsal

motor nucleus of the glossopharyngeal and vagal nerves

and olfactory bulb (stage one), ascending to the pontine

tegmentum (stage two), midbrain (stage three), mesocortex

and allocortex (stage 4), and finally culminating in wide-

spread neocortical regions (Stages 5 and 6) [2, 47].

Prospective assessment of PD patients to autopsy reveals

that the progression of LRP in typical cases (excluding

early-onset cases) is consistent with Braak staging, where

brainstem LRP dominates in those surviving to 5 years, by

13 years 50% of cases have a transitional distribution to

limbic regions, and by 18 years all have at least this

pathological phenotype [6]. It is thought that the earliest

stages represent a preclinical disease phase in the absence

of any motor disability [2]. The pattern and severity of LRP

were found to be correlated with different clinical pheno-

types. The more rapid disease course, along with higher

amounts of pathological deposits and additional neu-

ropathology, suggests an even faster rate of LRP deposition

that appears to be linked to multiple pathologies in older-

onset PD patients. These cases have similarities to those

described below with a dementia dominant phenotype.

DLB The frequency and density of LRP in DLB patients

have little difference from those in PD and PDD patients

[48]. Compared with PD patients, the majority of DLB

cases are found to have an advanced Braak stage, with

cortical involvement [48]. In contrast, DLB patients have a

less marked loss of the dopaminergic neurons in the sub-

stantia nigra and a relative lack of D2 receptor upregulation

in the striatum [49]. In addition, many patients with DLB

have substantial amyloid deposition in the striatum, hip-

pocampus and cortex [1, 5, 50], much like the older-onset

group of PD patients mentioned above. Coexisting LRP

and AD pathology (Ab and tau) is frequently found in DLB

at postmortem [51, 52].

MSA The core pathological feature of all clinical sub-

types of MSA is the presence of a-syn-positive glial

cytoplasmic inclusions (GCIs) in oligodendroglia, which

are widely observed throughout the brain [53]. Other a-

syn-containing inclusions found in the brain of MSA

patients include glial nuclear inclusions (GNIs), neuronal

cytoplasmic inclusions (NCIs), neuronal nuclear inclusions

(NNIs) [7]. Although neuronal loss and GCIs are key

pathological findings in MSA, the severity of these lesions

and their regional distribution can be highly variable,

resulting in clinical heterogeneity. Pathologically, MSA

cases were separated into those with predominately olivo-

pontocerebellar (OPC) and striatonigral (StrN)

involvement, corresponding to the clinical phenotypes of

MSA-C and MSA-P. Historically, these pathological
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variants were termed striatonigral degeneration (SND) [54]

and olivopontocerebellar atrophy (OPCA) [55], respec-

tively. An earlier study described two clinically diagnosed

MSA-P cases with widespread GCIs and neuronal loss

restricted to the substantia nigra and locus coeruleus; such

cases are examples of pure SND and were coined ‘‘minimal

change’’ MSA [56]. In all the cases described by Ozawa

et al. [57, 58], neuronal loss was present in at least one

StrN and OPC region, with no cases being ‘‘pure’’ SND or

‘‘pure’’ OPCA. A report has also reported that a case of

‘‘minimal change of OPCA’’, with neuronal loss being

confined to OPC structures [59]. Like most sporadic neu-

rodegenerative diseases, the strongest known risk factor for

MSA is ageing. Therefore, it is not surprising that the

pathological hallmarks of other age-associated disorders

are sometimes found in conjunction with MSA, termed

concomitant pathologies. In 94 of MSA cases from the UK,

screening of the dorsal motor nucleus of the vagus and

substantia nigra revealed the presence of LBs, the patho-

logical hallmark of PD and DLB, in approximately 10%

cases [57]. These studies suggest that LBs may represent an

independent disease process in MSA, although a similar

study in 50 cases of Japanese MSA reported no cases with

LBs [58]. However, significant correlation was mainly

observed between the frequency of GCIs and the severity

of neuronal cell loss, and between these pathological

changes and disease duration [57]. Grading systems have

been proposed with cases assigned a separate severity

grade between 0 and 3 for both MSA-P and MSA-C

pathology, reflecting the considerable overlap between

these subtypes [1].

Hippocampal manifestations

The hippocampus is a major component of the brain that

plays important roles in the consolidation of new memory,

emotional responses, navigation, and spatial orientation. It

belongs to the limbic system and consists of several

structures, including the dentate gyrus, the CA1-CA3 lay-

ers, and the subiculum [60]. The entorhinal cortex (EC),

located in the parahippocampal gyrus, is considered to be

part of the hippocampal region because it serves as the

main ‘‘interface’’ between the hippocampus and other parts

of the brain. The hippocampus is one of the most vulner-

able brain regions affected by synucleinopathies, and the

hippocampal dysfunction may cause various neuropsychi-

atric manifestations such as cognitive deficits, depression,

anxiety, hyposmia, anhedonia, and psychosis, which have

described above. In this section, we will discuss the

pathological changes in the hippocampus and the possible

mechanisms underlying the hippocampal dysfunctions

associated with depression and cognitive deficits, the most

frequently occurring symptoms observed in the three major

synucleinopathies [61–67].

Pathological changes

Hippocampal atrophy

There is a controversy on the volume loss of the hip-

pocampus in PD patients with normal cognition (PD-NC).

Some studies described the volume loss of the hippocam-

pus in PD-NC as compared with normal controls [68–71].

Some others reported the lack of difference in the hip-

pocampal volume between PD-NC and normal controls

[72, 73]. Different from PD-NC, PD patients with mild

cognitive impairment (PD-MCI) and dementia (PDD) show

a significant reduction in the hippocampal volume

[68, 69, 71–77]. Patients with DLB also have a reduced

hippocampal volume as those with PDD. However, this

volume reduction is not significantly different between

DLB and PDD, although it is smaller than that in AD

[71, 78–82]. In patients with MSA, only the MSA-P phe-

notype was shown to have a reduction in the hippocampal

volume as compared with control subjects [83–85].

There is a body of evidence suggesting the correlation

between hippocampal volume loss and cognitive impair-

ment in synucleinopathies. For example, memory

impairment is an important feature of cognitive dysfunc-

tion in PD. It can be observed since early stages [86], is

more pronounced in patients with visual hallucinations

[87, 88] and predicts conversion to dementia [89]. The

results that significant hippocampal volume loss is only

observed in PD-MCI and PDD but not in PD-NC indicate

the association between hippocampal volume loss and

cognitive impairment. Direct evidence showing the rela-

tionship between hippocampal volume loss and cognitive

impairment in PD patients has been obtained by volumetric

magnetic resonance imaging [71, 90–92], which showed a

pattern (control[ PD[ PDD[AD) of changes in the

hippocampal volume. It is suggested that low hippocampal

volume can be an important predictive factor for the pro-

gression from PD-NC to PD-MCI and also from PD-MCI

to PDD [75]. Discriminant analysis and a receiver operat-

ing characteristics approach showed that mean cortical

thickness and hippocampus volume have 80% accuracy in

identifying PD patients with dementia [93]. In addition,

white matter hyperintensity (WMH) is demonstrated to be

an additional factor determining the progression of cogni-

tive impairment in PD [75]. The finding that both

hippocampal volume and WMH contribute to the devel-

opment of cognitive impairment and dementia in PD is

important as it would allow further studies to investigate
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the mechanisms by which hippocampal volume and WMH

act synergistically in PD dementia.

The DLB patients also show the correlation between

hippocampal volume loss and cognitive decline. For

example, voxel-based morphometry results showed that the

right hippocampus and amygdala volume correlated with

Visual Memory Test in DLB patients [82]. In a study with

3T T1-weighted imaging, DLB patients were shown to

have milder hippocampal atrophy that was accompanied by

preservation of the CA1 compared with AD patients.

Among DLB subjects, CA1 was correlated with the Recent

Memory Score of the Cambridge Cognitive Examination

(CAMCOG) and Delayed Recall subscores of the The

Hopkins Verbal Learning Test (HVLT) [94]. These find-

ings highlight the promising role of hippocampal subfield

volumetry, particularly that of the CA1, as a biomarker for

the distinction between AD and DLB. Compared with pure

DLB patients, the mixed DLB/AD patients displayed

greater atrophy rates in the whole brain, temporoparietal

cortices, hippocampus and amygdala, and ventricle

expansion, similar to AD patients. In the DLB and DLB/

AD patients, the atrophy rates correlated with Braak neu-

rofibrillary tangle stage, cognitive decline, and progression

of motor symptoms [95].

The MSA patients also manifest cognitive impairment,

with prevalence rates being up to 31%. The patterns of

cognitive deficits are widely overlapped with those of

parkinsonian disorders, with some suggestive of hip-

pocampal dysfunction [46, 96]. However, direct data

showing the correlation between cognitive impairment and

hippocampal atrophy in MSA remain to be collected.

It is well established that reduced hippocampal volumes

are consistently associated with major depression [97–99].

Studies have shown that about 90% of PD patients have at

least one neuropsychiatric symptom, among which,

depression is considered as the frequent one. Studies with

magnetic resonance imaging (MRI) detection have

revealed that the patients with a history of several

depressive episodes have significantly smaller hippocampal

volumes in comparison to controls [100, 101]. This

observation was further confirmed in meta-analyses of MRI

studies of hippocampal volume in depression [102, 103].

Depression was also found in patients with DLB and MSA

[104]. Since the hippocampal volume loss is also present in

both diseases, it may also contribute to the depression,

although studies for the direct link have not been reported.

Hippocampal a-syn pathology

Since a-syn-containing inclusions (LBs, LNs, GCIs, GNIs

and NCIs) are hallmark pathologies of synucleinopathies, it

is reasonable to assume that the presence and density of

these protein inclusions in the hippocampus and related

brain regions are associated with neuropsychiatric impair-

ments in these disorders. Attempts have been made to

relate cortical LBs and LNs with cognitive impairment in

PD. It was demonstrated in demented PD patients that the

densities of LBs, LNs, and LGs (Lewy grains) were sig-

nificantly greater in amygdala, entorhinal cortex (EC), and

sectors CA2/CA3 of the hippocampus, whereas middle

frontal gyrus, sector CA1, and dentate gyrus were least

affected [105]. In patients with a long disease duration

where sufficient time for the slow accumulation of LRPs

can occur, limbic and cortical LRPs correlates with the

presence and severity of cognitive impairment in PD

[106–110]. In a study performed on elderly PD patients in

whom parkinsonism preceded cognitive decline by at least

3 years, Kövari and colleagues found that LB densities in

the entorhinal and anterior cingulate cortex may predict

cognitive deficits in PD. They suggested that LB formation

in limbic areas may be crucial for the development of PD

dementia [111]. Harding and Halliday indicated that high

densities of parahippocampal LBs could separate demented

from non-demented PD cases with high sensitivity and

specificity [108]. In a study where a-syn, phosphorylated

tau (phosphotau) and Ab plaque pathology in PDD and

DLB patients was assessed semi-quantitatively in four

regions of the neocortex, the decline in cognition, assessed

by Mini Mental State Examination, was found to correlate

positively with the cortical a-syn load. Patients also had

varying degrees of senile Ab plaque and phosphor-tau

pathology. Regression analyses pointed to a combined

pathology (Ab plaque plus phosphor-tau plus a-syn-posi-

tive features), particularly in the prefrontal cortex and

temporal lobe neocortex with the superior and middle

temporal gyrus being a major determining factor in the

development of dementia. This study suggests that cogni-

tive decline in LB dementia is not a consequence of a-syn-

induced neurodegeneration alone, and senile plaque and

phosphor-tau pathology also contribute to the overall

deficits.

In typical MSA patients, the oligodendrocyte GCIs and

GNIs are seldom observed in the hippocampus, although

their presence in the temporal lobe has been reported in

some rarer cases [85, 112, 113]. Atypical MSA (aMSA) is

a term recently introduced by Aoki and his colleagues

[114] to describe cases that show hallmark GCI patholog-

ical changes while clinically present with frontotemporal

dementia (FTD) syndromes associated with frontotemporal

lobar degeneration and severe limbic and cortical a-syn

neuronal pathology [114]. Compared with typical MSA,

the atypical MSA has significantly more neuronal inclu-

sions in anteromedial temporal lobe and limbic structures

(e.g., hippocampus and amygdala) [114]. However, if the

increased neuronal inclusions correlate with the severity of

cognitive deficit in MSA remains to be investigated.
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While the above studies suggest an association between

cortical LBs and cognitive impairment, other studies have

not confirmed this assumption [115–117]. As have been

stated, LB pathology may be a structural manifestation of a

cytoprotective response or a failed cellular self-preserva-

tion mechanism to confine and eliminate cytotoxic

proteins, and the real pathogenic form of a-syn is its

aggregates and oligomers. For example, although inciden-

tal LB disease (iLBD) is often assumed to represent

preclinical PD [29], in some PD patients, significant neu-

rodegeneration and cellular dysfunction precedes LB

pathology in the SNpc, challenging the pathogenic role of

LB pathology in PD [30]. Studies using protein-fragment

complementation assays have demonstrated that a-syn

oligomers are associated with enhanced cytotoxicity in

living cells, which can be rescued by Hsp70 in a process

that reduces the formation of a-syn oligomers [118]. Other

convictive evidence comes from a study on a-syn-over-

expressing cells, showing that the toxicity of a-syn was

alleviated by a single chain antibody (scFv) targeting the

clearance of oligomeric but not monomeric a-syn [119].

The neurotoxicity of a-syn oligomers has also been

demonstrated in animal models using mutant forms of a-

syn with decreased capacity to form fibrils but increased

propensity to form soluble oligomers [120]. In these ani-

mals, a-syn accumulation in the hippocampus was

accompanied by cognitive deficits [121, 122]. In accor-

dance with the findings in cells and animals, patients with

parkinsonism (PD, DLB, and MSA) have increased levels

of a-syn oligomers in the brain compared to those without

parkinsonism or to healthy controls [123–126]. The above

findings suggest a relationship between endogenous a-syn

oligomers and neurodegeneration in synucleinopathies. To

support this notion, neuropathological studies in a large

series have confirmed that staging of LB pathology is

barely applicable to cognitive impairment and dementia.

Only a percentage of cases showed a relationship between

cortical LBs and cognitive impairment and dementia [115],

indicating that cortical LBs are not per se causative of

dementia, but rather indicators of pathological a-syn

aggregates. While the pathophysiology of the neurode-

generative process can hardly be explained by LBs, the

clinical symptoms do indicate a degenerative process

located at the presynapses resulting in a neurotransmitter

deficiency. It was shown that 90% or even more of a-syn

aggregates in DLB cases were located at the presynapses,

which was shown as Proteinase K-resistant in distinct brain

regions, including the hippocampus, temporal cortex and

substantia nigra [127]. The PK-resistant a-syn aggregates

were also found in the presynaptic nerve terminals in the

hippocampus and temporal cortex in A53T a-syn trans-

genic mice [127]. To further support the neurotoxicity of

insoluble a-syn aggregates, recent studies showed that

perturbing normal a-syn repeat motifs, which occurs in a-

syn mutations such as E46 K, promotes a conversion of a-

syn from physiological tetramers into monomers [128]; this

conversion decreases a-syn solubility and increases its

aggregation and neurotoxicity [128]. By examining the

insoluble a-syn aggregates-accumulated presynaptic sites

in both transgenic mice [127] and PD brains, it was found

that the dendritic spines were retracted, whereas the

presynapses were relatively preserved, suggesting a neu-

rotransmitter deprivation. These findings give rise to the

notion that not only cell death but also a-syn aggregate-

related synaptic dysfunction may cause clinical symptoms

in synucleinopathies [129].

Other pathologies

DLB and PDD are characterized by the presence of a-syn-

containing LBs and LNs. However, they also show variable

degrees of AD pathology, such as senile plaques and

neurofibrillary tangles, particularly in areas of the cortex

associated with higher cognitive functions [108, 130].

Although the decline in cognition in both dementias was

found to correlate positively with the cortical a-syn load,

patients also had varying degrees of senile Ab plaque and

phosphor-tau pathology. Regression analyses pointed to a

combined pathology (Ab plaque plus phosphor-tau plus a-

syn-positive features), particularly in the prefrontal cortex

(BA9) and temporal lobe neocortex with the superior and

middle temporal gyrus (BA21, 22), being a major deter-

mining factor in the development of dementia [131]. Thus,

cognitive decline in Lewy body dementias is not a conse-

quence of a-syn-induced neurodegeneration alone but

senile plaque and phosphor-tau pathology also contribute

to the overall deficits. In atypical MSA, except GCIs and

NCIs, numerous Pick body-like inclusions in hippocampus

and amygdala associated with neuronal loss and atrophy

are the most specific features of atypical MSA [114].

Mechanisms underlying hippocampal dysfunctions
in synucleinopathies

The hippocampal formation receives information from

widely spread cortical and subcortical regions, and in turn

sends signals through efferent nerves to many of the cor-

tical regions as well as subcortical nuclei [132]. Previous

studies have demonstrated impairments of the dopaminer-

gic, serotonergic, cholinergic, and adrenergic neurons from

the subcortical nuclei and their association with hip-

pocampal dysfunction in patients with PD-MCI, PD-D, and

DLB, which have been well reviewed elsewhere

[133, 134]. Here, we will focus on recent progresses for the

potential mechanisms underlying the deficits in synaptic
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transmission and neurogenesis induced by a-syn abnor-

malities and discuss their possible roles for the

hippocampus-mediated depression and cognitive deficits in

synucleinopathies.

a-Syn-induced deficits in synaptic transmission

The connectivity between neurons in the brain depends on

the number of synapses and their plasticity. The synaptic

plasticity mainly refers to a persistent strengthening and

weakening of the synaptic transmission efficacy. There is a

body of evidence supporting that a-syn abnormalities can

affect the efficacy of synaptic transmission by both the

presynaptic and postsynaptic mechanisms. One way that a-

syn affects synaptic transmission is to modulate neuro-

transmitter release. This effect is likely mediated by

affecting the spatial organization of distinct synaptic

vesicle pools within the presynaptic terminal, possibly via

a-syn multimerization [135, 136] or by modulating inter-

synaptic vesicular dynamics [137]. a-Syn may exert its

effect on synaptic vesicle recycling by its ability to bind

membrane and potentiate SNARE-complex assembly

[138, 139]. Another way that a-syn affects synaptic

transmission is to modulate the trafficking and activity of

neurotransmitter transporters, which serve to remove neu-

rotransmitters from the synaptic cleft and reuptake the

transmitters into cytosol from which they are sequestered

into vesicles for storage and later release. The transporters

found to be regulated by a-syn include dopamine, sero-

tonin, and norepinephrine transporters [133]. In line with

the results for the presynaptic impairments observed in

experimental models, in vivo imaging studies on synaptic

functions of the central nervous system provide compelling

evidence for presynaptic neurotransmitter deficiencies in

PD, PDD and DLB [140]. In addition to the presynaptic

mechanisms, a-syn can also affect synaptic transmission by

modulating the activity and expression of postsynaptic

receptors. For example, extracellular a-syn oligomers have

been shown to impair long-term potentiation by activating

NMDA receptors [141, 142]. Besides, extracellular a-syn

and overexpressed a-syn have been demonstrated to pro-

mote clathrin-mediated NMDA receptor endocytosis,

leading to the reduction in the level of membrane NMDA

receptors and the NMDA receptor-mediated Ca2? influx

upon stimulation [143, 144]. In accordance with the in vitro

findings, a-syn transgenic mice showed reduced surface

NMDA receptor levels and NR2A/NR2B subunit ratio in

the hippocampus and altered hippocampus-related memory

and long-term potentiation (LTP) [143, 145].

As have mentioned above, the connectivity between

neurons depends on not only the synaptic plasticity but also

the number of synapses. Loss of synapses has been

observed in the frontal and temporal cortex as well as the

hippocampus in patients with DLB, which correlates well

with the cognitive impairment [146, 147]. Significant loss

of presynaptic terminals are also demonstrated a few

months after small a-syn aggregates begin to appear in the

hippocampus of an a-syn overexpressing mouse model of

DLB [148]. When the overexpressing transgene was swit-

ched off, the synapse loss was reversed, with a

simultaneous clearance of the a-syn pathology, indicating a

toxicity of the a-syn aggregates to the synapse. In line with

the results obtained in animal models, in human LBD

brains, the accumulation of protease K (PK)-resistant small

a-syn aggregates can be observed at presynaptic terminals

[129, 149, 150]. How might these a-syn aggregates or

oligomers damage the synapse or cause synaptotoxicity?

Based on the evidence obtained so far, several potential

mechanisms are suggested. First, a-syn oligomers may

directly change the permeability of the synaptic membrane

by forming a-syn pores [151, 152] or inducing membrane

thinning [153–155]. Second, a-syn oligomers may induce

synaptotoxicity by damaging mitochondria [156], reducing

synaptic proteins [157–159] or interfering with synaptic

vesicle recycling [144, 160]. Third, in addition to acting on

presynaptic terminals, a-syn oligomers may damage spine

morphogenesis by affecting the function of NMDA

receptors [141] since the latter plays an important role in

spine morphogenesis [161]. Given the importance of

NMDA receptors in synaptic signaling and spine mor-

phogenesis, it is no surprise to find in human post-mortem

tissue and numerous models of PD that spine densities are

altered [161, 162].

Taken together, a-syn abnormalities can cause either the

impairment of synaptic plasticity or the loss of synapses,

leading to deficits in synaptic transmission. The toxic effect

of a-syn on synaptic transmission can disrupt the connec-

tivity between either the neurons within the hippocampus

or the hippocampal neurons with those from the subcortical

nuclei. This will impair hippocampal function, causing the

hippocampus-mediated cognitive deficits and depression. It

is well established that hippocampal LTP represents the

major experimental model for the synaptic changes

underlying learning and memory. It has been demonstrated

that the LTP in the CA3/CA1 Schaffer collateral/commis-

sural pathway of the hippocampus are affected by

exogenously applied a-syn oligomers [141, 142]. Because

the synaptic plasticity of this pathway is modulated by the

mesolimbic dopaminergic neurons in the medial substantia

nigra (A9 neurons) and nearby ventral tegmental area (A10

neurons) through dopamine D1/D5 receptors [163–166],

deficits in synaptic transmission between the dopaminergic

neurons and the hippocampal neurons will impair the

hippocampal function. As the evidence for this, in mice

transgenic for truncated a-syn (1–120), the hippocampal

LTP was found to change, which was associated with an
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impaired dopaminergic transmission and a decrease of

NR2A/NR2B subunit ratio in synaptic NMDA receptors.

Deficits in hippocampus-dependent learning were also

found in this animal model. Interestingly, the dopamine

precursor L-DOPA was able to restore the hippocampal

synaptic potentiation via D1/D5 receptors and to amelio-

rate the cognitive deficit in the parkinsonian animals [143].

In consistent with the results of animal experiments, a

single serial section study assessing the mesocortical A10

dopamine neurons proper revealed limited degeneration in

the A10 dopamine cell groups in PD and PDD patients

[167]. Despite this, in vivo imaging suggests a reduction in

cortical dopamine in patients with PDD [168], indicating a

functional rather than structural depletion of dopamine in

the mesocortical system.

Except the dopaminergic innervation, the hippocampal

formation also receives the serotonergic and noradrenergic

projections from the raphe nucleus and locus coeruleus, the

two nuclei that are vulnerable to a-syn pathology. Deficits

in the serotonergic and noradrenergic innervation to the

hippocampus have been reported in PD patients [169],

which are believed to contribute to the development of

dementia and depression. In BAC a-syn transgenic rat

model, a serotonergic deficit in the hippocampus as defined

by reduced levels of serotonin (5-HT) 1B receptor,

decreased 5-HT neurotransmitter levels, and a loss of

serotonergic nerve terminals innervating the DG/CA3

subfield were observed, while the number of serotonergic

neurons in the raphe nuclei remained unchanged. Impor-

tantly, the BAC a-syn rats showed an early anxiety-like

phenotype consisting of reduced exploratory behavior and

feeding [170]. Decreased 5-HT1A receptor availability is

found in limbic regions including the hippocampus in

depressed PD patients [171, 172]. These findings are in

agreement with post-mortem evidence and support the

hypothesis that reductions in postsynaptic 5-HT1A recep-

tors availability could be an underlying mechanism for the

development of depression in PD [171]. In addition, pref-

erential degeneration of noradrenergic terminals is reported

in transgenic mice overexpressing mutant human A53T a-

syn [173]. Moreover, a-syn has been demonstrated to

attenuate the norepinephrine transporter activity and traf-

ficking [174]. Therefore, there is also a possibility that a-

syn abnormalities in the noradrenergic neurons of the locus

coeruleus may also affect the hippocampal function.

a-Syn-induced deficits in hippocampal neurogenesis

Adult hippocampal neurogenesis occurs in a relatively

limited area, the subgranular zone (SGZ) of the dentate

gyrus (DG). There are numerous studies supporting the role

of adult hippocampal neurogenesis in memory formation

and emotion processing. For example, early studies

specifically ablating adult hippocampal neurogenesis sug-

gest the role of newly generated granule cells in memory

formation [175–178], which are confirmed by recent

advanced technologies such as conditional gene targeting,

viral injection, and optogenetic approaches. Besides,

reduced hippocampal neurogenesis has been observed in

animal models and some patients with depression. There is

evidence that antidepressant treatment can improve the

adult hippocampal neurogenesis and the depression

symptom [179–182]. Because postmortem analyses of

adult neurogenesis are limited, direct investigation of

alterations in adult hippocampal neurogenesis has been

carried out in only a few samples of PD and DLB patients.

These studies have revealed changes in some proteins in

the patients that are implicated in adult hippocampal neu-

rogenesis. For example, the number of cells positive for

proliferating cell nuclear antigen (PCNA), epidermal

growth factor (EGF) receptor, nestin, and 3-tubulin was

found to reduce in the SGZ and the subventricular zone

(SVZ) of PD patients when compared to controls [183]. In

addition, a reduction of Musashi-positive cells within the

hippocampal SVZ, subgranular layer (SGL) and ependy-

mal cell layer (EPL) SVZ (representing neural stem and

progenitor cells within this area) was noted in specimen of

DLB [184]. The observed decrease in the SGV and SVZ

proliferation of patients with LB disease is speculated to be

a consequence of dopamine depletion [183].

In contrast to the limited amount of data and materials

from human LB brains, many studies have been conducted

in PD animal models, mainly in rodents. Studies on

dopaminergic lesion models using 6-hydroxydopamine (6-

OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

(MPTP) have revealed a negative impact of dopaminergic

deafferentation on neural progenitor cell (NPC) prolifera-

tion in SVZ, and dopaminergic stimulation increases

proliferation in non-lesioned and lesioned rodents

[183, 185, 186]. These results reinforce the speculation for

the role of dopaminergic innervation in SVZ proliferation.

In addition to lesioned PD models, adult neurogenesis has

been studied in different transgenic mice that overexpress

wild type or mutant a-syn. In these mice, neurogenetic

deficits can be observed in the hippocampus

[67, 170, 187–189]. Although there is possibility that

impaired dopaminergic innervation may contribute to the

hippocampal neurogenetic deficits since degeneration of

dopaminergic neurons also occurs in these animals

[187, 190], evidence obtained also supports the direct

effect of a-syn on neurogenesis. For example, in a tetra-

cycline-suppressive (tet-off) transgenic mouse model,

reduced neurogenesis in the hippocampus and olfactory

bulb was observed when the A30P mutant a-syn was

overexpressed, which was restored to control levels after

the A30P a-syn was abrogated [191, 192]. In addition, the
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induced pluripotent stem cells that derived from PD

patients with SNCA gene triplication exhibited elevated a-

syn expression and impaired neuronal differentiation and

maturation [193], further supporting that the abnormal

accumulation of a-syn may directly affect the neurogenesis

in the hippocampus.

Due to the potential roles of adult hippocampal neuro-

genesis in memory formation and emotion processing, its

defect may contribute to the manifestations of neuropsy-

chiatric impairments such as cognitive deficits and

depression in synucleinopathies.

Concluding remarks

While all the three synucleinopathies (PD, DLB, MSA)

have a-syn-containing inclusions found in the brains of

patients, the cell types and structures affected vary

between different disorders. This determines the distinc-

tive clinical features of each disease, although they all

manifest as a chronic and progressive decline in motor,

cognitive, behavioral, and autonomic functions. The for-

mation of a-syn-containing inclusions is frequently

observed in the hippocampus and related brain regions of

patients with synucleinopathies, which are accompanied

by hippocampal atrophy and dysfunction as well as

neuropsychiatric symptoms such as cognitive deficits and

depression. Although the a-syn-containing inclusions are

hallmark pathological changes in synucleinopathies,

increasing evidence supports that small a-syn aggregates

or oligomers are toxic species that induce neurodegen-

eration initially starting at the synaptic site. Both

neuronal functional change and degeneration in the hip-

pocampus and some subcortical neurons with projections

to the hippocampus and related regions can lead to the

manifestations of neuropsychiatric abnormalities in

synucleinopathies.
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