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Abstract The mammalian olfactory bulb is a forebrain

structure just one synapse downstream from the olfactory

sensory neurons and performs the complex computations of

sensory inputs. The formation of this sensory circuit is

shaped through activity-dependent and cell-intrinsic

mechanisms. Recent studies have revealed that cell-type

specific connectivity and the organization of synapses in

dendritic compartments are determined through cell-in-

trinsic programs already preset in progenitor cells. These

progenitor programs give rise to subpopulations within a

neuron type that have distinct synaptic organizations. The

intrinsically determined formation of distinct synaptic

organizations requires factors from contacting cells that

match the cell-intrinsic programs. While certain genes

control wiring within the newly generated neurons, other

regulatory genes provide intercellular signals and are only

expressed in neurons that will form contacts with the newly

generated cells. Here, the olfactory system has provided a

useful model circuit to reveal the factors regulating

assembly of the highly structured connectivity in

mammals.
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Abbreviations

AON Anterior olfactory cortex

EPL External plexiform layer

ETC External tufted cells

GC Granule cell

GCL Granule cell layer

MC Mitral cell

MCL Mitral cell layer

MTC Middle tufted cells

OSN Olfactory sensory neurons

Introduction

Two major findings have largely promoted the research on

circuit wiring in the early olfactory system. The first one was

the discovery of the molecular specification of olfactory

sensory neurons (OSNs) with each sensory neuron only

expressing one type of olfactory receptor [123, 159, 182]. All

neurons that express one of the more than one thousand

receptors selectively target one of roughly thousand discrete

areas of the olfactory bulb called glomeruli in the bulb. We

will focus here on the synaptic wiring within the main

olfactory bulb (MOB). The second finding relevant to wiring

in the MOB is that neurons continue to add throughout the

postnatal life [13, 55, 97, 103].

Organization of the early olfactory system

The early olfactory system comprises the olfactory

epithelium and the MOB (Fig. 1a). The olfactory
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epithelium harbors the OSNs that project to the MOB.

OSNs project to neuropil structures in the MOB called

glomeruli, where they make direct or indirect contacts with

a number of interneurons and the MOB projection neurons.

MOB projection neurons comprise mitral cells (MCs) and

middle tufted cells (MTCs) that directly convey sensory

information to the olfactory cortices. Olfactory cortex

neurons are thus just two to three synapses away from the

peripheral sensory neurons. The activity of mitral and

middle tufted cells (MC/MTCs) is modulated by two major

groups of interneurons (Fig. 1b): granule cell interneurons

(GCs) and periglomerular interneurons. In the mouse, there

are approximately 40,000 MCs and MTCs compared with

50,000 periglomerular interneurons and three million GCs.

The MOB is organized in different layers, determined by

the position of neuronal cell bodies or neuropil. The two

MOB layers with the largest volume are the granule cell

layer (GCL) close to the center of the MOB, where the cell

bodies of GCs are located, and the external plexiform layer

(EPL), a neuropil layer located between the mitral cell

layer (MCL) and the glomeruli (Fig. 1b). The EPL mainly

contains the synapses between GCs and the lateral den-

drites of MCs and MTCs. A third glutamatergic cell-type

exists in the form of external tufted cells (ETCs) that are

located in the EPL just below the glomeruli. ETCs project

primarily locally within the MOB and connect mirror

glomeruli of OSNs expressing the same odor receptors

[15, 96]. Other less numerous interneuron types contribute

to circuit function in the EPL and GCL, such as short-axon

cell interneurons [129]. Finally, neurons in the MOB

receive massive excitatory top-down inputs from the

anterior olfactory cortices that are transiently active in a

brain-state-dependent manner [18, 138, 160].

This review will focus on the development of three

abundant neuronal elements that constitute the MOB

(Fig. 1b). They include MC/MTCs as the output neurons of

the MOB, GCs as the main interneuron type, and top-down

inputs from the olfactory cortex that provide central feed-

back to the MOB. For each of these circuit elements, we

will initially highlight their anatomical organization and

function and then describe their development, followed by

a discussion of the currently known cell-intrinsic and

activity-dependent wiring mechanisms. Despite major

advances in the past decades, it will become clear that there

are still large gaps in our knowledge on the assembly of

this intensively studied mammalian model circuit.

Olfactory bulb projection neurons

Cell bodies of MCs form a narrow band between the GCL

and the EPL (Fig. 1b). MCs have an apical dendrite that

targets one glomerulus and several lateral dendrites that

extend up to few millimeters long horizontally in the

deeper half of the EPL. Each glomerulus receives apical

dendrites from approximately 20 MCs [124]. MTCs are

smaller than MCs and their cell bodies are located in the

EPL. Again, each MTC has an apical dendrite that targets

preferentially a single glomerulus, and lateral dendrites,

which are shorter than those of MCs and extend into the

superficial half of the EPL.

The apical dendrites of MCs and MTCs receive input

from OSNs. The information is back-propagated along the

lateral dendrites and integrates inhibition mediated through

reciprocal synaptic contacts with GCs [194]. These recip-

rocal dendro-dendritic synapses contain glutamatergic

excitatory output synapse cells emerging from MC/MTC

dendrites and a GABAergic inhibitory synapse back from

Fig. 1 Organization of the main olfactory bulb. a Axons of olfactory

sensory neurons (OSNs) project to the glomeruli and form contacts

with mitral cells (MC) and middle tufted cells (MTC) that then send

their axons through the lateral olfactory tract (LOT) to higher brain

regions. The three main layers of the bulb are the external plexiform

layer (EPL), granule cell layer (GCL), and mitral cell layer (MCL).

b MCs and MTCs branch their lateral dendrites in the deep and

superficial EPL, respectively. The two main interneuron types are

periglomerular neurons (PGN) and granule cells (GC). The distal

domain of GCs either branches in the deep or superficial EPL. The

proximal and basal domains receive rich inputs from the olfactory

cortices (Cx)
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the GC onto the same MC/MTC dendrite [124]. Activity

invading the lateral dendrites of MCs and MTCs elicits the

lateral inhibition of other MCs and MTCs via dendro-

dendritic connections through GCs [170, 198]. Lateral

inhibition of MC/MTCs is thought to be involved in the

odor discrimination and synchronization of rhythmic MC/

MTC activity [107].

Granule cell interneurons

GCs are the most abundant cells in the MOB. GCs are

axon-less inhibitory interneurons that have a basal and an

apical dendrite (Fig. 1b). Their apical dendrite is composed

of an unbranched segment emerging from the soma fol-

lowed by a branched segment. The apical dendrite can be

divided into proximal and distal synaptic domains. The

distal domain consists of the branched segment of the

apical dendrite and is covered with spines containing

reciprocal dendro-dendritic synapses as described above.

The basal dendrite (basal domain) and the proximal domain

of the unbranched apical dendrite receive glutamatergic

input from the axon collaterals of projection neurons of the

MOB and olfactory cortex [8, 34, 104, 125]. Besides glu-

tamatergic input synapses, GCs receive GABAAR-

containing inhibitory synaptic inputs that originate, among

others, from short-axon cells [42, 144].

Periglomerular cells

The second most abundant interneuron type in the MOB is

the highly heterogeneous group of periglomerular cells

[145]. Periglomerular cells divide into several subtypes

based on their expression profile of marker proteins, such

as tyrosine hydroxylase or calcium-binding proteins as

calbindin, calretinin, or [83, 129]. Periglomerular cells

project their dendrites to a single glomerulus and they

ramify their dendrites in a smaller portion of glomeruli,

where periglomerular neurons receive synaptic input from

axons of OSNs; yet, some periglomerular cells extend their

dendrites to multiple glomeruli. In addition, certain

periglomerular neurons have dendro-dendritic synapses

with MC/MTC dendrites [127, 163]. While some

periglomerular cells are axon-less [84], the majority has

axons that extend over several glomeruli [150].

Feedback projections from the anterior olfactory

cortices

The MOB does not simply function as a feed-forward

circuit to propagate sensory information from the nose to

the olfactory cortex. The MOB receives dense input from

the anterior olfactory nucleus (AON) and tenia tecta, piri-

form cortex, nucleus of the horizontal limb of the diagonal

band, locus coeruleus, and raphe nucleus [38]. The cen-

trifugal inputs to the MOB can be classified into two broad

groups. One group releases neuromodulators, such as

noradrenaline, serotonin, or acetylcholine [38]. The other

group of projections is glutamatergic and originates from

the AON and to a lesser extent from other olfactory cor-

tices. The AON can be divided into pars principalis and the

pars externa [24]. The pars externa forms an outer shell of

cells that partially surrounds pars principalis. Pars externa

receives ipsilateral projections from the MOB [110] and

projects back through the anterior commissure to the con-

tralateral MOB with a dorso-ventral [24] and rostro-caudal

topography [197]. Pars principalis centrifugal projections

are both ipsi- and contralateral and more diffuse [24].

There is additional segregation towards the targeting of

projections to different MOB layers: While most parts of

the pars principalis and the pars externa project to the GCL

of the MOB, the ventro-posterior aspect of the pars prin-

cipalis also projects to the glomerular and EPL [24]. In the

GCL, cortical feedback projections directly excite the GCs

and produce feed-forward inhibition through deep short-

axon cells [19].

Development and emerging connectivity
of olfactory bulb neurons

The MOB develops from the ventral pallium of the rostral

telencephalon [69, 102, 175]. The development of the

mouse MOB starts at E9–E10.5, although its structure

cannot be detected macroscopically as a protrusion of the

rostral telencephalon until E11.5–12.5 [56]. At E12.5, the

MOB divides into a ventricular zone formed by neuro-

epithelial cells aligned in radial orientation and a thinner

mantle zone (Fig. 2). These neuro-epithelial cells prolif-

erate and give rise to radial glia cells and to the post-

mitotic future projection neurons that then form the

superficial mantle zone [7]. Both neuro-epithelial and

radial glia cells can be considered neuronal stem cells

[85, 154, 183].

Targeting of olfactory sensory axons to the olfactory

bulb

OSNs project their axons to the MOB where they are

thought to primarily target the apical dendrites of gluta-

matergic MOB neurons, i.e., external tufted cells and MC/

MTCs, as well as dendrites of periglomerular neurons in

the glomeruli. Mammalian odor receptors form a large

family of seven transmembrane G-protein-coupled odor

receptor that plays an instructive role in targeting of OSN

axons to form the glomerular map [15, 123, 189]. During

the embryonic development, OSNs expressing the same
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receptor converge their axons in a specific pair of glomeruli

at stereotypic location in the MOB [62, 122, 126,177],

thereby generating an olfactory map that is found at the

level of the glomeruli, but dissipates further downstream.

Early differentiation of olfactory bulb projection

neurons

In rodents, MCs are mainly born between embryonic days

E9–E13 (Fig. 2). While the early born (E9–E10) MCs

integrate preferentially dorso-medially in the rostral MOB,

later-born (E11–E12) MCs integrate ventro-laterally in the

caudal region [64]. The generation of MTCs peaks around

E15 [17, 57, 58, 64]. The MC development can be divided

roughly into several stages according to their morpholog-

ical differentiation: first, a ‘post-neurogenesis’ stage after

MCs have been generated in the ventricular zone and

migrate radially to reach the intermediate zone. In the

intermediate zone, MCs undergo a tangential reorientation

of their soma and start to form axons projecting to the

piriform cortex that initiate the lateral olfactory tract (LOT)

[17].

Development of axons of projection neurons

to the cortices

Axons of MCs and MTCs project to the olfactory cortices

and ventral striatum through the LOT. In addition, MCs

and MTCs form axon collaterals throughout the MOB. We

will focus here on the better characterized projections to

the olfactory cortices. MOB projection neurons start to

form axons around E11.5–E13 [102, 188]. Their axonal

growth cones advance through the ventrolateral part of the

telencephalic vesicle. While the LOT has not developed

much further, some isolated fibers have reached quite

remote locations from the prospective MOB. These early

axons reside in a space largely devoid of cell bodies and

they extend caudally along the ventrolateral part of the

telencephalic vesicle. At E15, a number of fibers form a

compact bundle, corresponding to the primordial LOT that

is formed by E16 and its axons ultimately reach the

olfactory cortical zone [102, 188]. The axons grow further

caudally at E17. The extension of axonal projections from

the MOB to the cortex occurs before the arrival of the OSN

axons into the MOB, and thus, the growth of the LOT is

likely regulated by factors intrinsic to the MOB projection

neurons and cues in their targets, the future olfactory cor-

tices. In agreement with this observation, the cross-

sectional diameter of the LOT is not affected by occlusion

[16].

Axon collaterals from the LOT grow in size with earlier

innervation of the AON, anterior and posterior piriform

cortex, and entorhinal cortex at birth, while the olfactory

tubercle of the ventral striatum is innervated only between

P1 to P7 [188]. MCs project their axons preferentially via

the dorsal parts of the LOT to the cortices, whereas MTCs

have a preference to project through the ventral parts of the

LOT [128].

MCs and MTCs appear to serve as parallel pathways for

processing of sensory information [45, 60], and their pro-

jection patterns differ. The complete reconstructions of

MCs revealed that a single neuron usually branches and

innervates the AON, the piriform cortices, olfactory

tubercle, amygdala, and lateral entorhinal cortex, while

MTCs project mostly to a sub-region in the anterior

olfactory cortex [60, 173]. In other sensory modalities,

such as touch, audition, and taste, adjacent neurons often

respond to similar sensory stimuli and project their axons

to the same cortical targets, creating a topographic sensory

Fig. 2 Mitral cell differentiation and main olfactory bulb formation.

The major steps of MC/MTC development from generation, migra-

tion to dendritic and axonal growth are shown over time at different

embryonic (E10–E15.5) and postnatal days (P2–P10) in mice. MC/

MTC differentiation is set in relation to the development of olfactory

sensory neurons (OSN) and MOB layers. Exemplary factors for the

corresponding differentiation steps are indicated on the right
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map between them [148, 164, 191]. The overall diffuse

projection patterns in the cortices are somewhat surprising

given the strong order further upstream at the level of

OSNs. For instance, MCs that receive input from the same

glomerulus make connections in different regions of the

olfactory cortices [117]. Hence, in the piriform cortex, the

projections of MCs connected to the same glomerulus

appear no different from the MCs innervated by different

glomeruli [46, 173]. The highly divergent innervation of

the cortex may serve to integrate odor information origi-

nating from multiple receptors.

Dendritic development of olfactory bulb projection

neurons

After projection neurons have started to extend axons, the

differentiating MC/MTCs re-orient toward the surface of

the MOB following the arrival of the OSN axons [102].

The reorientation from a tangential to radial orientation is

influenced by the presence of the olfactory epithelium

[102]. After adopting a radial position, MCs develop

multiple and widespread primary apical dendrites [17, 58].

OSN axons that penetrate into the MOB then form contacts

with the apical dendrites. These sites of axonal in-growth at

the surface of the MOB form proto-glomeruli that then

progressively transform to glomeruli [17]. Subsequently,

the multiple apical dendrites are pruned and MCs assume

their typical mature morphology with one primary apical

dendrite and several secondary dendrites extended in the

EPL parallel to the MCL [17, 55, 65, 106]. During the

refinement process, the somata of MCs align to form the

MCL, while most MTC nuclei are scattered in the EPL.

MCs and MTCs also differ in their lateral dendrites in the

EPL [65, 125]. While the early born MCs extent their

secondary lateral dendrites in the deep layers of EPL, the

lateral dendrites of later-born MTCs develop in the

superficial layer of EPL [66].

External tufted cells

Another type of neuron in the MOB is external tufted cells

(ETCs) that are less characterized with respect to their

morphologic development. ETCs are usually glutamater-

gic, but recent studies support that some are GABAergic as

well [178]. ETCs form glutamatergic synapses with the

apical dendrites of MCs [47, 169] and interneurons, such as

periglomerular cells and short-axon cells [53, 169]. ETCs

also mediate di-synaptic excitation between OSNs and the

apical tufts of MCs [47, 130, 178, 185]. ETCs extend axon

collaterals just below the MCL and make latero-medial

connections in the MOB with ‘mirror’ glomeruli in the

contralateral part of the MOB that receives inputs from

OSNs expressing the same olfactory receptor [15].

Generation and migration of granule cell

interneurons

MOB interneurons are generated in the subventricular

zone. After leaving the subventricular zone, they migrate

through the rostral migratory stream (Fig. 2), where cell

divisions are still observed in particular early in the post-

natal period [50]. Although the majority of these

interneurons are born between E18–P5, a pioneering pop-

ulation is generated already in the lateral ganglionic

eminence between E12.5–E14.5 [56]. Other interneuron

types are primarily generated in the embryo. The genera-

tion of tyrosine hydroxylase-positive neurons of the

glomerular layer peaks at E12.5 and calbindin-positive

interneurons at E15.5 [12]. Only some GCs express marker

proteins. The most superficial GCs express trophoblast

glycoprotein (also named 5T4) that is an antagonist in the

Wnt/b-catenin signaling pathway [67]. Calretinin-positive

GCs are also located in the superficial parts of the GCL.

Whereas the number of 5T4-expressing GCs remains

constant throughout the animal’s life, the number of cal-

retinin-positive GCs further increases postnatally [12].

Postnatal-born GCs are generated from the populations of

neuronal stem cells in the lateral wall of the lateral ven-

tricles. Recent data support the view that the different

interneuron populations are generated from distinct stem-

cell populations that are turned on and off at different

stages of development and in postnatal life [44].

Wiring of granule cell interneurons

The development of adult-born GCs can be defined

according to morphological criteria as stages 1–5 [149].

The ‘migration phase’ (stage 1) describes the neuroblasts

of GCs in the rostral migratory stream (Fig. 3). Following

tangential migration through the rostral migratory stream,

new GCs disperse radially into the GCL [98]. During the

following ‘phase of the initial dendrite outgrowth’ (stage

2), new GCs reach the GCL and begin to extend their first

neurites that are followed by a ‘dendrite extension phase’

(stage 3) that is roughly 10 days after their last cell division

when GCs penetrate the EPL with their apical dendrite and

form the first synaptic inputs [26, 70, 72, 192]. About

2 weeks after their birth, new GCs undergo a ‘phase of

branching of their apical dendrite’ (stage 4) in the EPL and

develop further synaptic inputs [26, 70, 72, 192]. At this

stage, few spines and synaptic sites have evolved in the

distal domain [149]. From around the third week after the

birth of GCs on, they experience a ‘terminal differentiation

phase’ (stage 5) during which the distal domain achieves

full spine densities [149]. During this final phase of mat-

uration, new GCs acquire fast-action potential firing [26]

and form most of the reciprocal dendro-dendritic synapses
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in the distal domain [72, 192]. Synaptic development is

mostly complete by 4 weeks after the generation of adult-

born GCs [26, 72, 119, 149, 192].

Differences exist in the synaptic wiring of neonatal- and

adult-born GCs. Adult-born GCs first develop input

synapses in their proximal dendritic domain, before

developing most of their reciprocal output synapses

[72, 144, 192] and prior to acquiring the full ability to fire

action potentials [26], i.e., they ‘listen’ before they can

‘speak’. This sequential pattern of the synaptic develop-

ment of adult-born GCs sharply contrasts with the

maturation of GCs generated in neonates. GCs added to the

neonatal MOB develop reciprocal output synapses on the

distal domain earlier and simultaneously with input

synapses in the proximal domain [72]. The transition from

‘neonatal’ to ‘adult’ synaptic wiring patterns occurs in a

stepwise fashion [158]. GCs born at postnatal day (P)20

have already switched to an ‘adult’ pattern of synaptic

development in the proximal, but not in the distal domain.

In contrast to the proximal domain, the switch to an ‘adult’

synaptic development occurred later in the distal domain.

The complete ‘adult’ pattern is observed only in GCs

generated at P40. Thus, the delayed distal development of

output synapses only appears after the neurons already

form the high densities of synaptic inputs to the proximal

domain [158]. The stepwise transition from ‘neonatal’ to

‘adult’ synaptic development could thus present indepen-

dent processes in these two major dendritic compartments.

Fig. 3 Early steps in the differentiation and later synaptic wiring of

granule cell interneurons. Left the early steps of neonatal- and adult-

born GC addition follow several stages with switching from tangential

to radial migration with subsequent extension of the main dendritic

arbors that is followed by branch formation in the distal domain of the

apical dendrite. Middle during later stages, neonatal-born GCs

develop glutamatergic input in the different dendritic domains.

Inhibitory output synapses develop in the distal domain parallel to

proximal inputs. Right adult-born GCs develop distal input and output

synapses only after the proximal glutamatergic input synapses near

the soma. General factors have been identified for the different steps

of GC maturation shown in the environmental factors mostly related

to activity-dependent processes; cell-intrinsic programs likely deter-

mined already at the precursor stage. In addition, exemplary

molecular factors are indicated
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Development of the anterior olfactory nucleus

The AON provides the highest density of glutamatergic top-

down projections to the MOB [24]. Neurons in the AON are

generated between E15–E21 [14] with a caudal-to-rostral

gradient of neurogenesis (as also seen in the piriform cortex)

and superficial-to-deep gradient (contrary to the ‘inside–out’

order of other cortices) [14, 32]. A dense cell layer emerges

by E19 that directly merges with large numbers of immature

cells at its diffuse deep boundary. At the time whenmice and

rats are born, a deep boundary is recognized in its caudal

parts and adult morphology is obtained by P15. The patterns

of axonal in-growth from the MOB follow the sequence of

cell proliferation. Contralateral projections through the

anterior commissure from pars externa to the MOB develop

earlier than those from pars principalis. In addition, the

contralateral projections of pars principalis develop first

from caudal regions; with rostral regions of the pars princi-

palis following few days later [165]. Finally, myelination in

the anterior commissure emerges between P11 and P14 [23].

The further postnatal growth of theAON is region-dependent

between P10 and P60 [21]. While lateral aspects of pars

principalis show a little expansion, themedial aspects of pars

principalis and externa display substantial growth up to P30

and subsequently reduce their total brain volume.Medial and

lateral aspects of the AONmay serve different functions, as,

for instance, themedial aspect of pars principalis in rats has a

preference to target the deep GCL [24]. These different

projection patterns may support functional segregation of

AON sub-regions.

Transcriptional control of circuit assembly
and synaptic wiring

The multifaceted roles of developmental

transcription factors

A number of transcriptional regulators have been identified

to be involved in the formation of the MOB (Fig. 2). A

comprehensive overview of their actions is provided in a

recent review [39]. Transcription factors can control the

developing wiring diagram of the MOB in two broad ways.

They can act in the new neuron, where they are expressed

to regulate the positioning of the cell bodies, the growth of

dendrites and axons or synaptogenesis. Other transcription

factors are expressed in the cells with which the new

neurons will form contacts, but not the new neuron itself,

and influence trans-synaptically the wiring of the new

neuron. A second common pattern seems to be so far that

none of the identified single transcription factor acts

exclusively on a single step in the differentiation of new

neurons.

The first element of the main olfactory system is the

OSNs that terminate in the glomeruli. Glomeruli are

grouped into dorso-ventral domains of the MOB. Olfactory

receptors’ identity in the olfactory epithelium correlates

with the axon location along the dorso-ventral axis in the

MOB [78, 118, 176, 204]. The dorsal domain is formed

first with subsequent expansion of the glomerular map

towards the ventral surface of the MOB [176]. The two

zones can be divided also based on the expression pattern

of specific markers the olfactory epithelium with the dorsal

zone expressing, for instance, NQO1 and O-MACS and the

ventral zone OCAM [48, 78, 137, 184, 203]. Sets of

repulsive ligands/receptors, such as Slits/Robo2 and

Sema3F/Nrp2, appear to participate in OSN projection

along the dorsal–ventral axis [132, 135, 176], while OSN

axon targeting to glomeruli in the anterior–posterior axis

seems to be controlled by olfactory receptor-derived cAMP

signals [63, 166]. Each type of olfactory receptor generates

a unique level of cAMP. The levels of cAMP appear to

define the expression levels of guidance molecules and

determine the anterior–posterior topography of axonal

projections to the MOB [29, 63]. OSNs producing high

levels of cAMP project their axons to the posterior MOB,

whereas those producing low levels target the anterior

MOB [63].

Some molecular factors also have a dual role in the

developmental regulation of the olfactory epithelium and in

the MOB circuit formation. For instance, in the developing

telencephalon, the Paired family of homeobox transcription

factor 6 (Pax6) is expressed in the pallium and involved in

the formation of the olfactory epithelium, the MOB, and

the olfactory cortex [27, 30, 174]. Pax6 homozygous

mutant mice do not develop MOBs [37]. Conditional

deletions of the PAX6 gene in GCs interfere with the

generation of subsets of GCs [79, 208]. Although Pax6

mRNA transcription is widespread along the ventricular

walls, Pax6 protein is restricted to the dorsal aspect [36].

The restriction of PAX6 expression to the dorsal ventric-

ular zone is regulated post-transcriptionally in the neuronal

stem cells by micro-RNA 7a (miR-7a), which is expressed

in a Pax6-opposing ventro-dorsal gradient [36]. The Ge-

nomic screened homeobox (Gsx) transcription factors Gsx1

and Gsx2 are involved in patterning the ventral forebrain.

Gsx2 expression in the lateral ganglionic eminence appears

to repress the expression of dorsal genes, such as Pax6, and

regulates the quiescent, undifferentiated state of neuronal

stem cells [115, 147]. Gsx2 deletion impairs interneuron

migration to the MOB [27, 179, 186, 206]. Homozygous

Gsx1/2 double mutants display more severe disruptions

than Gsx2 mutant alone, resulting in near complete loss of

MOB interneurons [205].

Among the Distalless (Dlx) transcription factors, Dlx1,

Dlx2, Dlx5, and Dlx6 are expressed in differentiating
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GABAergic neurons [143]. Dlx1/2-positive precursors give

rise to dopaminergic-, calbindin-, and calretinin-expressing

interneurons in the glomerular layer and parvalbumin-

positive interneurons in the EPL [3, 12, 80, 93]. While

Dlx1 and Dlx2 are nearly absent in the embryonic MOB,

their mRNAs are expressed abundantly in the lateral ven-

tricle, RMS, and MOB in the postnatal and adult

glomerular and GCL [20, 25]. Dlx1 and Dlx2 expression

precedes that of Dlx5 and Dlx6 during neuronal differen-

tiation, and Dlx5 or Dlx6 becomes only significantly

expressed after cells leave the adult subventricular zone

[41]. Thus, the DLX5/6 expression is relatively low in the

RMS and increases following their arrival to the MOB

[20]. In the adult MOB, Dlx5 and Dlx6 are detected in the

deeper GCL and the glomerular layer [3]. While no gross

abnormalities have been detected in the forebrain of Dlx1

mutant mice [5], the disruption of Dlx2 results in the loss

of dopaminergic neurons [155]. Dlx2 overexpression has

the opposite effect [20]. A more pronounced phenotype

was observed for double Dlx1/Dlx2 mutant mice

[5, 25, 99, 101]. These double mutants die within a few

hours after birth, and in these double mutants, GABAergic

and dopaminergic neurons are lost following impaired

migration and maturation. Dlx5 mutants produce a global

defect in the differentiation of MOB interneurons with

smaller MOBs and a disorganized MCL [92, 100].

Importantly, Dlx5 mutants lack axonal connections

between OSNs and the MOB, suggesting that this tran-

scription factors is involved in axonal targeting [92, 100].

A number of transcription factors not only control

interneuron development, but their deletion also lead to

gross changes in the MCL during circuit assembly. For

instance, mice deficient of another transcription factor

subfamily, Aristaless-related homeobox (Arx) die in the

neonatal period, and their MCL is small and disorganized

[77, 200]. Another class of transcription factors is Emx

homeobox genes (Emx1 and Emx2). Emx1 and Emx2 are

expressed in the subventricular zone of the MOB at E15.

Both Emx1 and Emx2 are observed in the olfactory

epithelium and MCL at E18 and after birth [105]. Emx1

continues to be expressed in the adult [131]. While, the

deletion of Emx1 had negligible effects alone on adult

brain morphology, Emx2 mutant mice die early on, do not

develop proper projections of sensory neurons to the MOB,

and eventually display small MOBs with a disorganized

MCL [40, 199]. Similar to Dlx 5 mutants, sensory neurons

of Emx2 knock-out mice do not develop proper projection

patterns to the MOB. Double mutants of Emx1/2 display

thin and disorganized mitral cell, external plexiform, and

glomerular layers [40, 199]. Different effects are observed

for collapsin response mediator protein 4 mutants with

alterations in the length of the apical dendrite of MCs and

consequently altered MOB activity [180, 181]. In addition,

another molecule identified through genetic screens

(TARSH) appears to affect dendritic complexity of MCs

[28].

In the developing MOB, the T-box gene 1 (Tbr1) is

expressed in projection neurons throughout their differen-

tiation beginning with their final-cell divisions

[25, 114, 155]. The deletion of Tbr1 impairs the growth of

their axons and, hence, the formation of the LOT [25].

Tbr2 is highly expressed in many MCs around E14 and in

adulthood [121]. The deletions of Tbr1 and Tbr2 result in

fewer MCs and MTCs to an extent that the MCL is

undetectable [6, 25, 167]. The selective inactivation of

Tbr2 in MCs and MTCs at the late embryonic development

leads to a compensatory increase in the expression of Tbr1

and switches vesicular glutamate transporter expression

from subtype 1–2 [121]. Selective inactivation of Tbr2 in

MCs and MTCs results in the impaired formation of den-

dro-dendritic synapses between the MCs and MTCs and

inhibitory interneurons with altered responses of projection

neurons to odors [121]. Hence, Tbr2 appears to be required

for establishing a functional MOB circuit and excitatory-

inhibitory balance. Tbr2 could thus provide an interesting

entry point to dissect neural circuit assembly and the reg-

ulation of the excitatory-inhibitory circuit balance.

The Neurogenin 1 (Ngn1) transcription factor is

involved in the migration of olfactory interneurons in part

via the induction of Prokineticin 2 secretion that attracts

new MOB neurons [207]. In particular, in Ngn1 mutants, a

large fraction of dopaminergic cells do not reach the

glomerular layer and instead remain in the GCL [207]. In

Ngn1 and Ngn2 double mutants, the MOB is barely

detectable with substantial reduction in MCs and MTCs

during embryogenesis [168]. The Sal-Like genes Sall1 and

Sall3 are expressed in both the developing olfactory

epithelium and MOB [139, 140] with neuronal precursors

and differentiating cells expressing them at E13.5 [51, 52].

From E17.5 to adulthood, both factors are expressed in the

MCL, GCL, and glomerular layer. Sall1 is expressed

preferentially in the MCL [51, 52, 54]. The disruption of

Sall1 reduces the size of the MOB and results in a disor-

ganized laminar organization of MCs, followed by the

perturbed migration of interneurons [51, 133]. Finally, the

Fezf1 gene (Forebrain Embryonic Zinc Finger 1) tran-

scription factor is expressed in the OSNs, but not in MOB

neurons [171]. In Fezf1-deficient mice, OSNs do not

develop axonal projections to the MOB [59, 190]. The

MOB is smaller and shows abnormal layer formation with

a broader MCL and the polarity of the MCs is disorganized

[59, 190]. In addition, the migration of interneuron pro-

genitors through the RMS is altered and periglomerular

neurons are absent. The actions of Fezf1 in MC formation

and interneuron development in the MOB are, however,

most likely not cell-intrinsic, as Fezf1 is not expressed in
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these progenitors [59]. The deletion of another transcrip-

tion factor involved in the pathogenesis of Rett syndrome,

Mecp2 results in impaired axonal growth, but no gross

abnormalities in dendritogenesis of MCs [142].

Molecular determinants of granule cell wiring

Somemolecules, includingmicro-RNAs, were examined for

their involvement in the later stages of GC wiring. Some of

these molecules seem to be involved in the wiring of adult-

born, but not the early generated GCs. For instance, although

miR-125 is absent in neonatal-born neurons [2], it was found

to regulate morphogenesis and control functional integration

of adult-born neurons. Furthermore, miR-132 regulates the

morphological development and synaptic integration of

neonatal-born GCs. Its downregulation and overexpression

directly correlates with morphological complexity and spine

numbers [146]. Not unexpectedly, extracellular cues also

play a role. The extracellular matrix glycoprotein Tenascin-

R is produced in the GCL of the MOB and its expression

increases during the postnatal development [33]. Time-lapse

video imaging and morphological analyses revealed that

Tenascin-R deletion impairs radialmigration in the adult, but

not in the developing MOB. Tenascin-R deletion also

reduces the spine development of adult-, but not neonatal-

born GCs. At present, it is, therefore, difficult to tell whether

a given molecule is required at a specific stage of maturation

or whether the observed effects on dendritic growth are, for

instance, due to indirect effects of that molecule at the earlier

steps of differentiation.

Outlook on molecular determinants in MOB wiring

No single transcription factor has been identified that selec-

tively acts on one aspect of circuit assembly. The relative

scarcity of identified transcription factors acting on the

synapticwiring and functional connectivity that occurs at later

stages of neuronal differentiation is due to the focus of the

existing studies mostly on the earlier steps of differentiation

and large-scale changes inMOBcellularmorphology. Studies

particularly examining the development of the synaptic con-

nectivity and functional maturation are needed to understand

the impact of the transcriptional machinery on the connec-

tivity. In particular, it will be interesting to understand how

actions of factors coming from the new neurons themselves or

from future synaptically connected partners, orchestrate the

developing wiring diagram. In addition, it appears important

to note here that most of the published data on mutants that

regulate MC morphology are based on the incomplete

reconstructions of dendritic arbors. More complex aspects in

the regulation of MC morphology and connectivity thus still

need to be elaborated.

Neuronal activity and the refinement of synaptic
connectivity

Global effects of sensory activity in the development

of the olfactory bulb circuit

Circuit assembly of the MOB is also regulated by neuronal

activity in the early postnatal period. Most of our knowl-

edge comes from experiments using sensory deprivation

through unilateral naris occlusion usually starting after

birth [22]. Early naris closure induces a cascade of chan-

ges, with cell-death as one of the final events. Within hours

after the onset of sensory deprivation, protein synthesis is

down-regulated in all the layers of the neonatal, but not the

adult MOB [82]. Activity-dependent changes are not nec-

essarily uniform. After the perinatal onset of deprivation,

the volume of the GCL decreases first around P8 followed

by shrinkage around P12 of the external plexiform layer

[43]. Conflicting reports exist on sensory deprivation-in-

duced changes in the size and number of glomeruli

[113, 161]. Sensory deprivation consistently decreases the

soma size of MCs, while the number of MCs does not seem

to substantially change [16, 43, 112, 113].

Activity-dependent mitral cell development

Contrary to the pronounced effects on MC morphology

caused by transcription factor deletions, the majority of

MCs show relatively ‘normal’ gross dendritic morphology

when they differentiate in olfactory bulbs deprived of

sensory input [112, 113]. In addition, whereas the den-

drites of GCs in non-deprived animals are highly plastic

as observed by long-term in vivo imaging, the dendrites

of MCs in adult mice displayed very few changes, either

in the normal conditions or after sensory deprivation

[120]. Deprivation, however, markedly affects the recip-

rocal synapses between MCs and GCs, as described in the

following sections [22]. Naris closure leads to an initial

depression of spontaneous activity in MCs [49]. Together,

existing data suggest that synaptic connectivity between

MCs and GCs can be regulated by olfactory inputs, but

that gross dendritic morphology of MCs is not dependent

on sensory inputs. Yet, another study found that lesioning

the olfactory epithelium during the early postnatal

development can modify the growth of the apical dendrite

of MC/MTCs towards glomeruli [31]. In the absence of

OSNs, MC/MTCs emit several dendrites into the EPL, but

they do not form dendritic tufts [31]. Such lesioning of

OSNs may, however, also affect the activity-independent,

developmental signaling between OSNs and MCs, as

described in the studies on the deletion of transcription

factors.
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MCs and MTCs initially have multiple dendrites that

project into several glomeruli [109]. Within 10 days after

birth, however, the vast majority of MCs and MTCs go

through a refinement process, such that they will display a

single apical dendrite that branches into a single

glomerulus. Unilateral naris closure delayed the refinement

of MC/MTCs, such that the refinement period is prolonged

by a few days. However, by P14, the refinement is com-

plete, and even with olfactory deprivation, most MCs have

a single apical dendrite projecting into a single glomerulus

[109]. This suggests that spontaneous activity (independent

from OSN inputs) may be sufficient for the refinement of

MCs. To address this issue, it may be necessary to block

neuronal activity directly in MCs and MTCs and to analyze

their survival and morphology. The investigation of how

olfactory inputs regulate the morphology and connectivity

of MCs will require high-resolution studies tracking MC

dendrites and synapses over time.

Activity-dependent development of granule cells

Compared with MC/MTCs, sensory activity heavily influ-

ences the survival of adult-born GCs and their synaptic

connectivity. When neonatal- or adult-born GCs are subject

to sensory deprivation during the critical period, they dis-

play fewer spines [162] and excitatory synapses [73, 75].

Loss of reciprocal output synapses triggered by sensory

deprivation is prominent only during the synaptic devel-

opment, but not seen when sensory deprivation is

performed after the synaptic development is completed

[73]. In addition, there is a critical period during which the

survival of new neurons is influenced through sensory input

manipulations [195], which parallels the developmental

stage at which neurons have a high degree of plasticity. For

instance, long-term potentiation can be induced in adult-

born neurons during the early stages of their maturation,

but not after this period [134]. It is an interesting question

how different forms of activity-dependent plasticity relate

to each other to eventually shape-specific synaptic orga-

nization patterns in newly added GCs. In addition, recent

studies highlight that the importance of activity-dependent

transcriptional regulators, such as Npas4, regulates other

transcription factors and experience-dependent dendritic

spine development of GCs [95, 202]. In addition, the

aforementioned 5T4 regulates sensory input-dependent

development of a subset of superficial GCs [201]. Here,

links may be provided between sensory input-dependent

development and the intrinsic molecular machinery set by

precursor programs.

Glutamate receptors are the major source of excitatory

drive to GCs and regulate various processes from migration

to survival. Among glutamate receptors, NMDA receptors

provided some unexpected insights on the developmental

regulation of interneuron wiring [70, 71, 94, 151, 152].

During the development, NMDA receptors are composed

mostly of GluN1 and GluN2B subunits. In hippocampal

pyramidal neurons, the deletion of GluN2B promotes the

functional maturation of glutamatergic synapses, suggest-

ing that the normal function of GluN2B-containing NMDA

receptors is to set a brake on synapse maturation (e.g., [1]).

In contrast, single-cell deletion of GluN2B in adult-born

GC prevented the maturation of glutamatergic synaptic

input [70]. This severe impairment in synaptic develop-

ment was associated with a decreased response to novel

odors and eventually led to the death of GluN2B-deficient

adult-born GCs. The effect of GluN2B on GC survival is

subunit specific, as it is not be rescued by GluN2A, the

subunit conferring mature properties to NMDA receptor

function. Thus, contrary to their function in glutamatergic

neurons, GluN2B-containing NMDA receptors promote

synapse activation in adult-born interneurons. The same

synapse promoting actions are found for NMDA receptors

in interneurons that are connected to the above-described

glutamatergic pyramidal neurons in the developing hip-

pocampus [71]. These findings suggest a homeostatic

model that should keep circuit activity stable within a

certain range. While increasing circuit activity that recruits

NMDA receptors limits the sensitivity of glutamatergic

neurons to excitatory inputs through setting a brake on

synapse maturation, NMDA receptors promote the

recruitment of inhibitory neurons to dampen circuit activ-

ity. It may also suggest that inhibitory interneurons and

principal neurons utilize different molecular machineries

and synaptic mechanisms to mediate these opposing effects

on synapse maturation.

The effects of activity on the survival of GCs are not

uniform to all GCs. GCs can be divided into deep and

superficial GCs based on their dendritic branching in the

EPL (Fig. 1b). The functional differences between deep

and superficial GCs also extend to neuronal survival.

Whereas neonatal-born GCs often reside in the superficial

GCL, adult-born neurons tend to localize within the deep

GCL [68, 90]. Although most superficial and neonatal-born

GCs survive for long periods throughout the animal’s life

[68, 90], some recent studies suggest that most adult-born

neurons are turned over and thus continuously replaced

[68, 149]. However, two long-term studies found that cell

death in adult-born GCs is largely limited to the first month

after neuron birth [90, 193]. The question of long-term

turnover of adult-born GCs warrants further clarification.

Adult-born GCs that survive throughout more than half of

the lifespan of rodents maintain synaptic densities similar

to the ones that they had acquired a month after their birth

[75]. In contrast, mature neonatal-born neurons continue to

change net synaptic densities in some of their dendritic

domains over the same period of time [75], raising the
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possibility that particularly neonatal-born GCs are suited to

adapt to changing environments throughout the animals’

life. Whether long-term synaptic re-arrangement and the

differences in negative selection over months are set in

distinct molecular programs in ‘neonatal’ and ‘adult’-born

GCs, need to be determined out in future studies.

Synapse formation of GCs occurs mostly in the third and

fourth weeks of the development [26, 72, 192]. This period

coincides with a time window during which the survival of

GCs is most sensitive to sensory deprivation and reduced

by half in a deprived bulb [149, 195]. The effects of

olfactory deprivation on the synaptic development are

complex: Adult-born GCs that survive after sensory

deprivation display an increased density of proximal input

synapses in the unbranched apical dendrite [73]. This

observation suggests that neurons may compensate for the

absence of sensory input by receiving additional excitatory

drive arriving mostly from the olfactory cortices, which

may elevate their activity level above the threshold

required for survival. Olfactory learning increases spine

densities in the basal and proximal domains of adult-born

GCs and promotes remodeling of both excitatory and

inhibitory inputs selectively in these domains [91]. Gluta-

matergic top-down inputs from the olfactory cortex

innervating these domains become active during post-

prandial rest and are thought to promote the elimination of

newly added GCs [81]. These observations suggest that

different sources of input and potentially also their inter-

play on nascent synapses regulate the stable integration of

new neurons in the adult olfactory system. It may need to

be considered here that it is not clear whether the effects of

sensory deprivation and enrichment on GC survival are due

to direct inputs from MCs and MTCs. Pioneering

descriptions [35, 187] speculated that top-down projections

from AON to MOB ‘may permit more central structures to

coordinate olfactory processing with ongoing behavior and

endocrine or nutritional requirements’ [35]. For instance,

food odors evoked higher MC/MTC firing responses in

hungry rats than satiated animals [141]. Top-down pro-

jections have been implicated in state-dependent

modulation of olfactory bulb activity

[76, 141, 172, 187, 196]. These and other studies had,

however, not addressed how AON top-down inputs modify

odor processing in this or other behaviors, including social

interaction. A recent study revealed that the neuropeptide

Oxytocin acting in the AON is critical for olfactory sam-

pling and recognition of conspecifics [136]. Oxytocin

increases transiently the excitability of AON regular-firing

neurons and the synaptic drive in the AON network [136].

AON excitation through Oxytocin propagates through top-

down projections to increase glutamatergic synaptic input

to GCs. In vivo, we also found putative GC units that

display transient increases in their firing rate following

Oxytocin receptor activation in the AON. Oxytocin in the

AON increase the activity of GCs, and thus indirectly

provides inhibition to MC/MTCs. Interestingly, similar to

GC apoptosis during postprandial sleep [81], single-social

interactions that activate AON top-down projections

appear to promote death of adult-born GCs that are just in

the process of wiring (Oettl, Ravi, Huber, Kelsch, unpub-

lished observations). The elimination of new adult-born

GCs was maximal after Oxytocin release was triggered

during that social interaction. Yet, contrary to postprandial

sleep, the GC elimination following social interaction

appeared to occur at a more delayed time scale; possibly

arguing for a slow process in adaptive circuit modifications

rather than a function in relatively short-lived social

memory.

The relationship between intrinsic excitability and

synapse formation adds to the fascinating complexity of

MOB assembly. Recent experiments indicate that raising

the intrinsic excitability of adult-born GCs by expression

of a voltage-gated bacterial sodium channel does not

affect the synapse formation or eventual synapse densities

[73], but promotes the survival of adult-born GCs [94].

Interestingly, increased intrinsic excitability blocks sen-

sory deprivation–triggered synaptic changes. GCs that

express a virally delivered bacterial sodium channel

develop a normal organization of glutamatergic input

synapses when these GCs are added to a bulb deprived of

sensory input [73]. Somewhat surprisingly, dampening the

excitability of new GCs by overexpressing a potassium

channel does not affect the synapse numbers of the sur-

viving neurons [94]. Taken together with the finding that

olfactory deprivation decreases the survival of adult-born

GCs [195], these observations support that synaptogenesis

in adult-born GCs is sensitive to changes in synaptic input

and suggest that both survival and synaptic development

are driven by a multiple sources of excitation with distinct

effects.

Beyond cortical top-down and sensory bottom-up

inputs that seem to play opposing roles, neuromodulatory

input, such as acetylcholine, noradrenaline, or neuropep-

tides, exert their actions. For instance, cholinergic

stimulation causes sustained depolarizations in GCs [153]

and enhances the survival of new GCs [111] and may be

responsible for the reported enhanced survival of adult-

born neurons when olfactory tasks involved increased

attention levels [4]. Hence, phasic excitation provided by

synaptic input from MCs and MTCs is only one of the

many determinants of survival and wiring of new GCs in

the circuits.

In summary, the existing data point to a fascinating

interaction of intrinsic precursor programs that determine

the cells’ synaptic properties and intrinsic excitability, and

prepare them to respond in particular ways to circuit
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activity that in itself can have multiple actions. This arising

picture supports the potential of the MOB in elucidating the

interplay of genetic determination and neuronal activity in

the assembly of the circuit and later plasticity through

continuous synaptic reorganization or neuronal addition.

Sensory activity in the development of the anterior

olfactory nucleus

Relatively few studies exist on the activity-dependent

wiring of AON neurons. Sensory deprivation for the first

30 days of the postnatal life results in a smaller ipsilateral

AON, while few changes are observed on the contralateral

side and do not appear to affect either overall laminar

growth or the dendrite formation of pyramidal cells

[9, 10, 21]. While inter-hemispheric AON projections exist

from birth [108], substantial postnatal maturation still

appears to occur. At a behavioral level, up to P12, condi-

tioned memories are stored unilaterally [86, 88]. After P12,

memory retrieval with odors works also on the contralat-

eral side following unilateral conditioning presumably due

to the maturation of the anterior commissure. Severing the

anterior commissure resulted in a return to unilateral

olfactory learning [89] with the anterior aspects of the

AON being required for learning [87]. Future studies may

reveal the genes and cellular processes that control the

connectivity and synaptic wiring within the AON and the

regulatory mechanisms that govern the innervation of

interneurons in the MOB. With respect to GC wiring, it

might be particularly interesting to understand the regula-

tion of different synaptic input densities on GCs and their

downstream consequences on GC output synapses.

Precursor programs in the formation of neuronal
connectivity

In the following section, we will focus on some recently

discovered aspects of cell-intrinsic features of newly added

GCs and the interactions of these intrinsic features with

brain environment. Insights into the factors that are either

activity-dependent or already determined in neuronal pre-

cursors, may help to build a framework to then detail the

molecular machinery underlying the formation of synaptic

connectivity patterns. Recent studies revealed an unex-

pected level of determination of synaptic wiring features in

precursor programs: features that had previously been

thought to be controlled exclusively by activity-dependent

mechanisms in mammals [74, 116, 158]. In particular, GC

wiring has helped to identify synaptic wiring principles and

to attribute them to activity-dependent processes or the

early determination in precursor programs, respectively

(Fig. 3).

Dendritic targeting of granule cells

The lateral dendrites of MC/MTCs, which form dendro-

dendritic synapses with GCs, are located in the deep and

superficial EPL, respectively (Fig. 1b). Most GCs ramify

distal dendritic branches only in one location within the

EPL, not in both [74, 125]. This phenomenon turned out to

be genetically predetermined in neuronal progenitors as

demonstrated by the fate-mapping and transplantation

studies [74, 116]. Recent studies support that sonic

hedgehog family and related transcription factor signaling

contributes to the preferential generation of GCs with deep

or superficial dendritic targeting [61, 79]. Hence, MCs and

MTCs that constitute functionally independent microcir-

cuits [45, 60] are targeted by the distinct populations of

GCs through their dendrites in mammals. This microcir-

cuit-specific targeting of new neurons in the adult brain is

consistent with the proto-map model of circuit assembly

[156] and raises the possibility to genetically engineer stem

cells to generate specific neuronal types to replace those

lost to disease or injury.

Synaptic wiring of granule cells

As detailed in the previous sections, GCs display different

patterns of synaptic development depending on whether

they are generated in the neonatal or adult brain

[72, 144, 192] (Fig. 3). It has been an open question

whether GCs adopt the synaptic input patterns typical of

the host circuit, in which they integrate. Alternatively, the

differences in the synaptic input patterns in neonatal- and

adult-born GCs may be an intrinsic property determined

already in their neuronal progenitors. If so, progenitors

proliferating at different times in the animal’s life may

generate GCs that do not revert their synaptic input patterns

when challenged by hetero-chronic grafting. Indeed, recent

grafting experiments revealed that the synaptic input pat-

terns are determined to a surprising extent already in their

progenitor cells [158]. The specification of subventricular

zone progenitors thus does not only dictate the neuro-

transmitter phenotype and the position of the neurons in

different layers [50, 116, 157], but is also linked to the

formation of characteristic synaptic input patterns. In adult-

born GCs, the spine densities increase in the distal domain

before synapses mature with a substantial delay to proxi-

mal inputs [11, 72, 192]. These proximal synapses form

and become functional early on. The temporal dissociation

in domain-specific synapse maturation persists after hetero-

chronic grafting of adult progenitors [158]. Furthermore,

neonatal precursors differentiating in the adult retain their

characteristic early increase in synapse density in the distal

domain, while those synapses continue to form late in iso-

chronically grafted adult-born GCs. Together, these
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findings reveal that the circuit itself permits for variable

wiring patterns as GCs derived from neonatal and adult

progenitors retained their respective ‘neonatal’ and ‘adult’

wiring patterns upon grafting to the adult host. Grafted GC

precursors were mostly Mash-1-positive fast-amplifying

cells. Future studies may clarify whether these properties

are already determined at even earlier stages, such as the

slowly dividing stem cells.

GCs derived from neonatal and adult progenitors also

differ in their timing in the migration and initial outgrowth

of their dendrites. The differences in the proportion of GCs

taking position in the MOB and the extent of dendritic

branch development do, however, not anymore differ

between grafted GCs origination from neonatal- and adult-

born GCs when the synaptogenesis starts. Different

synapse patterns then evolve when the progenitors differ-

entiate in a hetero-chronic environment. It is, therefore,

possible that the early differences in migration or dendrite

formation will, through yet unknown mechanisms, still

influence the eventual synaptic patterns of GCs. These

effects at multiple steps of GC differentiation resemble

observations for genetic manipulations of transcription

factors in development.

The synaptic connectivity patterns can, however, only

be formed in matched circuits. This was supported when

grafting adult GC progenitors into the neonatal subven-

tricular zone [158]. While the new GCs display normal

migration and dendrite formation as well as the initial

synapse formation, they ended up with low synapse den-

sities in the proximal and distal domains towards the end of

their maturation. The densities neither match neonatal- nor

adult-born GCs, suggesting that cell-intrinsic programs

require factors from contacting cells and that these

extrinsic factors are only present at certain developmental

stages in the MOB. The basal domain, however, develops

the normal densities of input synapses, and the formed

distal and proximal synapses become functional. In addi-

tion, the hetero-chronically grafted GCs survive for at least

2 months. These latter observations support that different

aspects in the maturation are at least partially indepen-

dently regulated. In line with the interactions of precursor

programs and brain environment, certain molecules are

upregulated in the adult MOB (Tenascin-R, mir-125) and

may provide adult-born GC compared with neonatal-born

GC with unique intercellular signals that are at work when

the new neurons wire in the respective circuit. The sur-

prising extent of determination at precursor cell stage of

cell-type-specific connectivity and formation of character-

istic organizations of input and output synapses may

provide a framework to further identify the underlying

transcriptional programs.

Summary and outlook

In summary, recent studies have revealed a relatively good

understanding of the basic order of circuit assembly with

some of the influencing factors being identified. However,

the later steps in the differentiation of new neurons, i.e.,

formation of specific synaptic connectivity patterns within

the circuit, need further elaboration. While more is pre-

sently known about the synaptic wiring of the interneurons,

other aspects in the formation of MOB connectivity are still

largely unknown. Much needs to be studied to understand

the interaction between the projection neurons and

interneurons in the MOB.

A first picture has emerged for the broad factors deter-

mining the synaptic makeup of interneuron types. Here,

recent work has revealed a strong genetic component in the

formation of specific synaptic organizations within cells

and wiring pattern among those cells, yet the exact

molecular pathways still need to be elaborated. The impact

of the unexpected extent of intrinsic determination of cell-

type specific wiring and formation of synaptic organiza-

tions warrants further study to understand the logic of

circuit assembly and harness them for neuronal repair

strategies providing targeted repair with controlled synap-

tic connectivity patterns.

In addition, the exact interplay of this intrinsic deter-

mination with activity-dependent processes is just

beginning to be understood. Here, interrogating the con-

nections between MCs/MTCs and the major interneuron

type GCs through conditional genetics in combination with

synaptic and circuit physiology and reconstruction of

genetically labeled synapse types may provide a strategy to

understand the influence of the surrounding neurons on the

maturation of synaptically connected cells. The actions of

trophic and activity-dependent effects are expected to

overlap on these developmental processes. With relevance

to activity-dependent processes, bottom-up olfactory inputs

and central top-down inputs may differentially influence

the refinement of the connectivity among the different

neuron-types.

As this review indicated, no molecules seem to act only

on one discrete cell-type or the stage of differentiation. As

evident from the influence of OSNs on MC/MTC differ-

entiation, trans-synaptic changes in developing neurons

following the manipulation of specific molecules in one

cell-type can be of critical importance to the developmental

behavior in cells that form synapses with them. It might,

therefore, be of particular interest to study the interactions

of cell-type-specific manipulations on contacting cells to

understand the logic of circuit assembly and the contribu-

tion of cell-intrinsic determination already present at
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precursor stage and still active at the late stages when the

synaptic connectivity is formed.
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Bohm S (2001) Evidence for gradients of gene expression cor-

relating with zonal topography of the olfactory sensory map.

Mol Cell Neurosci 18:283–295

136. Oettl L-L, Ravi N, Schneider M, Scheller MF, Schneider P,

Mitre M, da Silva Gouveia M, Froemke RC, Chao MV, Young

WS, Meyer-Lindenberg A, Grinevich V, Shusterman R, Kelsch

W (2016) Oxytocin enhances social recognition by modulating

cortical control of early olfactory processing. Neuron

90:609–621

137. Oka Y, Kobayakawa K, Nishizumi H, Miyamichi K, Hirose S,

Tsuboi A, Sakano H (2003) O-MACS, a novel member of the

medium-chain acyl-CoA synthetase family, specifically expres-

sed in the olfactory epithelium in a zone-specific manner. Eur J

Biochem 270:1995–2004

138. Otazu GH, Chae H, Davis MB, Albeanu DF (2015) Cortical

feedback decorrelates olfactory bulb output in awake mice.

Neuron 86:1461–1477

139. Ott T, Kaestner KH, Monaghan AP, Schütz G (1996) The mouse
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