
REVIEW

A researcher’s guide to the galaxy of IRESs

Ilya M. Terenin1,2
• Victoria V. Smirnova1,3

• Dmitri E. Andreev1
•

Sergey E. Dmitriev1,2,4
• Ivan N. Shatsky1

Received: 13 July 2016 / Revised: 1 November 2016 / Accepted: 2 November 2016 / Published online: 16 November 2016

� Springer International Publishing 2016

Abstract The idea of internal initiation is frequently

exploited to explain the peculiar translation properties or

unusual features of some eukaryotic mRNAs. In this

review, we summarize the methods and arguments most

commonly used to address cases of translation governed

by internal ribosome entry sites (IRESs). Frequent mis-

takes are revealed. We explain why ‘‘cap-independent’’

does not readily mean ‘‘IRES-dependent’’ and why the

presence of a long and highly structured 50 untranslated

region (50UTR) or translation under stress conditions

cannot be regarded as an argument for appealing to

internal initiation. We carefully describe the known

pitfalls and limitations of the bicistronic assay and

artefacts of some commercially available in vitro trans-

lation systems. We explain why plasmid DNA

transfection should not be used in IRES studies and

which control experiments are unavoidable if someone

decides to use it anyway. Finally, we propose a work-

flow for the validation of IRES activity, including fast

and simple experiments based on a single genetic con-

struct with a sequence of interest.

Keywords CITE � Cellular IRES � RNA transfection �
Cap-independent translation � RRL � Bicistronic vector

Abbreviations

4E-BP eIF4E-binding protein

CAGE Cap analysis of gene expression

CDS Coding DNA sequence

CITE Cap-independent translation enhancer

CrPV Cricket paralysis virus

eIF Eukaryotic translation initiation factor

EMCV Encephalomyocarditis virus

FMDV Foot and mouth decease virus

HalV Halastavi árva virus

HCV Hepatitis C virus

HIV Human immunodeficiency virus

HRV Human rhinovirus

IFIT Interferon-induced proteins with

tetratricopeptide repeats

IRES Internal ribosome entry site

KSHV Kaposi’s sarcoma-associated HerpesVirus

PV Poliovirus

RhPV Rhopalosiphum padi virus

RRL Rabbit reticulocyte lysate

SHAPE Selective 20-hydroxyl acylation analyzed by

primer extension

TSS Transcription start site

uORF Upstream open reading frame

UTR Untranslated region
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Introduction

Although IRESs were first discovered more than a quarter

of a century ago, a common standardized methodology to

detect and validate novel IRES elements has yet to be

adopted by the research community. Consequently, the

required control experiments are rarely performed, and the

number of questionable reports continues to increase. This

has detrimental effects on research in the field of eukary-

otic protein synthesis as well as on bordering areas of the

life sciences, e.g., crucial aspects of translation in cancer

are currently (mis)linked to cellular IRESs.

Much has been already said about the inherent limitations

of the workhorse of IRES research: the bicistronic assay

[1–5]. Therefore, we mainly focus on what has remained

behind the veil, the critical controls that are required when

using this technique appropriately, and address several rarely

discussed ideas about how internal initiation should (not) be

studied. Specifically, not each and every cap-independent

translation equals the internal initiation, especially in in vitro

assays. Thus, careful interpretation (in peer-reviewing pro-

cess also) is required to avoid false-positive IRES

identification. Finally, we provide a simple workflow uti-

lizing a standardized set of methods that can robustly prove

or disprove internal initiation.

Modes of translation initiation in eukaryotes: more
than just two

The translation efficiency and stability of a particular

mRNA species are regulated by elements that are usually

located in untranslated regions (UTRs). Some of these

regulatory elements can ensure the efficient translation of

the given mRNA under specific conditions when the bulk

mRNA translation is repressed. One of the proposed reg-

ulatory mechanisms effectuating such differential

translation is internal ribosome entry governed by internal

ribosome entry sites (IRESs) of mRNA.

First, we should define what IRES is (and what it is not)

since a misunderstanding of the basic definitions leads to

confusion. IRES is a segment of mRNA that permits the

recruitment of preinitiation complex to the initiation codon

without the involvement of the 50 end of the mRNA. This

requirement is extremely important because it segregates

internal initiation from a larger clade of all possible cap-

independent initiation pathways (Table 1). Consequently,

only IRESs are able to function if mRNA is circularized.

Unlike many viral mRNAs, all cytoplasmic mRNAs are

capped and are thus destined to attract ribosomes to their 50

ends. ‘‘Presumption of innocence’’ should be applied to any

naturally capped mRNA that it is scanned by ribosomes

unless compelling proof of the opposite is provided.

In this section, we briefly outline the most important

features of the translation initiation pathways in mammals.

For a detailed description, we refer readers to excellent

reviews of the cap-dependent mechanism [6–8] or internal

initiation [4, 9–11], as we only stress some major points

and facets of the mechanisms that are relevant to our topic.

50 end-dependent translation initiation: cap-

and CITE-assisted translation

The most studied and perhaps most widely used variant of 50

end-dependent translation is cap-dependent translation. In

this pathway the 7-methylguanosine moiety at the mRNA’s

50 end is recognized by eIF4F, which consists of eIF4E, the

cap-binding subunit; eIF4A, an RNA helicase; and eIF4G, a

scaffold for the former two subunits and other proteins, such

as PABP, eIF3 and Mnk1/2 kinases. Once bound to the cap,

eIF4F recruits the 43S complex, which consists of 40S

ribosome, eIF1, eIF1A, eIF2*GTP*Met-tRNAi
Met ternary

complex, eIF3, and eIF5 (eIF5 is not necessary for 43S

recruitment and may be absent from certain scanning com-

plexes). Then, the ribosome starts unidirectional 50–30

movement in search of an initiator codon. This process is

thus termed ‘‘scanning’’ [6, 8]. After the scanning ribosome

locates the initiator codon in a suitable nucleotide context,

GTP hydrolysis is accomplished, the initiation factors leave

the 40S subunit, and the 60S subunit joins in the eIF5B-

dependent reaction. The availability of eIF4E is mainly

controlled by mTOR kinase, which is believed to be a major

signalling hub for cell survival and proliferation [12–14].

However, other kinases that phosphorylate 4E-BPs (at least

in vitro) are also known [15–18]. When hypophosphory-

lated, eIF4E-binding proteins (4E-BPs) displace eIF4G from

eIF4E and expectedly inhibit cap-dependent translation. In

fact, eIF4E interacts with other proteins which may also

disrupt eIF4E–eIF4G link [19, 20].

Concurrently with the discovery of m7G cap, it was

shown that although capping strongly stimulates ribosome

binding, it is not always a prerequisite for the latter

[21, 22]. This notion has been complemented by dozens of

reports, the most remarkable of which employed uncapped

transcripts made by RNA polymerase III to demonstrate

the 50 end dependence of scanning-based translation initi-

ation in living cells [23, 24]. Accordingly, the translation of

A-capped mRNAs (i.e., capped with ApppN, which does

not bind eIF4E) is inhibited by the insertion of the 50 end

proximal stem-loops, by annealing antisense oligos to the

50 end or by the insertion of uAUGs [25–29]. This means

that even uncapped mRNAs drive translation in a 50 end-

dependent manner. In addition, certain viral mRNAs that

lack IRESs are effectively translated under conditions of

severely impaired cap-dependent translation [30, 31].

Another well-known example of cap-independent
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translation is the translation of certain mRNAs from plant

viruses mediated by cap-independent translation enhancers,

mostly found in 30UTRs and thus called 30CITEs (for

recent reviews, see [32–34]). The question remains as to

whether there are CITEs in mRNAs of organisms other

than plants or their viruses; some candidates with such

properties have been reported [35, 36]. In an attempt to

demonstrate the feasibility of CITEs in mammals, we

showed that a high-affinity eIF4G-binding site placed in

either the 50UTR or 30UTR of an uncapped mRNA sig-

nificantly stimulated its 50 end-dependent translation to the

extent that rendered it almost cap-independent [27, 37].

Importantly, such artificial CITE does not function as an

IRES. The binding of eIF3 to certain mRNAs also affects

their 50 end-dependent translation [38, 39].

If m7G cap were the only attractor of the ribosome, the

cap-dependence (i.e., the degree of stimulation of transla-

tion by the m7G cap) of all mRNAs would be similar. We

know, however, that cap-dependence varies significantly

among different mRNA species [27, 40], and the current

view suggests that the enhanced translation of certain

mRNAs in the uncapped state depends on the mRNA’s

affinity to some mRNA-interacting initiation factors, pre-

sumably eIF4G [4, 27, 35, 41]. However, the premise that a

higher level of translation of a non-capped mRNA is

always relevant to a weaker stimulation of its translation by

a 50 cap does not seem to be correct (also see below).

Thus, the widely accepted dichotomy ‘‘IRES-dependent

translation vs. cap-dependent translation’’ is a dangerous

oversimplification. The logically correct dichotomy should

be ‘‘50 end-dependent translation vs. 50 end-independent

translation’’.

50 end-independent (internal) initiation

The lifecycle of certain viruses takes place exclusively in

the cytoplasm. These viruses, therefore, cannot rely on

capping by nuclear transcription machinery; some of them

encode their own capping enzymes, while some others

snatch m7G cap from cellular mRNAs. Some plant viruses

have adopted 30CITEs (see above), relieving the need for

the cap altogether. However, picornaviruses, certain fla-

viviruses and representatives of the Dicistroviridae family

utilize a completely different approach. Their mRNAs

possess highly specific binding sites for eIF4G (in the case

of certain picornaviruses), eIF3 and 40S (in the case of

flaviviruses and some picornaviruses), or the 40S and 60S

ribosomal subunits (in the case of Dicistroviridae IRESs).

These binding sites place the ribosome near to or imme-

diately to the initiator codon; such a ‘‘ribosome entry

window’’ (or ‘‘ribosome landing pad’’) near the authentic

initiator codon is usually narrow [42–44]. In certain cases

(FMDV, HRV, PV), the initial binding of the preinitiation

43S complex is followed by a limited scanning to locate the

initiator codon.

These features enable IRESs to promote translation in a

50 end- and, thus, m7G-independent fashion and, expect-

edly, to operate efficiently under conditions when the cap-

dependent translation is compromised. A feature that is

shared between IRESs and CITEs is that they bind com-

ponents of the translational apparatus and promote

translation in a cap-independent manner. The discrimina-

tory attribute of IRESs is their independence on the 50

terminus in stark contrast to the strict dependence of the

CITE-mediated translation on the free 50 end.

There is a striking difference between the results of the

mutagenesis of viral or putative cellular IRESs. Bona fide

IRESs of viral origin may be easily inactivated by point

mutations, not to mention larger deletions [45–49]. In

contrast, deletion analysis of many cellular IRESs appar-

ently showed that their non-overlapping segments could

separately provide internal initiation, though usually less

efficiently than the complete IRESs. This sort of findings

led to an idea that cellular IRESs may have a modular

Table 1 Manifestations of the three mechanisms of translation initiation

Cap-dependent IRES CITE

eIF4G cleavage Sensitive Resistanta Resistanta

mTORC1 inhibition Sensitive Resistant Resistanta

4EBP or m7GTP Sensitive Resistanta Resistant

Bicistronic mRNA activity No Yes No

Cap-dependence Strong or intermediate Weakb Weak

A-capped mRNA activity Weak or intermediate Weak or intermediate or strong Strong or intermediate

A comparison of the translation initiation mechanisms’ manifestations in commonly used assays. Note that IRES and CITE mechanisms only

differ in their activity in bicistronic mRNAs
a HAV IRES requires intact eIF4G, and many plant virus CITEs bind eIF4E; thus, their translation is sensitive to a disruption of the m7G-eIF4E-

eIF4G link
b The translation of relatively weak HCV IRES in a monocistronic context is stimulated by a 50 cap, presumably due to activating the cap-

dependent translation by which a ribosome scans through the IRES
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structure, in which separate modules bind initiation factors

and work more or less independently. Current view is that

such ‘‘IRES’’ modular structure discovered by plasmid

transfections most probably reflects the modular structure

of the cryptic promoters [4] (also see below).

The mutagenesis of viral IRESs suggests that the bind-

ing of initiation factors itself is not sufficient to promote

internal initiation and that the spatial organization of the

binding sites and ‘‘landing pads’’ is equally important. Our

knowledge of viral IRESs suggests that IRESs not only

bind translational machinery but also position an mRNA

initiation region into the mRNA-binding cleft of the ribo-

some. The latter is true hallmark of internal initiation. It is

not clear how modules designed to land a ribosome on

specific point within the mRNA do not interfere with each

other and can work separately in an unnatural nucleotide

context.

A notable contradiction to these considerations is the

case of RhPV or HalV IRESs, which are indeed modular

and cannot be inactivated by partial deletions [50–53]. This

seems to be the other extreme of the IRES story. These

long and A/U-rich single-stranded IRESs can apparently

occupy the mRNA-binding cleft in an eIF3-dependent

fashion [50, 53] without the involvement of specific high-

order structural elements [54]. Consequently, they bind

ribosomes from evolutionary distant organisms. Thus,

modular IRESs do exist, but known cases have no or little

secondary structures.

‘‘Downstream’’ IRESs and leaderless mRNAs

Several reports have suggested the existence of IRESs

located within coding regions. The most studied case is

gag-pol mRNA of HIV-1 [55, 56] or HIV-2 [55, 57–59].

The presence of tentative IRESs in these mRNAs was

initially deduced from the translation of the corresponding

unnatural model mRNAs that lacked any 50UTR. The

rationale was that such a leaderless mRNA is not capable

of efficient translation unless it contains an IRES. How-

ever, this is clearly not the case [60]. We have shown that a

leaderless mRNA efficiently binds 43S complexes and also

can bind pre-assembled 80S ribosomes without the

involvement of any initiation factor [61]. Another route of

translation initiation of leaderless mRNAs involving eIF2D

instead of eIF2 has been described [62]. Since neither of

these two eIF2-independent pathways requires eIF4F, the

resistance of leaderless gag-pol mRNA translation to

inhibition by eIF4A dominant negative mutant [56] or to

eIF4G cleavage [57] is not a valid reason to propose the

existence of an IRES-dependent translation. Experiments

with ‘‘downstream IRES’’ in bicistronic mRNAs (see

below) have not been performed.

However, not each and every leaderless mRNA is

translated efficiently [59], indicating that there is indeed

something special about the leaderless mRNAs that are

translated. The clue may come from prokaryotes, where the

lack of a secondary structure near the 50 terminus of

leaderless mRNAs makes 70S binding possible [63],

although sequence-specific effects may not be neglected.

Leaky scanning, 43S sliding and reinitiation events

Many viral mRNAs code for more than one protein but do

not use IRESs. For example, HIV-1 Env expression from

polycistronic mRNA depends on leaky scanning through

the Vpu initiator codon [64], and Hepatitis B P-protein is

expressed from a bicistronic mRNA also via leaky scan-

ning [65].

It seems that the eukaryotic ribosome’s ability to reach

50 distally located start codons is underestimated [66].

Although leaky scanning usually requires a suboptimal

nucleotide context for the 50-proximal AUG or its location

within a short distance from the 50 terminus, another

recently discovered phenomenon, 43S sliding, is not lim-

ited to such AUGs [67]. Thus, 43S sliding may be used to

explain alternative start codon usage in such complex

cases.

More frequently, the synthesis of two proteins from a

single mRNA is ensured by translation reinitiation, when a

ribosome is not released from the mRNA after completing

the first ORF translation but rather resumes scanning and

thus initiates the translation on the next AUG codon. In

cases of subgenomic mRNAs of mammalian caliciviruses

or Influenza B M2 mRNA, a highly efficient reinitiation

relies on TURBS motifs found upstream of the reinitiation

site (reviewed in [68]) and occurs between overlapping

(AUGA) or closely spaced stop and start codons. In con-

trast, a regular reinitiation, represented by the case of

bicistronic LINE-1 retrotransposon mRNA, is rather inef-

ficient although apparently sufficient to provide

physiologically relevant levels of second cistron expression

[69, 70]. Addressing the reinitiation possibility is espe-

cially important in the case of natural bicistronic mRNAs.

The dark side of IRES research

Several features of an mRNA are frequently considered to

draw a foregone conclusion that internal initiation takes

place. These are long 50UTRs, the presence of multiple

uORFs, translation under stressful conditions and the direct

interaction of a ribosome or other component(s) of the

translational machinery with certain mRNAs. In this

chapter, we successively examine all of these arguments
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and explain why they may not be considered as a proof of

IRES presence in a particular 50UTR.

Why may one decide that a message under study

has an IRES?

Minimal free energy of RNA folding, 50UTR length

and multiple uAUGs

Quite often, a long and highly structured 50UTR is thought

to be an insurmountable obstacle for a scanning ribosome.

As a matter of fact, in living cells, ribosomes rather easily

penetrate long 50UTRs (see, e.g., [70–72] and references

therein), and the HCV-like IRESs inactivated by point

mutations in 40S ribosome binding is scanned through,

regardless of the presence of extended stem-loops and a

pseudoknot [27, 73]. The processivity of a scanning ribo-

some is, however, significantly reduced in cell-free

translation systems prepared from the same cultured cells

[74] and dramatically reduced in the rabbit reticulocyte

lysate [71].

Secondary structures inhibit translation drastically when

positioned close to the 50 terminus [75–77], thus interfering

with the initial attachment of 40S rather than with scanning

itself. Moreover, the common practice of calculating the

cumulative 50UTR energy implies the necessity to melt all

of these structures at once during scanning and ignores the

possibility that scanning ribosome melts them separately,

i.e., stem by stem [5].

Multiple uAUGs do not indicate an internal initiation

either (see above). The frequency of uAUGs in 50UTRs of

cytoplasmic mRNA with or without reported IRESs is

roughly the same [78]. Ribosomal profiling data clearly

show that many uORFs in cytoplasmic mRNAs are trans-

lated [79], indicating scanning rather than internal

initiation. The 50UTR of human SLC35A4 mRNA is a

notable example: it is *750 nt long and has 11 uAUGs

although it drives translation in a cap-dependent fashion

(S.E. Dmitriev, unpublished).

Translation under unfavourable conditions

eIF4F is crucial for efficient ribosome accommodation to 50

termini of the conventional cap-dependent mRNAs.

Numerous viruses use this feature to inhibit host translation

by eIF4G proteolysis and/or 4E-BPs activation. Obviously,

if a cellular mRNA withstands the inhibition of cap-de-

pendent translation, it has to use some special route of

ribosome binding. However, several points here are usually

overlooked. The most malicious mistake is seeing trans-

lation regulation as a simple combination of on/off

switches.

First, knocking down eIF4E does not drastically reduce

translation. One of the possible reasons for this is a con-

comitant reduction of 4E-BP level [80]. In addition, 4E-

BPs never turn translation off completely [81, 82],

although different mRNAs do react unequally to the acti-

vation of 4E-BPs in cells or the supplementation of in vitro

translation reactions with purified 4E-BPs [41, 83, 84]. In

fact, recent genome-wide studies show that the translation

of the vast majority of cytoplasmic mRNAs is not so

sensitive to mTOR inhibition and subsequent 4E-BPs

activation as might be expected [83, 84]. It seems that

eIF4E is present in excess and is only critical for a limited

subset of mRNAs [41]. This does not mean, however, that

the remaining mRNAs use IRESs to operate under these

conditions.

This relaxed dependence on eIF4E is usually missed,

and the resistance of translation to the action of eIF4F

inhibitors is considered an omen of internal initiation. For

example, translation of monocistronic mRNA with the

50UTR from Drosophila insulin-like receptor is not inhib-

ited in vitro by the addition of m7GTP or 4E-BP, nor it is

stimulated by mRNA capping [85]; amyloid precursor

protein (APP) synthesis is resistant to mTOR inhibition or

eIF4E siRNA-mediated knockdown [86]; and c-jun

expression is sustained in glioblastoma after LY294002

(PI3K inhibitor) treatment [87]. However, the authors of

these papers have not considered alternatives to internal

initiation. Similarly, a low degree of translation stimulation

of Aurora A kinase mRNA by m7G cap (low cap-depen-

dence in our terms) in transfected cells [88] was read into

an IRES-dependent translation. Not that rare, the transla-

tion of an A-capped monocistronic mRNA is somewhat

crudely referred to as IRES-dependent [89]. Notably, cer-

tain mRNA species are translated extremely well in the

uncapped state and nevertheless have a high cap-depen-

dence [90]. Therefore, the efficient translation of A-capped

mRNAs should not misguide researchers (or reviewers).

Next, the estimation of eIF4G-dependence of translation

is often unconvincing. For example, the effect of poliovirus

2A protease-induced eIF4G cleavage seems to be specific

for the cell line and/or method of 2Apro gene delivery. The

transfection-based approach is usually rather slow in terms

of eIF4G cleavage [91, 92] and only has a modest short-

term effect on cellular translation [92]. At its best, transient

transfection-based delivery of CBV 2Apro cDNA to HeLa

cells leads to rapid death, but surprisingly in this case,

eIF4G cleavage is far from complete [93], indicating that

events other than eIF4G cleavage may contribute to

translation inhibition and cell death after 2Apro expression.

On the other hand, inducible 2Apro expression leads to fast

eIF4G cleavage and cell death [91]. Moreover, siRNA-

driven eIF4GI knockdown in mammalian cells for yet
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unknown reasons has little impact on bulk protein synthesis

[94, 95].

During apoptosis, 4E-BPs are activated and eIF4G is

cleaved, but at the point of the complete eIF4G1 cleavage,

cytoplasmic translation is only inhibited by *2/3 [96].

Contrary to viral proteases, caspase-3 does not detach the

eIF4E-binding site from the eIF4G core and the implica-

tions for cap-dependent translation are only remotely

known. In fact, the translation of reporters in apoptotic

293T cells still exhibits reasonable cap-dependence despite

the cleavage of eIF4G and dephosphorylation of 4E-BPs

[97].

Cell cycle progression is also linked to translation reg-

ulation via IRESs. Frequently, the translational status of

mitotic cells is considered ‘‘negative’’. A recent study,

however, suggests that the observed 60–75% translation

inhibition (which can hardly be called drastic) during

mitosis [98–101] is not a natural result of cell cycle pro-

gression, but rather a consequence of treatment with

nocodazole or colcemid used for cell culture synchroniza-

tion, both of which disassemble microtubules and cause

stress [102]. Other data are less coherent. Some researchers

found no inhibition of translation in HeLa cells during G2/

M-transition after thymidine block [102], while others

reported *2-fold inhibition [103], and there is no agree-

ment on the phosphorylation status of 4E-BPs during

M-phase [102–104]. Besides, the inhibition of translation

during mitosis was also observed at the level of elongation

[105, 106]. However, translation most probably remains

cap-dependent even after nocodazole treatment [25], and

there is no published evidence for a global switch from

cap-dependent translation to cap-independent translation.

In general, when characterizing particular conditions, it

is important to explicitly demonstrate the cellular transla-

tional status with respect to cap-dependence and the

efficiency of translation of certain reference mRNAs.

Binding of initiation factors or the 40S ribosome

to an mRNA

There is a commonly used abduction that the direct binding

of translation initiation machinery component(s) to a cer-

tain mRNA is a clear indication of internal initiation.

Indeed, each and every validated IRES functions by the

binding of eIF3, eIF4G or the 40S ribosomal subunit itself

[10, 107, 108].

40S or eIF3 can bind RNA in a sequence-specific

manner [109–111]. RNAs lacking developed secondary

structure also can bind 40S, at least in vitro [112]. 40S and

eIF3 are capable of forming stable ternary complexes with

U-rich RNAs [111]. The formation of such ternary com-

plexes was reported in vitro on the HCV mRNA 30UTR,

which has a U-rich tract [113], HIV-2 gag-pol ORF [57],

the 50UTR of RhPV mRNA [50], the 50UTR of HalV

mRNA [53], the 50 IRES of CDV [114], and Sindbis virus

subgenomic 26S RNA [115]. Ribosomal subunits them-

selves were reported to bind HoxA9 [116], HIV-2 [57],

c-src [117] or KSHV vFLIP [84] mRNAs. One should

remember that 40S binding per se does not mean that the

mRNA is successfully loaded into the mRNA-binding

channel. Likewise, whether such 40S*mRNA or

40S*eIF3*mRNA complexes are true 48S complex for-

mation reaction intermediates has never been shown.

The major question is whether the binding of eIF3 or

eIF4G or 40S to an mRNA is sufficient to promote internal

initiation. Current knowledge indicates that the answer is

definitely ‘‘no’’. The first line of evidence emerges from the

mutagenesis of viral IRESs. Point mutations in EMCV

IRES that do not affect eIF4G binding are able to strongly

inhibit the IRES activity [45, 46]. HCV IRES can be

mutated in a way that precludes the binding of either eIF3

or 40S with a fatal effect on translation initiation despite

the fact that the binding of another component is not

affected [118, 119]. We showed recently that, reciprocally,

inserting the eIF4G-binding JK domain from EMCV IRES

into the 50UTR of an mRNA reporter does not change its

initiation mode from 50 end-dependent to 50 end-indepen-

dent, although it dramatically alters dependence on m7G

cap [27]. Strictly speaking, tethering eIF4G1 or eIF4G2 to

an intercistronic position does positively affect second

cistron expression [27, 120, 121], although it remains

pretty low. The lack of secondary structure in mRNA may

also alter requirements for certain initiation factors

[122–125], but it cannot switch the translation initiation

mode. The recent discovery that eIF3 can bind methylated

adenosines in mRNA to promote 50 end-dependent (but not

internal) translation [39] is another argument for the notion

that although the binding of the translation machinery to

mRNA is necessary for IRES functioning, this is simply

not enough to promote efficient internal initiation.

The other concern over ribosome binding to an mRNA

is its physiological relevance. The intracellular concentra-

tion of free magnesium ions is estimated to be 0.5–0.9 mM,

depending on cell type [126, 127]. A higher Mg2? con-

centration inhibits the translation of both cap- and IRES-

dependent mRNAs [128] but does not necessarily preclude

ribosomal binding to IRESs [129, 130]. Nevertheless, 40S

ribosome binding to mRNA is performed at 5 mM [117] or

even 10 mM Mg2? [116]. The binding at high magnesium

concentrations may not reflect the physiological pattern

and may lead to artefacts, including non-specific

interactions.

Several reports have used the toe-printing assay to map

the binding of ribosomes and/or initiation factors to

mRNAs of viral and cellular origin [53, 131–134]. How-

ever, samples of initiation factors or ribosomes are not
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guaranteed to be free of RNase activity. It may not be a

priori excluded that certain bands that appear on a gel arise

from mRNA cleavage rather than represent authentic

SHAPE signals or toe-print/foot-print bands. In our expe-

rience, the control reverse transcription of a deproteinized

RNA sample after incubation is obligatory to exclude

unanticipated degradation events, which represent in fact a

minor fraction of the bands [135], but it is implemented

only slightly more often than never. Once, this control

denied our ‘‘discovery’’ of the eIF4G-binding site within

the RhPV IRES (I.M. Terenin, unpublished).

The search for complementarity between 18S rRNA and

mRNA, a magnetic reminiscence of the bacterial mode of

ribosome recruitment, is also worth mentioning. While

such interaction does seem possible [136, 137], there is a

huge difference between bacterial translation initiation and

cases of mRNA–rRNA interaction from eukaryotes. An

initiator codon of mRNA bound to the 30S via Shine–

Dalgarno sequence is placed close to the P-site, and upon

initiator factors binding ribosome accommodates the

mRNA into its mRNA-binding cleft, exactly following the

prescription for internal initiation. No other example of

mRNA–rRNA complementarity has been unambiguously

shown to guide mRNA to occupy the ribosome in a

translation-competent manner. Therefore, in most cases,

ribosome binding to an mRNA should probably activate

the CITE mode of translation (ribosome-binding CITEs

from plant viruses have been documented [138, 139]), but

should not lead to internal initiation. In line with this idea,

the proposed mRNA–rRNA interactions were found to

enhance the translation of corresponding monocistronic

mRNAs [140–142]. Unfortunately, no adequate mRNA

identity tests have been performed for the bicistronic

reporters [143, 144] to draw a conclusion about internal

initiation.

Mapping authentic 50 termini

The first troublesome step in studying the translational

properties of a particular 50UTR is the determination of its

50 boundary, i.e., transcription start site. A shorter-than-

authentic 50UTR may represent a truncated (thus non-

functional) IRES or CITE, while a longer sequence will

include the promoter parts, absent from the authentic

transcripts. The latter can spoil both DNA transfection (as

it may lead to undesired incorrect transcription) and RNA

transfection (as these sequences may contain AUG

codons). Arguably, a huge fraction of mammalian mRNAs

is still poorly annotated with respect to their authentic 50

termini. Here, an analysis of expressed sequence tags

(EST) and next-generation mRNA sequencing combined

with CAGE data may be useful. Several interactive data-

bases have been developed that incorporate EST, CAGE,

RNA-seq, DHS-seq, and ChIP-Seq data to delineate tran-

scription start sites, e.g., ZENBU [145] or EPD [146].

There are numerous cases when such analysis could

have helped. For example, translation inhibitory elements

(TIE) as well as IRESs have been recently reported for

mouse Hox mRNAs [116]. A search in the ZENBU or EPD

databases suggests that most (if not virtually all) of the

naturally occurring mouse Hox mRNAs’ 50UTRs are much

shorter than annotated in the RefSeq database or deter-

mined by 50RACE [116]. Another example is the XIAP

50UTR: contemporary data do not support the existence of

the longer XIAP 50UTR that was originally described in the

paper in which the XIAP IRES was identified [147].

However, one may not exclude that in certain tissues these

isoforms are indeed expressed.

A very reasonable idea is to analyse the 50UTRs of

mRNAs from polysomal fractions [148–150] rather than

address the total RNA, as the latter can be the source of

unspliced or other aberrant non-translated transcripts. The

same approach can be used to test the 50UTR integrity of

ribosome-bound mRNAs in in vitro assays [50].

Bicistronic assay in cultured cells

The only discriminative property of internal initiation is its

independence from the 50 end of an mRNA, as follows

from the definition. Therefore, to address internal initiation,

one needs to block 50 end-dependent translation. Generally,

there are three ways to do this. The most striking way is to

circularize an mRNA so that it simply lacks any termini.

The second way is to use a bicistronic mRNA, in which the

second cistron translation is driven by a sequence under

study and, in the absence of a translational coupling

between the two cistrons (e.g., by means of reinitiation),

should be translated strictly in a 50 end-independent man-

ner. The third approach is to block the 50 end by a

stable stem-loop structure that precludes ribosome

recruitment. None of the three is free of shortcomings, the

most deleterious of which will be addressed in this section.

Bicistronic assay

The bicistronic assay’s advantage is that it is less techni-

cally challenging than RNA circularization and that

bicistronic mRNA already contains an internal control, i.e.,

the first cistron, translation of which should not be affected

by alternating downstream sequences. However, the

bicistronic assay requires plenty of controls. It is not

always appreciated that any bicistronic mRNA is capable

of the expression of a second cistron (at least at a level

close to the background). The question is, therefore, how to

assess it unambiguously. Obviously, readout values must

be compared to those derived from control mRNAs, and
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here we face a problem of which mRNAs should be used as

the controls? Any intermediate value of the second cistron

expression provokes questions of whether it is closer to a

positive or a negative control and how much over the

negative control is meaningful? (Fig. 1). In fact, such

hesitation may also arise from a circular mRNA analysis.

Certain sequences do promote the internal initiation at a

level that exceeds a negative control over an order of

magnitude and may be named IRESs, following the defi-

nition. However, if an mRNA under study is naturally

monocistronic (which is the case for the vast majority of

reported IRESs), we must consider the contribution of the

50 end-dependent translation.

There are two principle ways of bicistronic mRNA

delivery into a cell, i.e., plasmid transfection when an

mRNA is synthesized within the nucleus and the trans-

fection of in vitro transcribed mRNA [151]. The two

approaches require different sets of controls and are thus

discussed separately. In general, all controls aim to address

two major issues, i.e., the authenticity and stability of

bicistronic mRNAs and the independence of the second

cistron translation from that of the first one. Although these

issues were realized long ago [10, 144], the jury is still out

on what is a credible experimental set-up.

DNA transfection: promoterless and RNAi controls

It is well-documented that the transfection of bicistronic

plasmids results in aberrant transcripts due to cryptic

promoter activity and/or unanticipated splicing events

(Fig. 2; reviewed in [4, 144]). Among tests for mRNA

integrity are RNase protection assay, RT-PCR, and

Northern blot. The two former approaches suffer from the

shortcoming that possible undesirable mRNA species may

be easily missed if their boundaries are not correctly

anticipated. A recent rigorous analysis of cryptic tran-

scripts generated from pGL3 or pGL4 vectors, which are

the most common backbones for bicistronic reporters,

suggests that these plasmids are intrinsically prone to the

production of aberrant transcripts [152], not to mention

transcription from within Firefly luciferase itself [153].

Northern blots (without overexposition) and RNase pro-

tection assays may not provide enough sensitivity. Even

trace amounts of undesired capped monocistronic mRNAs

may account for the total yield of the second cistron

expression. For example, if a cistron in a capped mono-

cistronic mRNA is translated *50 times more than in the

corresponding bicistronic one (which is a deliberate

underestimation), then the presence of *2% aberrant

transcripts is sufficient to double second cistron expres-

sion. Sometimes the integrity of a bicistronic reporter is

addressed via a real-time PCR comparison of both cis-

trons levels [154]. However, this approach is only

suitable for demonstrating a substantial difference in the

cistrons’ levels.

An important and absolutely essential control is the

expression of a bicistronic reporter from a promoterless

plasmid (i.e., plasmid without a promoter that would guide

the transcription of the bicistronic template). This can

reveal cryptic promoter activity, including transcription

from a plasmid backbone. However, cases of aberrant

splicing are obviously missed with this approach.

Very elegant assay for bicistronic RNA authenticity was

suggested by Richard Lloyd and colleagues. It is based on

the siRNA-targeting of the first cistron of a bicistronic

mRNA [155]. Obviously, the expression of both reporter
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Fig. 1 a When different bicistronic mRNAs are compared to each

other, a choice of whether or not to call the sequence an IRES

strongly relies on what the latter is compared to. Inevitably, the choice

becomes very subjective, especially when different negative controls

are used. Note that the y-axis is split to show the relative efficiencies

of EMCV and HCV IRESs. b A comparison of m7G- and A-capped

mRNAs discriminates cap-dependent from cap-independent transla-

tion, while a comparison of monocistronic and bicistronic mRNAs

reveals the contribution of internal (50 end-independent) initiation to

the overall level of translation. Such segregation should be made for a

particular condition under which IRES is thought to be active
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genes should be inhibited to a similar extent unless they are

expressed from different mRNA species.

The problem with RNAi control implementation is that a

rare bicistronic vector unambiguously passes this stringent

test [40, 70, 155–158], which is particularly true for natural

mammalian 50UTRs, especially long and GC-rich ones.

This can be expected because mammalian promoter-en-

hancer motifs are usually not limited to regions upstream of

transcription start sites and often expand into the 50UTRs.

Among well-characterized IRESs, only HRV IRES

lacks a promoter/splicing activity [25, 70], while the IRESs

from CrPV, HCV and EMCV demonstrate appreciable

levels of undesired monocistronic transcripts in accordance

with the discovery of cryptic promoters in these sequences

[159–161]. This is not surprising since these viruses never

exist as an DNA, and hence, sequences that may act as

weak promoters or weak splice sites are not under negative

selection. The EMCV case deserves a separate passage.

Due to its credibility and efficiency, the EMCV IRES’s

essence is often taken for granted, and the necessity for the

controls is ignored. In a recent epitome of the plasmid-

based approach, certain deletion variants of the EMCV

IRES were found to be as active as the wild-type IRES

[154]. It is likely that in any RNA-based experiment, these

mutants would most probably be as dead as a doornail. This

representative example provides probably the most con-

vincing arguments against using plasmid transfection for

IRES detection. Overall, the DNA-based bicistronic assay

should be used with great care and only to complement

mRNA transfection. Another problem with DNA trans-

fection is that different promoters may distinctly guide

splicing patterns [162], making it difficult to compare

results obtained using different vectors.

The idea that mRNA should experience some nuclear

events to become active as an IRES has emerged to explain

why certain putative cellular IRESs were completely

inactive when corresponding bicistronic mRNAs were

transfected into cells. Presumably, there should be an array

of RNA-binding proteins that bind to mRNAs in the

nucleus and then orchestrate their behaviour in the cyto-

plasm. The existence of nuclear events for IRES activation

has never been shown; thus, it always seems to be similar

to Russell’s teapot (reviewed in [4]). However, this

possibility may never been ruled out. In fact, recent find-

ings that promoter sequence may affect the subcellular

localization of heat-shock proteins mRNAs and their

selective translation under stress conditions in yeast [163],

as well as mRNA degradation kinetics [164], resurrect this

concept. It is known that human Hsp70 and Hsp90 mRNAs

avoid localization to stress granules upon stress [165, 166].

The N6-methylation of adenosines within mRNAs of

stress-inducible heat-shock proteins may promote the

binding of eIF3 [39], which in turn drives cap-independent

(but not internal!) translation [38, 39]. Thus, it may appear

that in mammals, mRNAs for heat-shock proteins (and

probably for some other proteins as well) are similarly

‘‘imprinted’’ by the corresponding promoters and methy-

lation. In such cases, the transfection of in vitro transcribed

unmethylated mRNAs would indeed be irrelevant, as

would be the transfection of plasmids lacking authentic

promoters. Anyway, the 50 end-dependent translation of

Hsp70 mRNA [38–40, 90] contrasts the idea of cellular

IRESs.

Internal initiation has been reported not only for mam-

malian mRNAs but also for certain mRNAs from other

organisms, e.g., in Drosophila or yeasts. The most com-

monly used method for IRES research in yeast is DNA

transfection, and many of the abovementioned considera-

tions about it are applicable. Unluckily, S. cerevisiae had

lost its RNA-interference pathway [167], making it

impossible to perform RNAi tests on this particular species.

The inability to transfect intact yeast cells with RNA pre-

vents addressing the cap-dependence of yeast mRNAs

in vivo, but in electroporated spheroplasts, cap-dependence

values exceed one hundred [168, 169]. How yeast trans-

lational machinery responds to spheroplasts preparation

and electroporation has not been studied. Thus, it is unclear

if cytoplasmic extracts correctly reproduce cap-dependence

in this case. Strains with temperature-sensitive eIF4E

mutants may be useful for determining the real contribution

of the 50 cap to translation in yeasts.

HCV IRES has been used as a positive control for

internal initiation in Drosophila (e.g., in [170]) or in Danio

rerio [171], but is it relevant? The inability of HCV IRES

to bind plant 40S ribosomes has been documented [118],

and to the best of our knowledge, it has not been reported
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whether 40S ribosomes or eIF3 from insects, yeasts or

fishes are able to bind HCV IRES. In fact, in S. cerevisiae,

HCV IRES worked *2 times worse than a negative con-

trol and only *2 times better than itself in the antisense

orientation [172, 173]. Similarly, HCV IRES drove internal

translation worse than a negative control mRNA in extracts

from Drosophila embryo cells [170]. Poliovirus IRES does

not function in yeast [174]; EMCV IRES is inactive in S.

cerevisiae [175] and in plants [176], most probably because

they do not bind the corresponding eIF4G orthologues

[177]. The suitable ‘‘universal’’ mRNA is one of the CrPV-

like IRESs, which have been documented to function

properly (albeit not very efficiently) in S. cerevisiae [178].

Most probably, RhPV 50IRES and HalV 50IRES, which

both were shown to function in mammals, insects and

plants [52, 53], can also operate in yeasts, but this has not

been shown yet.

In vitro transcribed RNA-based bicistronic assay

It is possible to avoid almost all of the abovementioned

shortcomings by transfecting cells with in vitro transcribed

mRNAs. Similar to plasmid transfection, the positive

control here is usually a bicistronic mRNA that has a well-

characterized viral IRES in the intercistronic position.

However, certain IRESs are ‘‘more equal’’ with regard to

using them as positive controls. When bicistronic mRNAs

are transfected into HEK293T cells, HCV IRES works

*10 times worse than EMCV IRES [40]. By coincidence

the weaker HCV IRES is usually used as a positive control.

This means that if, e.g., HTLV-1 IRES (which was found

to function only 2 times weaker than HCV IRES [157])

were compared to EMCV IRES, it would work 20 times

less efficiently than the positive control, which in this case

would not be convincing (Fig. 3a). It is important, there-

fore, to vindicate such low levels of expression.

Data from the bicistronic assay, when presented as

FLuc/RLuc ratios, may be inherently misleading for sev-

eral reasons. EMCV and FMDV IRESs enhance the

translation of the upstream cistron in a bicistronic mRNA

2–4-fold, functioning as a 30CITE for it [27, 179]. This

obviously leads to a decreased FLuc/RLuc ratio, which

does not reflect the full potential of these IRESs. Hence,

they actually function 2–4 times better than the observed

FLuc/RLuc ratios tell, and the apparent activity of IRES

under study is inflated when compared to EMCV IRES,

unless the former also acts as a 30CITE.

Activation of an IRES-mediated translation under cer-

tain conditions is commonly inferred from increase of

FLuc/RLuc ratio, but it increases in G2/M-arrested cells

compared to asynchronous cells, during apoptosis, after

2Apro treatment [180] for almost any bicistronic mRNA,

irrespectively of whether it bears an IRES or not. The cell

culture density strongly affects the FLuc/RLuc ratio in the

case of HCV IRES bicistronic plasmids [181]. Our data

suggest this is frequently true for the RNA-based bicis-

tronic assay. However, does this reflect IRES activation?

This consideration is especially relevant to ‘‘weak IRESs’’,

which provide a rather inefficient translation of the

downstream cistron, and our experience is that low reporter

activity tends to be much more resistant to almost any

treatment.

The choice of negative control may also affect inter-

pretations. The FLuc/RLuc ratio of ‘‘empty’’ bicistronic

mRNA may easily vary within an order of magnitude,

depending on the particular sequence of the intergenic

spacer [182] and its length [183]. Functional IRES

expression, therefore, can be buried in high background

values, while a too low background translation may result

in a false-positive identification of an IRES (Fig. 3a).

An analysis of dozens of published papers shows that

this problem is not fictional. To overcome it, we and others

have suggested that the only relevant and reliable control is

the nucleotide sequence under study [40, 158, 161, 184]. In

fact, this sort of control was proposed by Marilyn Kozak

back in 1989 when she discussed poliovirus IRES [185].

The rationale for the monocistronic control is that putative

cellular IRESs are located in the 50UTRs of naturally m7G-

capped monocistronic mRNAs and are doomed to recruit

the ribosome to their 50 ends. The crux is, therefore, how to

discriminate contributions of IRES-dependent, cap-depen-

dent and cap-independent (but 50 end-dependent)

mechanisms. We believe that only the comparison of the

monocistronic mRNA, which is presumably translated via

a both 50 end-dependent and IRES-dependent mechanisms,

with the respective bicistronic or circular mRNA, which

are only able to use the latter mode of translation initiation,

can reveal the true contribution of the putative IRES to the

overall translation level (Fig. 3b; see also the ‘‘Workflow’’

section). Here lies one of the reasons why plasmid trans-

fection may be inapplicable to monocistronic mRNA

translation studies: ambiguity of viral promoter transcrip-

tion start sites. For instance, the early SV40 promoter has

four major TSSs, all residing within the promoter

sequence. How these sequences affect the translation of a

particular mRNA species is simply unknown and needs to

be investigated.

Circular RNA can be used instead of a bicistronic

reporter. It has been shown that the artificially circularized

mRNA of tobacco mosaic virus or UGA25–110 polymers do

not bind ribosomes [186, 187]. Consequently, Chang-you

Chen and Peter Sarnow used this approach to show that

EMCV IRES indeed efficiently functioned in RRL as a part

of a circular mRNA molecule [188, 189]. While many

reviews pinpoint the circular mRNA test as the most

stringent assay, they quite rarely mention that not a single
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IRES apart from the EMCV case has ever been reported to

be addressed by these means. In practice, however, this test

should only suffice for observing qualitative effects. Low

(but above the background) expression levels will pose the

problem of physiological relevance, as they do for the

conventional bicistronic assay. Moreover, in some cases,

circular mRNAs can produce enough protein to be detected

by Western blotting in the absence of any IRES activity

[190]. Thus, this test is not a palatable substitute for the

composite strategy described below.

Weak downstream cistron expression may originate

from either reinitiation, which is rarely efficient, or weak

internal initiation. It is important, therefore, to discriminate

between these two possibilities. In the case of reinitiation,

the expression of the second cistron should correlate with

that of the first one. The translation of the upstream cistron

may be artificially blunted by substituting A cap for m7G

cap, the introduction of a stable hairpin at the 50 end, or the

inclusion of uAUGs. It may also be useful to increase first

cistron translation by exchanging 50UTR and/or initiator

codon context improvement to see if the second cistron

responds. True IRES-driven translation should be insensi-

tive to these manipulations.

All of these considerations are equally applicable to

natural bicistronic mRNAs. Kaposi’s sarcoma-associated

Herpes Virus (KSHV) and related cytomegaloviruses

encode several polycistronic mRNAs [191, 192], the most

studied of which are those encoding v-Cyclin and v-FLIP

(ORF72 and ORF71, respectively) [193] or UL136 and

UL138 in the case of HHV5 [192]. These two ORFs are

separated by *80 nucleotides, a distance that matches the

reported optimum for reinitiation in mammalian cells

[194]. Although numerous reports have attempted to

demonstrate internal initiation [89, 195, 196], none of them

have eliminated the possibility of reinitiation, as the

translation of bicistronic mRNAs in RRL does not count

(see below). Moreover, in all in vitro experiments, the

translation levels of the two cistrons in v-FLIP bicistronic

mRNA correlated with one another [89], which agrees with

reinitiation rather than with internal initiation.

While experiments aiming to demonstrate an IRES

driving v-FLIP expression suffer from many of the

described shortcomings, there is a conceptual issue that is

worth discussing. In the case of naturally bicistronic

mRNA, we lack any relevant monocistronic control and

thus must rely on the (absence of) correlation between the

expression of two cistrons. To avoid the use of tricistronic

mRNAs, it is possible to affect first cistron expression in a

manner discussed above. Surprisingly, we could not find

reports of a direct measurement of the v-Cyclin to v-FLIP

ratio in infected cells. The recent ribosomal profiling of

KSHV-infected iSLK-219 cells [191] or HHV5-infected
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human fibroblasts [197] shows that the downstream genes

are expressed at an evidently lower level, which is com-

patible with the possibility of reinitiation as well.

In contrast, PITSLRE case, regarded sometimes as the

strongest candidate for a true cellular IRES [144], has an

extensive physiological background [198]. A shorter form,

p58PITSLRE, accumulates during the G2/M phase, and its

translation relies on the AUG codon residing within the

p110PITSLRE ORF. None of the seven in-frame AUGs lying

between AUG1 (p110) and AUG18 (p58) is apparently seen

by the initiating ribosome, which might support the idea of

internal initiation. Probably, a single experiment with

transfection of A- and m7G-capped monocistronic reporters

with or without AUG1 in G2/M-synchronized cells would

be sufficient to discriminate between the 50 end-dependent

mechanism (which may include ribosome shunting [199] or

ribosome tethering [200]) and true internal initiation.

What to expect from an uncapped monocistronic mRNA?

It is not uncommon to study IRES-dependent translation

by means of non-capped (or A-capped) monocistronic

mRNAs. For example, A-capped APP mRNA is translated

*3 times better than A-capped b-globin mRNA, while

the opposite is observed for m7G-capped mRNAs [86];

this observation was used as a proof of internal initiation.

Such interpretation is based on the premise that in the

absence of m7G cap, an mRNA can only be translated if

it possesses an IRES. As we have already mentioned, this

is not correct. Uncapped mRNAs can be translated with a

reasonable efficiency in a 50 end- and scanning-dependent

manner. Moreover, certain A-capped 50UTRs drive scan-

ning-dependent translation more efficiently than, e.g.,

HCV IRES [40].

Under conditions of impaired cap-dependent translation

(if eIF2 remains active), the translation efficiency of many

uncapped mRNA increases. This may result from a trivial

relief of competition with more translationally active cap-

ped mRNAs. It is not, therefore, surprising that eIF4G

deletion variants that lack the eIF4E-binding site are able

to stimulate the translation of uncapped mRNAs both

in vitro [26, 28, 201] and in vivo [202], while the trans-

lation of m7G-capped mRNAs is hardly affected. Similarly,

the release of eIF4G from eIF4F complexes after mTOR

inhibition by torin also stimulates uncapped mRNAs

translation [25]. This apparently mirrors the non-specific

activation of uncapped mRNAs translation in vitro upon

the addition of 4E-BPs or m7GTP rather than the activation

of a putative IRES [27, 203]. In summary, the inhibition of

cap-dependent translation seems to equivocally increase

the translation of uncapped (A-capped) monocistronic

mRNAs irrespectively of the mechanism that they use.

The next step in eliminating the 50 end-dependent

translation in the context of monocistronic mRNA is the

inclusion of a stable stem-loop to the 50 terminus of an

A-capped mRNA [26, 141, 169, 201, 204]. The residual

translation observed in these cases is rather weak and is

thought to be solely IRES-dependent. Unfortunately, the

bicistronic test is frequently omitted and this probably valid

assumption remains unjustified. However, if an A-capped

mRNA with a stem-loop provides translation at a level

comparable to that of the bicistronic mRNA, it indeed

operates in the 50 end-independent mode. This situation

highlights the importance of a physiological reference for

any reporter mRNA. Researchers should determine whe-

ther they deal with a promising IRES or just play with the

background activity. It is important to have an idea about

the relevance of the internal initiation contribution. If it is

much lower than that of the 50 end-dependent translation of

the respective 50UTR in the monocistronic context under

the same conditions and in the same cells, then, in our

opinion, it makes little sense to perform further

experiments.

Antisense 50UTR: an unreliable control

Frequently, the reverse complement of a 50UTR under

study is used as a control for both mono- and bicistronic

reporters. For example, the A-capped 50UTR of FLO8

mRNA from S. cerevisiae bearing a 50-terminal stem-loop

supports the translation of monocistronic mRNA *20

times better than its antisense variant [169]. Notably, the

latter contains five uAUGs compared to none in the sense

orientation, which expectedly inhibits translation. The

reversed c-myc 50UTR is unable to drive the significant

expression of the reporter in the case of the non-capped

monocistronic variant compared to itself in the sense ori-

entation [202]. This observation can be explained similarly:

the antisense variant contains three uAUGs that inhibit

translation. The p27/Kip1 50UTR acquires two additional

AUG codons after flipping [156]. Therefore, these anti-

sense 50UTRs have deliberately diminished potential for

translation. Reversed sequence may only be used if neither

sense nor antisense sequences contain uAUGs or near-

cognate start codons. In all other cases, different uORFs

will unequally affect reporter expression, making the

results incomparable.

This sort of control encroaches on other fields of

mRNA research. For instance, the binding of eIF3 to

BTG1 mRNA was postulated to inhibit translation on the

basis of the comparison to the reversed sequence [38].

The authors ignored a simpler explanation that the

authentic sequence contained one uAUG, while the

reversal lacked any.
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Dangers of in vitro translation

Despite the fact that rabbit reticulocyte lysate is an extre-

mely bad choice to study translation in vitro for several

well-documented reasons, the practice of using RRL for

internal initiation research is still inexorcizable.

The pattern of gene expression in reticulocytes is narrow,

and translated endogenous mRNAs do not possess long and/

or highly structured 50UTRs; therefore, it is not surprising

that the translation of exogenous mRNAs with long 50UTRs

in RRL is compromised [40, 71]. Importantly, when RRL is

supplemented with m7G cap analogues or 4E-BP, weakly

translated mRNAs do not respond properly, and their trans-

lation is sustained [88]. Accordingly, their translation is not

adequately stimulated by 50 cap or poly(A)-tail (see [71, 205]

and references therein), and in these cases, the degree of

inhibition by cap analogue is reciprocal with translation

efficiency. This may not always be evident for readers

because the concentration curves of inhibition by cap ana-

logue are often provided with all of the mRNAs normalized

to 100%, and no absolute values are given [86, 117]. The

apparent resistance is routinely interpreted as a reflection of

IRES-driven translation. In other words, many sequences

seem to work as weak IRESs in RRL (also in our hands), but

this is due to some (yet mechanistically unclear) bug of this

particular cell-free system. Generally, these effects cannot

be reproduced in other cell-free systems and, most impor-

tantly, in cultured cells [40, 71]. RRL produces especially

miraculous results if treated with picornavirus proteases. It

permits anomalously efficient translation under conditions

of eIF4G cleavage, particularly at higher mRNA concen-

trations [206]. ‘‘HIV-1 IRES’’ is a showcase: eIF4G cleavage

does not inhibit HIV-1 50UTR-driven translation in RRL

[207–209] but does so in HeLa S10 or Krebs-2 extracts

[25, 210, 211]. Moreover, commercially available RRL is

rapidly (15–20 min) inactivated by means of eIF2 phos-

phorylation [212, 213]. Therefore, translation in RRL occurs

under conditions of limiting eIF2, making the interpretation

of the results even more complicated.

All of these flaws of RRL are strongly dissuasive; thus,

we believe that in vitro assays should be performed in

cytoplasmic extracts prepared from cultured cells only, as

they much more closely reproduce what is observed in

cells. Unfortunately, such extracts are still unavailable

commercially. However, they can be easily prepared from

regular mammalian cell cultures (see below).

A workflow

We suggest a simple experimental design to validate the

IRES activity in a nucleotide sequence of interest. The

creation of only one plasmid is sufficient for all

downstream applications (Fig. 3a). Basically, one should

clone the sequence of interest into the intercistronic posi-

tion of a suitable bicistronic plasmid (for example, pGL3R

[214]). Optionally, the 30UTR of the gene of interest may

be cloned downstream of the second cistron to more rele-

vantly emulate the mRNA under study. Additionally, it is

up to the researcher to decide whether to clone an AUG-

proximal part of the CDS in frame with FLuc because the

downstream context of AUG may strongly influence

internal initiation, as shown for HCV-like IRESs

[215, 216]. In this case, the deletion of the in-frame FLuc

initiator codon is a very reasonable idea.

Next, PCR is carried out to prepare templates for T7

transcription. The universal reverse primer P3 containing a

poly(T) tail allows the production of polyadenylated

mRNA. According to our experience, a poly(A)-tail as long

as 90 nt can be easily introduced in this way. Usually, the

primer annealing site is located approximately 200 nt

downstream of the stop codon to create a relevant 30UTR

(mRNAs lacking any 30UTR are unstable and deficient in

adequate translation termination). Primer P2, which con-

tains the T7 promoter, is used for monocistronic mRNA

production. It can be either a universal primer annealing to

the intercistronic sequence from the vector backbone or a

gene-specific primer designed to create the natural 50 end

of mRNA. Primer P1 is used to create a bicistronic tem-

plate. Additionally, a template from the control

monocistronic RLuc plasmid should be obtained. Gener-

ally, the presence of a T7 promoter in the plasmid yields a

higher mRNA specific activity. It is also necessary to use

an optimized PCR regime and/or a gel-purified PCR

product. In our hands, the transcripts obtained with either

approach give similar results. It is reasonable to provide all

T7-containing primers with an additional 5–6 nucleotides

at their 50 ends to ensure efficient T7 polymerase binding.

Additional primers that may be useful are P1-sl and P2-

sl, which introduce 50 terminal stem-loop structures to

inhibit 50 end-dependent initiation. We routinely use the

sequence GGGAGTGGACTTCGGTCCACTCCC,

where the first GGG constitute the transcription start site

for T7 RNA polymerase. This stem-loop inhibits the

translation of cap-dependent mRNAs 5–10-fold and can be

easily extended to produce a more pronounced effect on

translation, if desired. Purified PCR products are then

converted to m7G- and A-capped mRNAs during co-

translational capping with ARCA cap or ApppG non-

functional cap. mRNAs are then purified by 2 M LiCl

precipitation and analyzed for integrity. Typically, we

obtain 10–20 lg of mRNA from 10 ll reaction, which is

sufficient for 50–100 transfections. The same mRNAs may

be used in a cell-free translation system.

When only the m7G-capped transcript is needed, post-

transcriptional capping with commercially available
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vaccinia virus capping system may be used. However, one

should avoid simultaneous using of different mRNA

preparations. Ideally, all transcripts should be obtained in

parallel.

It is possible to follow the generalized workflow pre-

sented below (Fig. 4). If starting with plasmid transfection,

it is necessary to test a promoterless plasmid to address the

cryptic promoter activity and perform the RNAi test.

However, as it is almost impossible to come to an unam-

biguous conclusion on the existence of internal initiation

by means of plasmid transfection, the next step is inevi-

tably RNA-based, even if the controls are successfully

passed. Using in vitro transcribed mRNAs, a comparison of

only three experimental points may be enough for a

preliminary (and sometimes ultimate) conclusion (Figs. 1b,

3b). These are (a) bicistronic mRNA, (b) m7G-capped

monocistronic mRNA (along with m7G-RLuc normaliza-

tion control), and (c) A-capped monocistronic mRNA (with

the same RLuc mRNA). For a standard cap-dependent

mRNA, the ratio between m7G- and A-capped mRNA

translation (cap-dependence) usually reaches 40–80

depending on the particular cell line and growth conditions,

while the ratio between A-capped and bicistronic mRNA

usually exceeds an order of magnitude. Consequently, an

m7G-capped monocistronic mRNA (which represents the

natural context for eukaryotic mRNAs) is usually trans-

lated 2–3 orders of magnitude better than the same

sequence in the bicistronic context. These data reveal the

Fig. 4 A generalized workflow of how to address internal initiation. Notably, all DNA-based experiments are inevitably followed by RNA-based

experiments; thus, it is advisable to start with the latter
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contribution of either mechanism (cap-dependent, internal

or cap-independent 50 end-dependent) and in most cases

rule out the presence of any meaningful impact of internal

initiation on the overall translation under particular

experimental conditions. The same approach can be easily

applied to conditions where an IRES is thought to be

activated [25, 97, 217]. Data obtained from transfections

can be complemented with in vitro assays. These may

include tests with 4E-BPs or proteases that cleave eIF4G.

A complex issue of mRNA capping

Apart from the guanine methylation, mRNAs of higher

eukaryotes generally have one or two first nucleotides that

are also methylated at 20-hydroxyls [218, 219], i.e., cap-1

and cap-2. In addition, when the first nucleotide of mRNA

is adenine, it can be methylated at the N6 position [220].

The 20-O methylation of cap-0 significantly stimulates the

translation of non-polyadenylated mRNA in Xenopus

oocytes [221] but hardly affects the ribosome recruitment

in RRL [222]. The knockdown of the CMTR1, enzyme

responsible for 20-O cap methylation does not exhibit a

substantial repression of general translation in HeLa cells

[223]. This is not an issue for yeasts, which have only

monomethylated caps [224].

However, cap-0 containing mRNAs (used in the vast

majority of the reports) are subject to the innate immune

response driven by IFITs [225, 226]. In commonly used

293T cells, cap-0 and cap-1 work similarly (I.M. Terenin,

unpublished), which may be explained by a cytoplasmic

cap-0 to cap-1 transformation [223] or by the absence of

expressed IFITs, but this situation should not be taken for

granted for other cell lines, which may call for the

authentically methylated cap. Luckily, the cotranscrip-

tionally added cap can be additionally methylated by

commercially available 20-O-methylases. Primary cells

may even require extensive mRNA modification by

5-methylcytidines or pseudouridines to reduce the mRNA

immunogenicity and increase the expression level

[227, 228]. The bad news is that modified RNA most

probably folds unnaturally, which could be critical for

translation research. A recent study, however, claimed that

unmodified mRNAs having cap-1 on 100% of molecules

are well tolerated by primary cells [229].

A different approach that rightly has not acquired pop-

ularity is the in-cell cytoplasmic capping of T7

polymerase-synthesized mRNA by the vaccinia virus cap-

ping enzyme. This method results in a huge overload of the

cell with T7 promoter-driven transcripts, which have quite

a low degree of accomplished capping [230].

Sometimes, a cap analogue is ambiguously called un-

methylated (e.g., in [231]), leaving a reader to guess if it

was unmethylated GpppG or inactive ApppG? At least in

some in vitro systems, methylase activity may be easily

revealed if GpppG-capped mRNA is translated in the

presence of the methylase inhibitor sinefungin (I.M. Ter-

enin, unpublished). To avoid a misunderstanding, GpppG

cap analogue should be referred to as unmethylated and not

be used, while ApppG cap analogue (the A-cap) should be

called nonfunctional.

Finally, the use of unstable uncapped mRNAs should be

avoided. Moreover, 50-triphosphate moiety activates RIG-1

[232] or even PKR [233], but transfected uncapped

mRNAs are most probably degraded before these proteins

exert their actions.

Transfection and stability issue

When either bicistronic RLuc/putative IRES/FLuc or an

equimolar mixture of FLuc and control RLuc mRNAs are

transfected, usually 0.05–0.2 lg of each mRNAs per well

is sufficient in the 24-well plate format. Then, 2–4 h post

transfection, cells are lysed and luciferase activities are

addressed. For some ‘‘easy-to-transfect’’ cell lines (such as

293T, Huh7, RKO, BHK21) and m7G-capped mRNAs, the

expected values easily reach millions of light units, which

is more than enough for reliable and reproducible mea-

surements. For ‘‘hard-to-transfect’’ cell lines, an increase in

the mRNA amount, the use of brighter luciferases (e.g.,

Gaussia or NanoLuc) and the use of unorthodox transfec-

tion reagents may solve the problem [25, 229].

There are several ways to deliver an in vitro transcribed

mRNA to the cytoplasm. Electroporation is known to

rapidly induce eIF2 phosphorylation via the GCN2 and

PERK pathways [234]. Numerous polyethyleneimide-

based transfection reagents are poorly suitable for mRNA

transfection in our hands, but others have exploited it

successfully [229]. A magnet-assisted mRNA transfection

is also possible [35]. Lipofection works well and does not

induce eIF2 phosphorylation [234]. However, a failure to

release most of the RNA from vesicles into the cytoplasm

makes the subsequent RT-PCR or Northern blot analyses of

mRNA integrity pointless [235].

Faute de mieux, a kinetic approach has been proposed

that addresses the accumulation of the reporter over time

[35, 40, 70, 158]. Obviously, if an mRNA is stable in the

cytoplasm, the accumulation of the reporter (i.e., lucifer-

ase) should be linear or demonstrate acceleration. In

contrast, the translation of unstable mRNA should slow

down. The latter is the case for uncapped mRNAs, while

m7G- or A-capped species show no deceleration until

4–6 h post transfection in various cell lines

[35, 40, 70, 236]. This underscores importance of short-

time transfections, as sometimes expression of transfected

RNA reporters is measured 16 or even 24 h after trans-

fection, when the significant portion of the transfected
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RNA may be degraded (see, e.g., [237] for stability

analysis).

When the kinetic approach was used to study translation

in MEFs, the accumulation of the reporter luciferase

expressed from an mRNA with the 50UTR from the murine

Hsp70 mRNA plateaued as early as 1.5 h post transfection,

while the translation of a reporter with short unspecific

50UTR lasted for at least 3 h [90]. It is not clear whether

this reflects some translational properties of the Hsp70

mRNA or indeed its instability, but what it definitely shows

is that transfection with a single time-point readout is

meaningless when you compare two mRNAs of a different

nature.

Real-time analyses of transfection can be performed

with luciferin added to the cell culture medium [90], but

there most likely is a problem of substrate uptake and

enzyme turnover. Since it is rarely needed to obtain a

highly precise curve, it is possible to stop translation at the

desired time points by the addition of 100 lg/ml cyclo-

heximide and to measure all of the experimental points

later.

An important but rarely discussed issue is whether

mRNA transfection combined with a drug treatment cor-

rectly reflects the behaviour of endogenous mRNAs. At

least in vitro, during the course of translation, mRNA

becomes heavily loaded with ribosomes [238, 239], and the

mode of translation presumably shifts from initiation de

novo to recycling. Recycling or reinitiation mode was

shown to be less sensitive to inhibition by cap analogue

[240, 241]. This could be explained if heavier polysomes

had a slower translation elongation rate [239, 242],

although translation in yeast extracts directly points to the

insensitivity of translation initiation on circularized poly-

somes to the cap analogue action [241]. After transfection,

apart from entering into polysomes, mRNA acquires a set

of RNA-binding proteins that may also affect translation

and/or stability.

Hence, one may predict that transfection into stressed

cells and the application of stress to the cells transfected

beforehand may have different outcomes. The latter

approach, although rarely implemented, should more clo-

sely reflect the behaviour of endogenous mRNAs [217].

Moreover, drug treatment may affect transfection effi-

ciency (S.E. Dmitriev, unpublished). In all such cases, cells

should be transfected first and only then treated. In this

approach, addressing the kinetics of reporter accumulation

is essential.

In vitro assays

Because RRL is a very artefact-prone system, we

strongly recommend using easily cooked cell-free sys-

tems from cultured cells. There is a number of published

protocols ([27, 71, 243–245] and references therein) that

yield efficient translation systems. Our experience is that

the protocol described in [27, 246] is applicable to

various adherent or suspension cell cultures. In certain

cases, supplementation of a lysate with creatine phos-

phokinase is strictly required. RRL supplemented with

the commercially available HeLa cytoplasmic fraction

(20% v/v) also works well (see [247] and references

therein). These in vitro systems more adequately respond

to mRNA capping, treatment with picornaviral proteases

or inhibitors of cap-dependent translation, i.e., m7GTP,

4E-BPs or eIF4A R362Q dominant negative mutant

[27, 40, 71, 180, 206, 244, 245, 247].

Batches of lysates may easily differ from each other;

therefore, it is advisable to make larger batches and

optimize ionic conditions. Importantly, one should pay

more attention to the adequate cap-dependence of the

reference mRNAs and their reasonable response to 4E-BP

or m7GTP than to the level of translation efficiency itself.

It is always possible to inadvertently create artificial

conditions under which a highly cap-dependent mRNA is

translated efficiently but only marginally stimulated by

the 50 cap or even where the capped mRNA translation is

stimulated by the addition of a cap analogue to the lysate

simply by varying ionic conditions. Thus, it is critically

important to use an appropriate control mRNA, i.e., an

mRNA that only utilizes the canonical cap-dependent

mechanism (e.g., b-globin or b-actin), under the same

conditions.

As with translation in cultured cells, the real-time

measurement of the reporter accumulation may have its

merits. An aggregate difference between the translation

levels certain mRNAs may accumulate over time; thus,

saying that one mRNA is translated quantitatively better

than another may not always make perfect sense.

A few words for peer reviewers

No single experiment or criterion is sufficient to unam-

biguously demonstrate (or reject) internal initiation.

Individually, they say little. For example, HCV IRES

works somewhat better in monocistronic mRNA than in

bicistronic mRNA, and its translation is stimulated by

capping [40], although not dramatically. One might con-

clude that HCV IRES is not a true IRES, but we are

confident that it is, for we know how it functions. Argu-

ably, only the established mechanism of how a putative

IRES works can provide incontrovertible proof of its

existence. Several major points from above are worth

summarizing because addressing these key issues is obli-

gatory. These points represent the core of the experimental

set-up.
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1. The translation of an uncapped mRNA is not

necessarily IRES-dependent. Cap-independent trans-

lation may be represented by two distinct

mechanisms: internal initiation and 50 end-dependent

initiation (Table 1; Fig. 1b). Therefore, two indis-

pensable tests must be performed: the determination

of the cap-dependence of a monocistronic mRNA

(m7G cap vs. A cap) and the explicit comparison of

monocistronic and bicistronic reporters (Figs. 1b,

3b), while a comparison of different bicistronic

mRNAs is misleading (Fig. 1a). Moreover, one

should expect that the translation of any uncapped

monocistronic mRNA is stimulated upon the inhibi-

tion of cap-dependent translation. After these

experiments are performed, it should become clear

whether the contribution of either specific or sporadic

internal initiation is of any significance. It is impor-

tant to provide not only fold changes or ratios but

also absolute values, at least normalized to a

reference because, e.g., a tenfold excess over a very

low background of second cistron expression in

bicistronic mRNA is still a very low value that may

only represent a small fraction of the monocistronic

mRNA translation.

2. Does the cloned sequence correctly correspond to the

major form of a naturally occurring mRNA in

particular cells under particular conditions? Is the 50

terminus mapped unambiguously? If alternative

transcripts are present in a cell, what is the contri-

bution of other isoforms to the overall level of the

gene expression?

3. Although DNA transfection should generally be

avoided, it can be considered if RNA identity tests

are passed unambiguously. In particular, it is obliga-

tory to perform the RNAi test, and expression from a

promoterless plasmid must be addressed. Attempts

should be made to detect shorter transcripts rather

than to demonstrate the presence of the full-length

transcript, i.e., several pairs of primers for RT-PCR

should be used. Importantly, qRT-PCR may not be

used to show that only the full-length transcript is

present in cells. Ideally, 50RACE should be per-

formed to detect the boundaries of the reporter

mRNAs synthesized in cell. The cell line specificity,

if observed, should correspond at the DNA-transfec-

tion level to that at the RNA-transfection level.

Anyway, the sole use of plasmids for transfection is

unacceptable: DNA transfection may only comple-

ment mRNA transfection tests rather than be the key

experiment.

4. The description of the translational status of cells

undergoing apoptosis, mitosis, viral infection, etc., in

terms of 4E-BPs or eIF2 phosphorylation is insuffi-

cient. These switches are not binary; they do not

provide all-or-nothing regulation. A wide spectrum

of cases lays between fully resistant and highly

sensitive mRNAs and there is no evidence that cap-

dependent translation can by switched off com-

pletely. Therefore, translation under conditions of,

e.g., mitosis or apoptosis is hardly an evidence of

IRES-dependent initiation.

5. In all cases of bicistronic mRNAs and especially for

those mRNAs that are naturally bicistronic, the

possibility of reinitiation must be addressed.

6. Regarding mRNA transfection, single time-point

readouts may be misleading as they neglect poten-

tially distinct kinetics of mRNA entry into polysomes

and/or stability issues. The kinetics of reporter

accumulation should become de rigueur to compare

the translational efficiencies of different mRNAs

both in vitro and in cultured cells. It is extremely

important to perform a short-time transfection, typ-

ically 2–4 h, to avoid RNA degradation.

7. Among in vitro translation systems, nuclease-treated

RRL is clearly the worst choice, and its use should

generally be avoided. Cases in which only RRL is

used in in vitro tests are alarming, especially when

RRL is used to demonstrate insensitivity to 4E-BPs

or m7GTP or to evaluate dependence on the m7G cap.

Cytoplasmic extracts from cultured cells or RRL

supplemented with a commercially available HeLa

cytoplasmic extract are a much better option.

8. Reverse complements of 50UTRs may contain (addi-

tional) uAUGs compared to the sense orientation,

thus use of reverse complements as controls is not

reasonable.

9. Binding of the translational apparatus compo-

nent(s) to an mRNA under study is not an evidence

of internal initiation but may indeed indicate unusual

translational properties.

10. Once a putative IRES has successfully passed all of

the abovementioned tests, establishing its mechanism

of functioning by biochemical experiments [248].

An afterword

Many things in cancer aetiology, such as apoptosis, regu-

lation of oncogenes or tumour suppressors expression, are

currently (mis)linked to cellular IRESs [249–251]. As

pharmaceutical companies have to rely on basic science,

investigations have been undertaken to screen for potential

inhibitors of cancer-relevant cellular IRESs. For instance,

pharmaceutical companies [252, 253] have recently
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performed screenings for drugs against c-myc IRES

expressed from a bicistronic plasmid. The result was pre-

dictably uninspiring since the use of DNA transfection in

the case of putative c-myc IRES has been disapproved, and

c-myc IRES existence itself has been challenged. This

shows that the problem runs really deep.

In recent years, translation control has become attractive

for medical researchers. They enter the field to learn the

conventional wisdom that says that cellular IRESs are

firmly established. This hampers the development of new

ideas in translational control, i.e., alternative mechanisms

of translation initiation and its regulation.
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