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Abstract Bone loss and the resulting skeletal fragility is

induced by several pathological or natural conditions, the

most prominent of which being aging as well as the

decreased levels of circulating estrogens in post-meno-

pause females. To date, most treatments against bone loss

aim at preventing excess bone resorption. We here sum-

marize data indicating that the estrogen-related receptors

(ERRs) a and c prevent bone formation. Inhibiting these

receptors may thus constitute an anabolic approach by

increasing bone formation.

Keywords Nuclear receptors � Bone � ERR � Osteoblasts �
Menopause

Introduction

Bone is a highly dynamic tissue that is under constant

remodeling, a phenomenon that comprises two comple-

mentary processes: bone formation and bone resorption

(reviewed in Frenkel et al. [1]). Two main cell types par-

ticipate to these features. Osteoclasts are cells of the

hematopoietic lineage that resorb bone, whereas osteo-

blasts are cells of mesenchymal origin that mineralize the

bone matrix. The equilibrium between these two processes

is tightly controlled under ‘‘normal’’ conditions. However,

this equilibrium can be disrupted under pathological con-

ditions but also under naturally occurring ones. Indeed

aging, affecting both males and females, reduces bone

formation by decreasing the capacities of pre-osteoblasts to

differentiate into mature cells (reviewed in Khosla [2]). In

addition, the cessation of the ovarian functions at meno-

pause, leading to reduced circulating levels of estrogens,

results in increased osteoclast differentiation and thus

enhanced bone resorption (reviewed in Manolagas et al.

[3]). This leads to osteoporosis, a bone fragility syndrome

that includes an increased fracture risk particularly in aging

females, due to the combination of both processes. To date

most treatments against osteoporosis are anti-catabolic, i.e,

aim at reducing excess bone resorption by osteoclasts.

However, anabolic treatments (aiming at enhancing bone

formation) are starting to emerge (reviewed in Marie and

Kassem [4]). Here we review data that indicate that neg-

atively targeting the estrogen-related receptors (ERR) a
and/or c may constitute a promising approach to design

anabolic treatments.

The estrogen-related receptors: ligand-
independent nuclear receptors

The nuclear receptor (NR) superfamily comprises 48

members in the human that are generally defined as ligand-

dependent transcription factors [5, 6]. With few exceptions,

these factors all share a similar protein organization. A

centrally located DNA-binding domain (DBD) composed

of two zinc finger modules mediates a direct interaction

with cognate response elements on the promoters of their

target genes. A hinge region links the DBD to the C-ter-

minally located ligand-binding domain (LBD). The latter is

a globular structure comprising several alpha-helices and
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undergoes a conformational change upon interaction with a

specific ligand. This results in the production of an inter-

action surface that allows the recruitment of transcriptional

co-activators. In turn these co-activators, directly or indi-

rectly, induce chromatin modifications and the recruitment

of the transcriptional machinery at the promoters, leading

to increased expression of target genes. In addition, some

but not all, receptors possess an N-terminally located

domain that can mediate ligand-independent transcriptional

activation.

Ligands (such as 17b-estradiol or the thyroid hormone)

had been described well before the first characterization of

their cognate receptors (estrogen receptor [ER] and thyroid

hormone receptor [TR]) in the mid-eighties [6]. Using newly

cloned receptor sequences as probes, several other nuclear

receptors have been isolated starting in the late eighties and

have been referred to as ‘‘orphans’’ in the initial absence of an

identified natural ligand. Although specific ligands have

been identified for some of these receptors, a number of

receptors remain orphan. This is for instance the case of the

estrogen-related receptors (ERR) a and b, the first orphan

receptors identified in 1988 [7]. Together with the more

recently isolated ERRc [8], they form a distinct sub-family,

and display a strong level of sequence identity with each

other, in particular within their DBD and LBD (Fig. 1).

Determination of the 3D structure of the LBDs of ERRa
and c has shown that these receptors display an ‘‘active’’

conformation, allowing to contact co-activators in the

absence of any ligand in their putative ligand-binding

pocket [9, 10]. Although the crystal structure of ERRb has

not been published, it seems thus likely that all ERRs act as

ligand-independent transcription factors, although clearly

belonging to the NR superfamily (reviewed in Horard and

Vanacker [11]). Several publications indicate that the

transcriptional activities of the ERRs can be regulated by

various processes, such as sub-cellular localization or post-

translational modifications (see examples in [12–17]. One

key point is, however, the capacity to interact with specific

co-modulators that can be viewed as protein ligands and

may be available or not in a given cellular context (see

examples in [18–20]).

Despite the capacity of the ERRs to act in a ligand-

independent manner, several synthetic compounds have

been identified that [positively (agonists) or negatively

(inverse agonists)] modulate their transcriptional activities,

more or less specifically. For instance, 4-hydroxy-tamox-

ifene [OHT; a selective estrogen receptor modulator

(SERM) which is broadly used in breast cancer therapy] or

its analog GSK5182 reduce the activities of both ERRb and

c [21–23] whereas GSK4716 and DY131 act as agonists

for both receptors [24, 25]. Published literature suggests

that it is difficult to identify modulators that clearly dis-

criminate between ERRb and c, likely because of the

particularly high level of sequence identity in their LBDs.

To date, one exception is bisphenol A (BPA), which

counteracts the effects of inverse agonists on ERRc in a

seemingly specific manner both in vitro and in vivo

[26–28]. In contrast, compounds have been isolated that

specifically target ERRa, and not b or c. This is the case of

pyrido[1,2-a]pyrimidine-4-ones derivatives that act as

agonists [29]. Conversely for instance XCT790 and C29

act as inverse agonists and, at least for the former, promote

proteasome-dependent degradation of the receptor [30].

However, data are often lacking that could indicate whe-

ther these compounds indeed act in vivo, although this has

been shown for instance for C29, GSK5182 and BPA (see

[28, 31, 32]). Whether the effects of a given drug strictly

depend on a given ERR species is also often an open

question. Despite these restrictions, these compounds can

be viewed as useful tools to study the functions of the

ERRs, and may suggest promising approaches to modulate

the activities of the ERRs in given pathological processes.

Physiopathological functions of the ERRs

In vitro and in vivo studies have contributed to identify

several physiopathological functions played by the ERRs.

ERRb is mainly expressed in embryonic tissues in the

mouse and regulates placental development [33] as well as

the maintenance of self-renewal in both embryonic and

trophoblast stem cells [34–38]. The role played by ERRb in

human embryonic tissues is unknown. It should be noted

that the receptor is not expressed in human embryonic stem

cells, in contrast to mouse ones, but an expression in other

human embryonic tissues has not been documented to date

[39]. ERRb is also involved in the specification of

epithelial cells in the mouse inner ear [40]. Consistently,

mutations in the human ESRRB gene (encoding ERRb)

result in a form of hearing impairment [41]. It has also been

shown that maintenance of the number of rod

Fig. 1 Organization of the estrogen-related receptors. The ERRs

comprise two conserved domains, the centrally located DNA-binding

domain (DBD) and the C-terminally located ligand-binding domain

(LBD). The percentage of sequence identity within these domains is

indicated relative to ERRa on the receptors, and between ERRb and

ERRc, above and below the brackets
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photoreceptor cells during mouse aging depends on ERRb
but no data are available concerning the impact of the

receptor on human retina [42].

ERRa and c are strongly expressed in tissues with high

energy demand (for instance heart, muscle, liver and fat)

where they control various metabolic processes such as

mitochondrial biogenesis and function, lipid uptake and

oxidation, tricarboxylic acid cycle and neoglucogenesis

(reviewed in [43–46]. These activities of ERRa and c are

exerted not only in conventional metabolic tissues but also

have a considerable impact on pathological processes such

as cancer (reviewed in [47–49]). For instance both receptors

are at the heart of the metabolic switch referred to as the

Warburg effect in which cancer cells shift from oxidative to

glycolytic metabolism [20, 50, 51]). Interestingly, these

receptors display opposite functions in this process as well

as in the establishment of other traits of cancer progression

such as proliferation and epithelial–mesenchymal transition

(EMT) [52–56]. All these features are promoted by ERRa
while repressed by ERRc. This is consistent with ERRa and

c being factors of unfavorable and favorable prognosis (re-

spectively), as described in several cancer types (review in

[47, 57]). In this line, additional works have also shown that

ERRa promotes cell migration, invasion and the establish-

ment of metastasis [58–60].

ERRa is also a critical component of innate immune

response, regulating the production of mitochondrial

reactive oxygen species in response to c-interferon as well

as attenuating toll-like receptor inflammatory response in

macrophaghes [61, 62].

Functions of the ERRs in mineralized tissues

ERRa is highly expressed in the ossification zones (long as

well as flat bones) during mouse embryonic development

[63] suggesting a contribution to endochondral as well as

intramembranous ossification. However, examination of

ERRa knock-out (ERRaKO) animals has shown that the

receptor is not required for bone morphogenesis or ossifi-

cation in young animals, i.e. up to 14 weeks of age, at

which peak bone mass is reached [64, 65]. This was esti-

mated by measuring both trabecular and cortical bone

parameters that do not significantly vary between mutant

and wild type littermates. However, ERRaKO animals do

not lose bone with aging (i.e, between 14 and 24 weeks of

age), in contrast to wild type counterparts. The latter also

dramatically lose bone upon ovariectomy (which mimicks

menopause in mice). In striking opposition, ERRaKO

animals are resistant to this bone loss. As evidenced by the

analysis of dynamic bone parameters, osteoclasts number

and activity is unchanged whereas bone formation rate (i.e.,

osteoblast activity) is increased in ERRaKO animals

relative to wild types. Consistently, pre-osteoblasts origi-

nating from mutant animals are more prone to differentiate,

express enhanced levels of osteoblast molecular markers

(including those of Runx2, the master gene of osteoblast

differentiation) and display increased mineralizing activity

ex vivo. Taken together with the decreased capacity dis-

played by ERRaKO mesenchymal cells to differentiate, at

least in vivo, into the adipocyte lineage [64, 66, 67], this

suggests that ERRa affects the early determination of

mesenchymal stem cells, promoting their commitment into

the adipocyte lineage at the detriment of the osteoblast one

(Fig. 2a). This is in contradiction with earlier results

showing that overexpression of ERRa in pre-osteoblasts

in vitro promotes rather than decreases osteoblast differ-

entiation [68]. One possible explanation to reconcile these

discrepant results comes from the data published by

Kammerer et al. [69] who showed a complex effect of

ERRa on Runx2 expression in cell culture. Indeed the

receptor can stimulate or repress Runx2 expression in the

presence of PGC-1a or PGC-1b, respectively. In contrast

Fig. 2 Functions of ERRa and c in mineralizing cells. a Effects of

ERRa and ERRc on mineralizing cells. ERRa exerts early effects on

mesenchymal cells inducing commitment to the adipocyte lineage

(green arrow), while repressing commitment to the osteoblast one

(red arrow). ERRa also acts later in this lineage, inhibiting osteoblast

maturation, an activity shared by ERRc. The two repressive effects of

ERRa on osteoblast differentiation contribute to bone loss during

aging and hormonal deficiency, respectively. Furthermore ERRc
decreases trabecular bone mass but promotes calcification in vascular

smooth muscle cell (VSMC). Note that the effect of ERRc on

hormone deficiency-induced bone loss has not been investigated so

far. b Effects of ERRa and c on Runx2 expression and activity. ERRa
activates (green arrow) or repress (red arrow) Runx2 expression in

the presence of PGC-1a or b, respectively. Both ERRa and c inhibit

the transcriptional activities of the Runx2 protein. See text for details

and references
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ERa activates Runx2 expression in the presence of PGC-1b
(Fig. 2b). This suggests that ERa may also indirectly

promote the positive activities of ERRa by competing for

PGC-1b binding. It could be hypothesized that the

expression of all these factors varies with age, hormonal

status and/or pre-osteoblast differentiation state. For

example, it has been shown that 17b-estradiol regulates

ERa mRNA expression and protein stability (reviewed in

[70]) as well as PGC-1a expression [71]. Taking these data

together, it is thus possible that ERRa is a fine-tuning

modulator of Runx2 expression and thus of osteoblast

differentiation in vivo. The consequences of these subtle

regulations may be cumulative and therefore would only be

obvious in terms of bone mass after a given amount of

time, i.e., after the occurrence of peak bone mass.

On another hand, the increased capacity of ERRaKO

pre-osteoblast to differentiate ex vivo can be rescued by

reintroduction of the receptor after the onset of differenti-

ation, suggesting a later effect of ERRa, i.e., rather on

osteoblast maturation [65]. It is, thus, possible that the

receptor exerts two independent effects on osteoblast dif-

ferentiation (early at the commitment level, late at the

maturation level). In this line, it is worth noting that when

ERRa is inactivated during osteoblast maturation (using

conditional knock-out mice), Runx2 expression is not

modulated, in contrast to that of its target genes. This

suggested that the receptor also impacts on Runx2 activity,

a hypothesis which has been confirmed [72]. In addition

ERRa positively and directly modulates the expression of

osteopontin (opn), a late marker of osteoblast maturation

which inhibits mineralization [64, 65, 73–76]. Interestingly

ERRa conditional knock-out animals resist to ovariec-

tomy-induced but not to age-induced bone loss.

Altogether this shows that ERRa exerts at least two

independent effects on osteoblast differentiation, resulting

in two independent phenotypes in vivo. In other terms, the

repressive effects of ERRa on osteoblast commitment

contribute to bone aging, whereas the negative action of the

receptor on osteoblast maturation participates to bone loss

induced by hormone withdrawal. Although additional

research in needed to determine the precise molecular

mechanisms through which ERRa exerts these effects, this

suggests that deactivating the receptor could increase bone

formation in vivo. Targeting ERRa could thus be a

promising strategy to prevent bone loss during aging and

after menopause. In support to this statement, inactivating

the receptor in human pre-osteoblast also leads to increased

differentiation in cell culture [64]. However, it should be

noted that all the above data have been obtained using a

genetic inactivation of ERRa. Obviously a pharmacologi-

cal approach would be preferred but, to date, no report has

been published concerning the effect of ERRa-deactivating

compounds on osteoblast in vitro and bone in vivo.

The complete inactivation of ERRc in mice leads to

perinatal death [77], preventing the study of the bone status

of mutant animals. Cardelli and Aubin [78] recently

reported that ERRc?/- animals displayed increased tra-

becular bone as compared to wild type counterparts.

Intriguingly this phenotype only affects males, but not

females, suggesting an undocumented cross-talk of ERRc
with hormone signaling. ERRc?/- bone phenotype can be

observed as early as after 8 weeks after birth, aggravates

with age and correlates with increased osteoblast number

and activity in vivo. As for ERRa, inactivation of ERRc
leads enhanced pre-osteoblast differentiation ex vivo [78]

as well as reduced adipocyte differentiation in vitro [79].

The former effect is thought to rely on unchecked Runx2

activity in the absence of ERRc [80], as is again the case

for ERRa [72]. A second level of ERRc activity has been

suggested with the receptor inducing the expression of

miR-433, which targets Runx2 mRNA for degradation

[81]. These studies suggest that ERRc is anti-osteogenic

and that its inhibition could lead to increased mineral

density. Intriguingly, however, a recent report [82] shows

that ERRc promotes vascular calcification, a major com-

ponent of morbidity and mortality in patients with such

diseases as atherosclerosis. In cultures of vascular smooth

muscle cells ERRc expression is induced by calcification

medium and in turn directly and indirectly induces the

expression of BMP2. Importantly, in vivo treatment with

an ERRc specific inverse agonist reduces vascular calcifi-

cation in the mouse. ERRc is therefore anti-osteogenic in

bone and pro-osteogenic in the vasculature. The mecha-

nisms that accounts for these antagonistic activities is not

clear but a recent report proposes that in liver cells, the

transcriptional activation of Cyp2E1 by ERRc can be

switched off by interaction with the RORa nuclear receptor

[83]. Whether such a type of interference mechanism is at

work in mineralizing cells is presently unknown. Since

ERRa and ERRc display rather similar effects on bone

cells (i.e., anti-osteogenic), it will be interesting to deter-

mine whether the former also displays anti-mineralizing

activities in the vasculature.

The effects of ERRs on the other major cellular com-

ponent of bone (i.e., osteoclasts) have also been addressed.

Study of ERRc?/- has shown that osteoclast number and

activities do not vary comparing to wild type animals [78].

Analysis of ERRaKO mice in terms of osteoclast number

and activities has raised contradictory results, ranging from

no variation [64, 65] or decreased parameters [84]. Note-

worthy it had previously been shown that ERRa promotes

osteoclast spreading and migration in cell culture [85]

raising the possibility that the absence of the receptor in

knock-out animals may be compensated for by unidentified

factor(s). In addition an indirect effect of ERRa on

osteoclasts has also be reported. Overexpression of the
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receptor in xenografted breast cancer cells results in

increased production of osteoprotegerin, an inhibitor of

osteoclastogenesis, leading to decreased osteoclast differ-

entiation by recipient immunodeficient mice and reduced

capacity of tumor cells to metastasize in the bone [59].

Possible future directions

Both ERRa and c exert anti-osteogenic effects in bone,

through both overlapping and divergent mechanisms. This

suggests that deactivating these receptors could be a

promising approach to reduce bone loss, possibly whatever

its cause, since inhibiting these receptors leads to increased

bone formation. However it should be reminded that most

of the results obtained to date originate from mouse models

and care should be taken concerning translation to human.

The activities of ERRa and ERRc appear convergent on

bone, yet the receptors strikingly differ concerning their

impact on cancer. ERRa is a factor of poor prognosis and

promotes traits of cancer aggressiveness whereas ERRc is a

factor of favorable prognosis and likely decreases cancer

aggressiveness. It can therefore be hypothesized that

deactivating ERRa, in contrast to ERRc, may reduce the

risk of cancer-related side effects. The recent discovery of

a pro-osteogenic effect of ERRc on vasculature is, how-

ever, intriguing in that it, in particular, also questions the

effect of ERRa on this process. Whether both receptors

there behave in a similar (as in bone) or divergent manner

(as in cancer) is an important question to solve.

Although it is difficult to definitely exclude the possi-

bility of a natural ligand in vivo, it is highly likely that the

ERRs act as ligand-independent manner. However the

activity of these receptors can be modulated by synthetic

compound that impact on their protein stability and/or

transcriptional activities. This renders them attractive tar-

gets to tackle pathophysiological processes in which they

are involved. The ability of these specific compounds to

modulate the activities of the ERRs in vivo is only starting

to be studied and there is no doubt that efforts will be

developed in this direction.
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