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Abstract Stress is among the primary causes of mental

health disorders, which are the most common reason for

disability worldwide. The ubiquity of these disorders, and

the costs associated with them, lends a sense of urgency to

the efforts to improve prediction and prevention. Down-

stream metabolic changes are highly feasible and accessi-

ble indicators of pathophysiological processes underlying

mental health disorders. Here, we show that remote and

cumulative ancestral stress programs central metabolic

pathways linked to mental health disorders. The studies

used a rat model consisting of a multigenerational stress

lineage (the great-great-grandmother and each subsequent

generation experienced stress during pregnancy) and a

transgenerational stress lineage (only the great-great-

grandmother was stressed during pregnancy). Urine sam-

ples were collected from adult male F4 offspring and

analyzed using 1H NMR spectroscopy. The results of

variable importance analysis based on random variable

combination were used for unsupervised multivariate

principal component analysis and hierarchical clustering

analysis, as well as metabolite set enrichment analysis

(MSEA) and pathway analysis. We identified distinct

metabolic profiles associated with the multigenerational

and transgenerational stress phenotype, with consistent

upregulation of hippurate and downregulation of tyrosine,

threonine, and histamine. MSEA and pathway analysis

showed that these metabolites are involved in cate-

cholamine biosynthesis, immune responses, and microbial

host interactions. The identification of metabolic signatures

linked to ancestral programming assists in the discovery of

gene targets for future studies of epigenetic regulation in

pathogenic processes. Ultimately, this research can lead to

biomarker discovery for better prediction and prevention of

mental health disorders.
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Introduction

Mental health disorders are the leading cause of disability

worldwide. A recent survey of representative communities

from 28 countries conducted by the World Health Orga-

nization (WHO) World Mental Health initiative found the

prevalence of mental health disorders to be up to 36 % in

the population [1]. Among these, anxiety was the most

common condition, followed by mood disorders, exter-

nalizing disorders, such as attention deficit hyperactive

disorder and oppositional defiant disorder, and substance

abuse disorders [1]. Although these disorders differ in their

symptoms, all of them are commonly influenced by the

experience of stress or exposure to an adverse environment

[2, 3]. Treatments for these disorders are often ineffective,

and the lack of understanding concerning their etiology is

hindering the ability to develop more effective cures.
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Lifetime stress experienced by the individual has long

been considered as a possible cause for mental health

disorders. In addition, recent discoveries have emphasized

that stress experienced by the mother during pregnancy can

impact the developing fetal brain and increase the proba-

bility of the offspring developing mental illness [4–6].

Support for this argument comes from human cohort

studies of individuals whose mothers were pregnant during

a traumatic event or natural disaster [7, 8]. Results from

these studies showed that maternal exposure to adversity

during pregnancy was associated with accelerated cogni-

tive decline in later life [9], higher lifetime incidences of

schizophrenia [10], poor cognitive health [11, 12], altered

immune function [13], and unique DNA-methylation sig-

natures [14]. Other studies on prenatal stress during human

development support a link between the mother’s mood

during pregnancy and increased risk of attention deficit

hyperactive disorder, anxiety, and cognitive impairment

[15]. Experimental studies have isolated the influence of

prenatal stress (PS) on higher lifetime incidence of altered

stress response, anxiety, reduced attention, learning deficits

[15], and that these changes may propagate to subsequent

generations [16–18].

Recent studies have documented that an early adverse

environment affects more than one generation of offspring

[17–19]. For example, human studies involving the Dutch

Famine Birth Cohort have suggested that prenatal under-

nutrition can significantly affect the health of children (F1)

and grandchildren (F2) [20]. Experimental data have

shown that prenatal exposure to toxins [19, 21, 22] and

stress [17] alter behavior and stress response across several

generations (F1–F3). Long-term outcomes include altered

affective state and physiology [6, 16–18, 23] and the

development of new behavioral traits based on multigen-

erational stress programming in the F4 generation [24–26].

Potential mechanisms of transgenerational programming

involve variations in maternal care [27, 28], epigenetic

regulation by DNA methylation [5, 14], and microRNAs

[17, 18].

Metabolic profiles reflect cellular functioning; therefore,

upstream epigenetically regulated gene and protein

expression will be detectable in metabolic profiles [29–33].

Clearly identifiable metabolic signatures linked to mental

health disorders have been identified using 1H nuclear

magnetic resonance (NMR) spectroscopy [34, 35]. Con-

necting altered epigenetic states, due to PS, to the

functional pathways reveals that its neurodevelopmental

consequences are linked to altered brain [36–38] and

amniotic fluid [39] metabolic signatures. Here, we used 1H

NMR spectroscopy to determine if epigenetic program-

ming caused by a single exposure to experimental PS four

generations removed permanently alters metabolic activity.

In addition, we identified clearly distinguishable metabolic

fingerprints in urine to discriminate the consequences of

multigenerational versus transgenerational prenatal stress

in the filial F4 generation (Fig. 1). These metabolic profiles

were used to determine metabolic pathways that are

implicated in mental health disorders. These findings are an

important demonstration that ancestral origins of altered

mental health can be indicated by metabolic signatures that

are of clinical predictive and diagnostic value.

Materials and methods

Animals

This study involved Long–Evans rats raised at the Cana-

dian Centre for Behavioural Neuroscience, University of

Lethbridge vivarium. The animals were housed in pairs

under a 12:12-h light/dark cycle with light starting at

Fig. 1 Illustration of the experimental design that tested the F4

offspring of a lineage in which stress occurred in each generation

(multigenerational stress, SSSS) or in which stress was limited to the

first parental generation (transgenerational stress, SNNN). A lineage

of non-stressed rats (NNNN) served as control
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07:30 h and the room temperature set at 22 �C. Rat chow
food and water were available at libitum. All procedures

were approved by the University of Lethbridge Animal

Care Committee in compliance with the guidelines of the

Canadian Council on Animal Care.

Experimental design

To investigate unambiguous transgenerational program-

ming of an adult metabolic phenotype [40], this study

focuses on 6-month-old males from the F4 generation. The

use of males minimized the potential impact of female

hormonal fluctuations [41]. Four successive generations of

timed-pregnant female rats were bred under consistent

laboratory conditions. Parental female rats (F0) were

exposed to stress during pregnancy. For the multigenera-

tional stress lineage (F4-SSSS; n = 6), the pregnant

daughters (F1), granddaughters (F2), and great grand-

daughters (F3) were also stressed during pregnancy. The

transgenerational stress lineage (F4-SNNN; n = 6) was

bred by stressing only the F0 mothers and not the F1–F3

mothers (see Fig. 1; S = stress, N = non-stress condition).

Yolked controls were bred in parallel for each generation

(control, n = 7).

Stress procedure

Pregnant dams were subjected to stress daily from ges-

tational day (GD) 12 to GD 18. This timeframe was used

as it corresponds to the third trimester in human preg-

nancy when substantial neural development occurs [42].

Stressors included restraint in a Plexiglas cylinder for

20 min and forced swimming in warm water at 21 �C for

5 min. Stressors were administered each day in a semi-

random alternating order, in the morning between 8:00

and 9:00 h or in the afternoon between 16:00 and

17:00 h.

Behavioral testing

Open-field locomotor activity was used to measure the

exploratory behavior, which serves as a standard parameter

in the assessment of stress-induced emotional state [25,

43]. Animals were placed individually into Accuscan

activity monitoring Plexiglas boxes (length 42 cm, width

42 cm, and height 30 cm) and recorded for 10 min. The

boxes attached to the computer recorded the activity based

on sensor beam breaks. The horizontal beam breaks were

recorded on the computer with the VersaMaxTM program,

and converted to spread sheets using VersaDatTM software

(AccuScan Instruments Inc., OH, USA). Distance traveled

in the center of the open field arena was averaged to obtain

the total distance traveled (in cm) per minute.

Sample collection and preparation

Subjects for analysis were euthanized with an injection of

Euthanosol (Merck, QC, Canada) and perfused transcar-

dially with phosphate-buffered saline (approximately

200 ml) followed by a transcardial injection of approxi-

mately 200 ml of 4 % paraformaldahyde (Sigma-Aldrich,

MO, USA). Urine samples were obtained via bladder

puncture with a 1.5-ml sterile syringe at time of eutha-

nization and stored at -80 �C. To prepare the samples for

NMR spectroscopy, urine samples were thawed at room

temperature and 450 ll aliquots were transferred into 1.5-

ml centrifuge tubes with 250 ll of phosphate buffer. The

phosphate buffer was prepared as a 4:1 ratio of KH2-

PO4:K2HPO4 in a 4:1 H2O:D2O solution to a final

concentration of 0.5 M. The D2O came with 0.05 % by

weight trimethylsilyl propanoic acid (TSP) as a chemical

shift reference. To protect the metabolite profile integrity,

0.02 % w/v of sodium azide was added to the buffer

solution as an antimicrobial agent. Once the sample was

mixed with the buffer, it was centrifuged at 12,000 rpm for

10 min to precipitate any particulate matter. After cen-

trifugation, 550 ll of the supernatant was transferred to a

5-mm NMR tube for NMR analysis.

NMR data acquisition and processing

NMR spectra were collected on a 700 MHz Bruker

Avance III HD spectrometer (Bruker, ON, Canada). The

Bruker 1-D NOESY gradient water suppression pulse

sequence ‘noesygppr1d’ was used. Each sample was run

for 128 scans to a total acquisition size of 128 k. The

spectra were zero filled to 256 k, automatically phased,

baseline corrected, and line-broadened by 0.3 Hz. The

processed spectra were then exported to MATLAB (The

MathWorks, MA, USA) for statistical analysis. Spectra

were manually binned to reduce the size of the dataset.

Each spectrum had the areas corresponding to water and

urea removed before being normalized to remove effects

of imperfect water signal suppression. The data set was

then autoscaled.

Statistical analysis

Data visualization to determine sample structure and the

presence of distinct groups within the dataset was con-

ducted using the principal component analysis (PCA).

Hierarchical clustering analysis was also performed and is

presented as a dendrogram coupled to a heat map. Both

PCA and the clustering analysis were performed using the

online chemometrics software Metaboanalyst [44–46].

Percent differences for each metabolite in each comparison
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group were also calculated using MATLAB (The Math-

Works, MA, USA).

Variable importance analysis based on random variable

combination (VIAVC) [47] is a new feature selection

method and was used for this analysis. Briefly, VIAVC

provides a method for systematically resampling variables

to determine if potentially synergetic effects exist between

seemingly unimportant variables. The algorithm combines

random permutation of variable inclusion or exclusion with

a tenfold cross validation (CV) of models to determine the

optimal subset of variables that provide the most infor-

mation about the differences between groups. It should be

noted that even though the VIAVC script only employs

CV, the way the algorithm is structured produces results

that are no different from the method of double cross

validation (DCV) that has been recommended elsewhere

for the validation of metabolomics data sets [48]. The

p values reported are calculated from a t test of the dis-

tribution of scores based on whether the particular

metabolite was included or excluded from the model. All

of the VIAVC tests were carried out using MATLAB. A

more detailed description of this complex method is

available by Yun et al. [47]. Furthermore, for the behav-

ioral analysis, the average center distance traveled in an

open field was analyzed using an unpaired t test, and its

relationship to metabolic outcomes was determined using

Pearson R correlations in MATLAB.

The biological significance of the important metabolites

was investigated using two tools offered by Metaboanalyst.

Metabolite set enrichment analysis (MSEA) uses a set of

predefined metabolic pathways to identify significant and

meaningful changes in functionally related metabolites

within a biologically relevant context [49]. Data were

entered into the MSEA as a list of metabolites and the over-

representation analysis (ORA) algorithm was used. Path-

way analysis was also conducted, which combines the

results of pathway enrichment analysis with pathway

topology to aid in the identification of the most relevant

pathways involved in the conditions of the study [50]. The

data were input as a list of metabolites, the Rat pathway

library was chosen, and the ORA algorithm was selected

using hypergeometric test. These two analysis tools were

used in the identification of pathways to discuss in con-

nection with significant metabolites.

Metabolite identification

An in-house spectral database of pure metabolite sub-

stances was used to identify the majority of the metabolites

in the spectra. Any metabolites not in our database were

referenced using the online Human Metabolome Database

[51–53].

Results and discussion

Metabolite identification and selection

The purpose of this research was to identify urine meta-

bolic signatures generated by cumulative or

transgenerational ancestral stress that associate with or

predict mental health outcomes. Urine represents the

combined collection and concentration of metabolic wastes

from an organism, and thus, it reflects individual pheno-

type, which is frequently affected by adverse experiences,

such as stress [54]. The initial results of principal compo-

nent analysis (PCA), when all metabolites were included,

are shown in Fig. 2a, b and revealed no separation of

groups. The present approach used variable importance

analysis based on random variable combination (VIAVC)

[47] as the feature selection method, because it incorpo-

rates tenfold cross validation (CV) and random

permutation methods to address the tendency of partial

least squares discriminant analysis (PLS-DA) to overfit

data [48, 55]. Furthermore, VIAVC method also allows the

extraction of informative metabolites, exploits synergetic

effects between metabolites, and excludes metabolites that

vary randomly between samples. The p value of each

metabolite identified as significant by VIAVC, along with

the percent differences for each, are displayed in Table 1.

Once the important metabolites were identified, they were

used to rerun PCA (Fig. 2c, d) and hierarchical clustering

(Fig. 3a, b) analysis. Both of these unsupervised grouping

methods correctly separated the experimental groups from

the controls when considering only the variables identified

by VIAVC. Not all of the metabolites identified by the

VIAVC method for the two experimental groups were

identical; however, there were a number of metabolites that

were similar and these will be discussed later.

The present results demonstrate that repeated prenatal

stress in each of four generations (multigenerational stress,

F4-SSSS group) and a single exposure to prenatal stress

four generations removed (transgenerational stress, F4-

SNNN group) produce urinary metabolic profiles that are

unique when compared with a non-stress control lineage.

This is evident by the clear separation of each of the stress

lineages from the control group in the PCA scores plots

that include only the metabolites identified by the VIAVC

method (Fig. 2c, d). Thus, the impact of stress in each

stress lineage has caused a distinct alteration in metabolic

activity. The multigenerational lineage demonstrates an

impact of both direct and indirect stress exposure [23, 40],

while the transgenerational stress lineage unambiguously

isolates the impact of inherited transgenerational pro-

gramming, which transmits to the F4 generation [6, 40].

The unique metabolic footprint of ancestral stress included
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21 metabolites that were significantly altered (Table 1).

The heat map for each of the altered metabolites among the

two stress lineages (Fig. 3a, b) provides a graphical indi-

cation of whether the metabolites were upregulated or

downregulated with respect to the control group. Further-

more, the percent differences given in Table 1 show that,

when considering all metabolites identified from both

stress lineages, a history of ancestral stress consistently

reduces nine metabolites and elevates nine metabolites

(Table 1). The dendrograms shown above the heat maps

(Fig. 3a, b) illustrate the results of hierarchical clustering

analysis; this unsupervised method was able to correctly

separate each stress lineage from the controls.

The metabolites identified as varying significantly in the

SSSS and SNNN lineages (Table 1) concur with our pre-

vious findings that variations induced by multigenerational

versus transgenerational stress [17, 56] tend to be reflected

in the intensity of the phenotype expression, and not the

directionality. Accordingly, the directionality of the per-

cent differences in 18 of 21 identified metabolites, either

upregulation or downregulation, was consistent between

groups. Furthermore, when the two experimental groups

(multigenerational and transgenerational) were plotted

using a PCA scores plot (Fig. 4), they highly overlap,

suggesting similarity of metabolic profiles induced by

multigenerational and transgenerational stress program-

ming. Thus, irrespective of the frequency of prenatal stress

exposure among the ancestral lineage, common metabolic

pathways were reprogrammed that reflect the altered phe-

notype [17, 56]. This observation aligns with the finding of

a coordinated pattern of epigenetic changes, including

microRNAs that propagate from one generation to the next

[17, 18]. Accordingly, metabolic activity is dictated by

genetic expression and epigenetic regulation of gene

expression will be reflected by distinct levels of metabolic

end products.

Metabolic pathway analysis

The metabolites that were significantly altered by ancestral

stress (Table 1) are diverse and involved in various path-

ways. Although one cannot conclusively rule out which of

the potential metabolic pathways are relevant to phenotype,

pathway analysis (PA) and metabolite set enrichment

Fig. 2 Scores plots showing

components 1 (X-axis) and 2 (Y-

axis) of the PCA analysis for a,
c F4-SSSS multigenerationally

stressed lineage versus controls

and b, d F4-SNNN

transgenerationally stressed

lineage versus controls. a, b The

result of the analysis when all

metabolites were considered,

while c, d the result of the

analysis when only the

metabolites identified by

VIAVC were considered. The

percentages shown along each

axis indicate the amount of the

variance in the data set given by

each component, and the shaded

ellipses designate the 95 %

confidence interval for each

group
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Table 1 Display of the percent differences and p values of metabolites that were determined to be significant for at least one of the stress

lineages based on the VIAVC analysis (control, n = 7; F4-SSSS, n = 6; F4-SNNN, n = 6)

SSSS versus control SNNN versus control

p value Percent difference p value Percent difference

Formate 3.22 9 10-18 -25.06 3.08 9 10-12 -31.19

IMP -6.98 1.61 9 10-9 -41.78

1-MN 6.64 9 10-13 -11.66 6.64 9 10-13 -29.02

Histamine 3.30 9 10-24 -16.82 5.03 9 10-16 -39.14

Hippurate 1.84 9 10-11 26.9 3.56 9 10-6 27.64

Tyrosine 8.37 9 10-17 -27.89 6.35 9 10-7 -20.43

Fumarate -8.48 0.36 -3.01

Singlet 6.40 ppm -13.96 2.84 9 10-6 4.75

Thymidine -3.69 5.07 9 10-3 -1.0

Singlet 6.20 ppm 9.78 0.03 2.95

Allantoin 4.94 9 10-8 32.58 1.54 9 10-4 17.2

Galactose -11.12 0.24 3.95

Glucose 5.33 9 10-7 15.31 2.69 9 10-5 15.91

Hydroxyacetone -18.14 1.16 9 10-3 1.4

Guanidoacetate 2.56 9 10-9 8.94 12.99

Singlet 3.76 ppm 2.51 9 10-10 2.23 0.24 2.84

Glycine 2.24 9 10-22 8.83 17.58

Singlet 3.32 ppm 2.5 9 10-4 19.64 45.87

Dimethylamine 1.75 9 10-10 62.07 15.17

N6-Acetylysine -11.01 0.017 -3.30

Threonine 4.31 9 10-10 -24.75 -10.4

Fig. 3 Heat maps for a F4-SSSS multigenerationally stressed lineage

versus controls and b F4-SNNN transgenerationally stressed lineage

versus controls. The X- and Y-axis show the class and the metabolite

identity, respectively. These heat maps visually indicate either

upregulation or downregulation of the metabolites presented in

Table 1. The legend corresponding to the class label and the heat map

for both figures is shown to the right of figure b. 1-MN 1-methyl-

nicotinamide, IMP inosine monophospate. The labels 1-MN, 1-MN.1,

and 1-MN.2, as well as histamine and histamine.1 correspond to

different resonance peaks of the same metabolite. The dendrogram at

the top of each heat map illustrates the results of the unsupervised

hierarchical clustering analysis
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analysis (MSEA) identified a number of key metabolic

pathways that these metabolites are involved in (Table 2;

Fig. 5, respectively). The following pathways were selec-

ted from the outputs of PA and MSEA based on their

biological relevance to mental health: catecholamine

biosynthesis and tyrosine metabolism; intracellular signal-

ing through the H2 receptor and histamine; histidine

metabolism; and glycine, serine, and threonine metabolism.

The following list of metabolites from Table 1 is associ-

ated with the above pathways and will now be discussed

individually: tyrosine, threonine, and histamine.

Ancestral stress-induced upregulation of tyrosine

excretion supports the link to mental health and stress

programming. Amino acid L-tyrosine is the precursor of

multiple monoamine neurotransmitters, including nore-

pinephrine (NE), which is a central molecule directing the

immediate physiological response to stress [57]. Obtained

from the diet, animals in our study should have relatively

identical levels of L-tyrosine [58]. However, both SSSS and

SNNN groups had a significantly lower level of tyrosine

being excreted, alluding to an elevated stress response [5,

18], which consumes larger amounts of tyrosine to main-

tain elevated NE production in the stressed lineages.

Stress may increase susceptibility to disease and aller-

gies, autoimmune disease, and inflammation [59].

Threonine, an essential amino acid stimulates thymus

development and is a major building block of

immunoglobulins [60]. In line with the notion of elevated

stress responses induced by ancestral stress, threonine

levels were reduced in both groups. As an important

immunostimulant, low threonine excretion may be linked

to higher demand by the immune system.

Another immunomodulator that was reduced by a his-

tory of stress is histamine. Histamine is produced by

decarboxylation of the essential amino acid L-histidine. It is

active at sites of inflammation, stimulates gastric secretion,

and also regulates immune function. Even low concentra-

tions of histamine can be highly active in biological

systems; therefore, its synthesis, transport, storage, and

release are carefully regulated [61]. The stress-induced

reduction in histamine in both the SSSS and SNNN groups

may reflect either a lower conversion of L-histidine into

histamine or a higher usage of histamine by the organism.

Given that stress is often accompanied by exacerbated

immune function [59], it is likely that histamine usage has

been upregulated, reflected by decreased excretion.

The VIAVC method and the percent differences both

identified hippurate as a significant metabolite; however,

hippurate, which is a common urinary metabolite in

mammals, is not related to metabolic pathways identified

by MSEA and PA. There are a number of possible initial

substrates for the production of hippurate, all of which are

Fig. 4 Scores plot illustrating components 1 (X-axis) and 2 (Y-axis)

of the PCA analysis for the F4-SSSS multigenerationally stressed

lineage versus the F4-SNNN transgenerationally stressed lineage

when considering the metabolites identified by the VIAVC analysis.

The percentages shown along each axis indicate the amount of the

variance in the data set given by each component and the shaded

ellipses designate the 95 % confidence interval for each group

Table 2 Overview of the metabolic pathways that were altered by ancestral stress compared with non-stress controls

Pathway name Total Hits p value FDR Impact

Aminoacyl-tRNA biosynthesis 67 3 0.043 0.77 0.10

Methane metabolism 9 2 0.0047 0.23 0.17

Glycine, serine and threonine metabolism 32 3 0.0059 0.23 0.32

Histidine metabolism 15 1 0.168 0.85 0.15

Phenylalanine, tyrosine and tryptophan biosynthesis 4 1 0.047 0.77 1.0

Tyrosine metabolism 42 2 0.089 0.84 0.14

Total indicates the total number of metabolites listed in the pathways; hits indicate the number of significant metabolites identified in the

pathways; the p value is based on the enrichment analysis; FDR indicates false discovery rate; impact designates the pathway impact as

determined by pathway topology analysis
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large polyphenols that enter the organism via the diet and

undergo a series of reactions catalyzed by various enzymes

and endogenous microbiota. The final step in the produc-

tion of hippurate occurs in the mitochondrial matrix where

benzoic acid, a remnant of the polyphenols, is conjugated

with glycine [62]. Hippurate then enters the blood stream

and is filtered out of vascular circulation by the kidneys. Its

excretion is upregulated in human subjects with diabetes

[62] and high levels of anxiety [63], both of which are

common symptoms associated with prenatal stress [15, 64,

65]. Both experimental groups in this study displayed

upregulated hippurate excretion, which suggests discrete

metabolic alteration linked to metabolic disorders and/or

mental health.

Behavioral phenotype

The distinct metabolic profiles of the SSSS and SNNN

groups were associated with mental health outcomes.

Open-field locomotor profiles indicate a phenotype of

higher emotional state and increased anxiety-like behav-

ior in the stressed lineages, as reflected by distance

traveled in the center of the open-field arena. Rats that are

less anxious will generally spend more time in the illu-

minated center of the open-field arena, whereas rats that

are more anxious will avoid this open, lit space [25, 66].

In this study, an independent sample t test compared

average center distance scores for male offspring from

stressed and control lineages. There was a significant

difference in the scores for control (M 159.4, SD 33.8)

and stressed (M 119.7, SD 39.5) lineages [t(29) = -2.41,

p\ 0.05]. The relationship between average distance

scores and the relative concentrations of histamine and

tyrosine indicated positive correlations for histamine

[r = 0.55, p\ 0.01 (one tailed)] and tyrosine [r = 0.21,

p = 0.177 (one-tailed); Fig. 6]. Thus, higher anxiety-like

states were associated with lower histamine and lower

tyrosine concentrations.

Fig. 5 Summary plot for the

over representation analysis of

metabolic pathways associated

with the complete list of

metabolites shown in Table 1.

The p values for the metabolic

pathways are color coded with

dark red being highly

significant and white being least

significant. The category

‘‘intracellular signaling’’ stands

for intracellular signaling

through the H2 receptor and

histamine
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Conclusions

Using a 1H NMR-based metabonomics approach, perinatal

programming caused by both remote and cumulative ancestral

stress was manifested in altered metabolic profiles and anxious

behavior in the F4 generation. The programming was evident

by changes in relative concentrations of a number of key

metabolites, particularly hippurate, tyrosine, threonine, and

histamine. These metabolites are implicated in catecholamine

biosynthesis, immune responses, and microbial host interac-

tions in mammalian systems. The similarities between the

metabolic profiles of multigenerational and transgenerational

stress indicate that both cases share common metabolic path-

ways. When altered, these common metabolic pathways may

either lead to or be reflective of pathophysiological processes

resulting in impaired health. Identification of metabolic path-

ways affected by ancestral stress will help to determine

epigenetically regulated gene targets leading to stress-associ-

ated diseases, such as mental health disorders. Ultimately, this

will lead to a better understanding of the etiology of these

diseases and potential biomarker discovery.

Acknowledgments The authors acknowledge the assistance and

expertise of Michael Opyr in coding some of the MATLAB scripts

used for data analysis. This research was supported by the Alberta

Innovates-Health Solutions (AI-HS) Interdisciplinary Team Grant

#200700595 ‘‘Preterm Birth and Healthy Outcomes’’ (GM); the

Norlien/Palix Foundation, Alberta Family Wellness Initiative and the

Alberta Centre for Child, Family and Community Research (GM);

Natural Sciences and Engineering Research Council of Canada (GM),

the Canadian Institutes of Health Research #102652 (GM); and the

University of Lethbridge Health Research Accelerator Fund (HRAF;

GM and TM).

References

1. Kessler RC, Aguilar-Gaxiola S, Alonso J, Chatterji S, Lee S,

Ormel J, Ustun TB, Wang PS (2009) The golobal burden of

mental disorders: an update from the WHO World Mental Health

(WMH) Surveys. Epidemiol Psichiatr Soc 18(1):11

2. Hammen C (2005) Stress and depression. Annu Rev Clin Psychol

1:293–319. doi:10.1146/annurev.clinpsy.1.102803.143938

3. McEwen BS, Eiland L, Hunter RG, Miller MM (2012) Stress and

anxiety: structural plasticity and epigenetic regulation as a con-

sequence of stress. Neuropharmacology 62(1):3–12. doi:10.1016/

j.neuropharm.2011.07.014

4. Charil A, Laplante DP, Vaillancourt C, King S (2010) Prenatal

stress and brain development. Brain Res Rev 65(1):56–79. doi:10.

1016/j.brainresrev.2010.06.002

5. Crews D, Gillette R, Scarpino SV, Manikkam M, Savenkova MI,

Skinner MK (2012) Epigenetic transgenerational inheritance of

altered stress responses. PNAS 109(23):9143–9148. doi:10.1073/

pnas.1118514109

6. Zucchi FC, Yao Y, Ward ID, Ilnytskyy Y, Olson DM, Benzies K,

Kovalchuk I, Kovalchuk O, Metz GA (2013) Maternal stress

induces epigenetic signatures of psychiatric and neurological

diseases in the offspring. PLoS One 8(2):e56967. doi:10.1371/

journal.pone.0056967

7. Lumey LH, Stein AD, Susser E (2011) Prenatal famine and adult

health. Annu Rev Publ Health 32:237–262. doi:10.1146/annurev-

publhealth-031210-101230

8. Cao X, Laplante DP, Brunet A, Ciampi A, King S (2014) Prenatal

maternal stress affects motor function in 5(1/2)-year-old children:

project ice storm. Dev Psychobiol 56(1):117–125. doi:10.1002/

dev.21085

9. Schulz LC (2010) The Dutch Hunger Winter and the develop-

mental origins of health and disease. PNAS 107(39):16757–

16758. doi:10.1073/pnas.1012911107

10. Painter RC, Roseboom TJ, Bleker OP (2005) Prenatal exposure to

the Dutch famine and disease in later life: an overview. Reprod

Toxicol 20(3):345–352. doi:10.1016/j.reprotox.2005.04.005

11. Cao-Lei L, Elgbeili G, Massart R, Laplante DP, Szyf M, King S

(2015) Pregnant women’s cognitive appraisal of a natural disaster

affects DNA methylation in their children 13 years later: project

Ice Storm. Transl Psychol 5:e515. doi:10.1038/tp.2015.13

12. Van den Bergh HBR, Loomans ME, Mennes M (2015) Early life

influences on cognition, behavior, and emotion in humans: from

birth to age 20. Adv Neurobiol 10:315–331. doi:10.1007/978-1-

4939-1372-5_15

13. Veru F, Dancause K, Laplante DP, King S, Luheshi G (2015)

Prenatal maternal stress predicts reductions in CD4? lympho-

cytes, increases in innate-derived cytokines and Th2 shift in

adolescents: Project Ice Storm. Physiol Behav. doi:10.1016/j.

physbeh.2015.03.016

Fig. 6 Pearson correlations to assess the relationship between

anxiety-like behavior (i.e., average center distance traveled) and the

relative concentrations of histamine (a) and tyrosine (b). There were

positive correlations between the distance score and histamine

(r = 0.55, p = 0.0045), and tyrosine (r = 0.21, p = 0.177), indicat-

ing that a higher anxiety-like state was linked to lower histamine and

tyrosine concentrations

Stress transgenerationally programs metabolic pathways linked to altered mental health 4555

123

http://dx.doi.org/10.1146/annurev.clinpsy.1.102803.143938
http://dx.doi.org/10.1016/j.neuropharm.2011.07.014
http://dx.doi.org/10.1016/j.neuropharm.2011.07.014
http://dx.doi.org/10.1016/j.brainresrev.2010.06.002
http://dx.doi.org/10.1016/j.brainresrev.2010.06.002
http://dx.doi.org/10.1073/pnas.1118514109
http://dx.doi.org/10.1073/pnas.1118514109
http://dx.doi.org/10.1371/journal.pone.0056967
http://dx.doi.org/10.1371/journal.pone.0056967
http://dx.doi.org/10.1146/annurev-publhealth-031210-101230
http://dx.doi.org/10.1146/annurev-publhealth-031210-101230
http://dx.doi.org/10.1002/dev.21085
http://dx.doi.org/10.1002/dev.21085
http://dx.doi.org/10.1073/pnas.1012911107
http://dx.doi.org/10.1016/j.reprotox.2005.04.005
http://dx.doi.org/10.1038/tp.2015.13
http://dx.doi.org/10.1007/978-1-4939-1372-5_15
http://dx.doi.org/10.1007/978-1-4939-1372-5_15
http://dx.doi.org/10.1016/j.physbeh.2015.03.016
http://dx.doi.org/10.1016/j.physbeh.2015.03.016


14. Cao-Lei L, Massart R, Suderman MJ, Machnes Z, Elgbeili G,

Laplante DP, Szyf M, King S (2014) DNA methylation signatures

triggered by prenatal maternal stress exposure to a natural dis-

aster: Project Ice Storm. PLoS One 9(9):e107653. doi:10.1371/

journal.pone.0107653

15. Glover V, O’Connor TG, O’Donnell K (2010) Prenatal stress and

the programming of the HPA axis. Neurosci Biobehav R 35(1):

17–22. doi:10.1016/j.neubiorev.2009.11.008

16. Skinner MK, Manikkam M, Guerrero-Bosagna C (2010) Epige-

netic transgenerational actions of environmental factors in

disease etiology. Trends Endocrinol Metab 21(4):214–222.

doi:10.1016/j.tem.2009.12.007

17. Yao Y, Robinson AM, Zucchi FC, Robbins JC, Babenko O,

Kovalchuk O, Kovalchuk I, Olson DM, Metz GA (2014)

Ancestral exposure to stress epigenetically programs preterm

birth risk and adverse maternal and newborn outcomes. BMC

Med 12:121. doi:10.1186/s12916-014-0121-6

18. Gapp K, von Ziegler L, Tweedie-Cullen RY, Mansuy IM (2014)

Early life epigenetic programming and transmission of stress-

induced traits in mammals: how and when can environmental

factors influence traits and their transgenerational inheritance?

Bioessays 36(5):491–502. doi:10.1002/bies.201300116

19. Skinner MK, Manikkam M, Guerrero-Bosagna C (2011) Epige-

netic transgenerational actions of endocrine disruptors. Reprod

Toxicol 31(3):337–343. doi:10.1016/j.reprotox.2010.10.012

20. Roseboom TJ, Watson ED (2012) The next generation of disease

risk: are the effects of prenatal nutrition transmitted across gen-

erations? Evidence from animal and human studies. Placenta

33(Suppl 2):e40–e44. doi:10.1016/j.placenta.2012.07.018

21. Meaney MJ (2010) Epigenetics and the biological definition of

gene 9 environment interactions. Child Dev 81(1):41–79.

doi:10.1111/j.1467-8624.2009.01381.x

22. Iqbal M, Moisiadis VG, Kostaki A, Matthews SG (2012)

Transgenerational effects of prenatal synthetic glucocorticoids on

hypothalamic-pituitary-adrenal function. Endocrinology 153(7):

3295–3307. doi:10.1210/en.2012-1054

23. Zucchi FC, Yao Y, Metz GA (2012) The secret language of

destiny: stress imprinting and transgenerational origins of dis-

ease. Front Genet 3:96. doi:10.3389/fgene.2012.00096

24. Ambeskovic M, Soltanpour N, Falkenburg E, Zucchi F, Kold B,

Metz G (2016) Ancestral exposure to stress generates new

behavioural traits and a functional hemispheric dominance shift.

Cereb Cortex

25. Erickson ZT, Falkenberg EA, Metz GA (2014) Lifespan psy-

chomotor behaviour profiles of multigenerational prenatal stress

and artificial food dye effects in rats. PLoS One 9(6):e92132.

doi:10.1371/journal.pone.0092132

26. Skelin I, Needham MA, Molina LM, Metz GA, Gruber AJ (2015)

Multigenerational prenatal stress increases the coherence of brain

signaling among cortico-striatal-limbic circuits in adult rats.

Neuroscience 289:270–278. doi:10.1016/j.neuroscience.2015.01.

009

27. Francis D (1999) Nongenomic transmission across generations of

maternal behavior and stress responses in the rat. Science

286(5442):1155–1158. doi:10.1126/science.286.5442.1155

28. Champagne FA, Meaney MJ (2007) Transgenerational effects of

social environment on variations in maternal care and behavioral

response to novelty. Behav Neurosci 121(6):1353–1363. doi:10.

1037/0735-7044.121.6.1353

29. Wishart DS (2008) Quantitative metabolomics using NMR. TrAC

TrAC 27(3):228–237. doi:10.1016/j.trac.2007.12.001

30. Emwas A-HM, Salek RM, Griffin JL, Merzaban J (2013) NMR-

based metabolomics in human disease diagnosis: applications,

limitations, and recommendations. Metabolomics 9(5):1048–

1072. doi:10.1007/s11306-013-0524-y

31. Lindon JC, Nicholson JK, Holmes E, Everett JR (2000)

Metabonomics: metabolic processes studied by NMR spec-

troscopy of biofluids. Concepts Magn Res 12(5):32

32. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’:

understanding the metabolic responses of living systems to

pathophysiological stimuli via multivariate statistical analysis of

biological NMR spectroscopic data. Xenobiotica 29(11):9

33. Fiehn O (2002) Metabolomics—the link between genotypes and

phenotypes. Plant Mol Biol 48(155):17

34. Zheng P, Chen JJ, Huang T, Wang MJ, Wang Y, Dong MX,

Huang YJ, Zhou LK, Xie P (2013) A novel urinary metabolite

signature for diagnosing major depressive disorder. J Proteome

Res 12(12):5904–5911. doi:10.1021/pr400939q

35. Holmes E, Tsang TM, Huang JT, Leweke FM, Koethe D, Gerth

CW, Nolden BM, Gross S, Schreiber D, Nicholson JK, Bahn S

(2006) Metabolic profiling of CSF: evidence that early inter-

vention may impact on disease progression and outcome in

schizophrenia. PLoS Med 3(8):e327. doi:10.1371/journal.pmed.

0030327

36. Poland RE, Cloak C, Lutchmansingh PJ, McCracken JT, Chang

L, Ernst T (1999) Brain N-acetyl aspartate concentraions mea-

sured by 1H MRS are reduced in adult male rats subjected to

perinatal stress: preliminary observations and hypothetical

implications for neurodevelopmental disorders. J Psychiatr Res

33:11

37. Macri S, Ceci C, Canese R, Laviola G (2012) Prenatal stress and

peripubertal stimulation of the endocannabinoid system differ-
entially regulate emotional responses and brain metabolism in

mice. PLoS One 7(7):e41821. doi:10.1371/journal.pone.0041821

38. Dumas ME, Davidovic L (2015) Metabolic profiling and phe-

notyping of central nervous system diseases: metabolites bring

insights into brain dysfunctions. J Neuroimmune Pharmacol

10(3):402–424. doi:10.1007/s11481-014-9578-5

39. Serriere S, Barantin L, Seguin F, Tranquart F, Nadal-Desbarats L

(2011) Impact of prenatal stress on 1H NMR-based metabolic

profiling of rat amniotic fluid. Magma 24(5):267–275. doi:10.

1007/s10334-011-0260-0

40. Skinner MK (2008) What is an epigenetic transgenerational

phenotype? F3 or F2. Reprod Toxicol 25(1):2–6. doi:10.1016/j.

reprotox.2007.09.001

41. Chrousos G, Torpy DJ, Gold PW (1998) Interactions between the

hypothalamic-pituitary-adrenal-axis and the female reproductive

system: clinical implications. Ann Intern Med 129(3):12

42. Clancy B, Finlay BL, Darlington RB, Anand KJ (2007) Extrap-

olating brain development from experimental species to humans.

Neurotoxicology 28(5):931–937. doi:10.1016/j.neuro.2007.01.

014

43. Metz GA (2007) Stress as a modulator of motor system function

pathology. Rev Neurosci 18(3–4):13

44. Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAn-

alyst: a web server for metabolomic data analysis and

interpretation. Nucleic Acids Res 37(Web Server issue):W652–

W660. doi:10.1093/nar/gkp356

45. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS

(2012) MetaboAnalyst 2.0—a comprehensive server for meta-

bolomic data analysis. Nucleic Acids Res 40(Web Server

issue):W127–W133. doi:10.1093/nar/gks374

46. Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst

3.0-making metabolomics more meaningful. Nucleic Acids Res.

doi:10.1093/nar/gkv380

47. Yun Y-H, Liang F, Deng B-C, Lai G-B, Vicente Gonçalves CM, Lu
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