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Abstract Several integrated proteolytic systems con-

tribute to the maintenance of cellular homeostasis through

the continuous removal of misfolded, aggregated or oxi-

dized proteins and damaged organelles. Among these

systems, the proteasome and autophagy play the major role

in protein quality control, which is a fundamental issue in

non-proliferative cells such as neurons. Disturbances in the

functionality of these two pathways are frequently

observed in neurodegenerative diseases, like Alzheimer’s

disease, and reflect the accumulation of protease-resistant,

deleterious protein aggregates. In this review, we explored

the sophisticated crosstalk between the ubiquitin–protea-

some system and autophagy in the removal of the harmful

structures that characterize Alzheimer’s disease neurons.

We also dissected the role of the numerous shuttle factors

and chaperones that, directly or indirectly interacting with

ubiquitin and LC3, are used for cargo selection and

delivery to one pathway or the other.
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Abbreviations

AD Alzheimer’s disease

CMA Chaperone-mediated autophagy

UPS Ubiquitin–proteasome system

mTOR Mammalian target of rapamycin

LC3 Microtubule-associated protein light 3

NBR1 Neighbour of BRCA1 gene

Alfy Autophagy-linked FYVE protein

HDAC6 Histone deacetylase 6

NDP52 Nuclear dot protein 52

VCP Valosin containing protein

OPTN Optineurin

BAG Bcl-2-associated athanogene

AbPP Amyloid precursor protein

Introduction

The maintenance of cellular homeostasis, cellular function

and viability is mediated at least in part by extensive and

specialized proteolytic systems that continuously process

and remove intracellular misfolded proteins [1–3]. Protein

degradation is critical in cell quality control, being central

in numerous pathways such as cell cycle, cell growth and

differentiation, apoptosis, regulation of transcriptional

factors, carcinogenesis, and immune/inflammatory

responses [1]. Disturbances in intracellular proteostasis

trigger the accumulation of altered proteins and toxic

aggregates that are widely recognized hallmarks of neu-

rodegenerative diseases, including Alzheimer’s disease

(AD) [4]. Misfolded, unfolded or oxidized proteins expose

hydrophobic regions normally hidden in their native con-

formation, thus being highly reactive to form oligomeric

complexes. The harmful effect of such modifications is a

deleterious gain of toxic function. In fact, oligomers rep-

resent the effective toxic specie responsible for synaptic

and neuronal dysfunctions whereas large and insoluble

aggregates work as reservoirs of bioactive oligomers [5–7].
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In addition, neurons are post-mitotic cells unable to dilute

or remove abnormal protein aggregates via cell division

and therefore are more sensitive to these toxic proteina-

ceous species compared to mitotic cells.

In AD, deposits of amyloid-b (Ab) peptides and

hyperphosphorylated tau protein derived from peptide/

protein misfolding and aggregation that ultimately produce

amyloid plaques and neurofibrillary tangles [8]. The major

consequence of the accumulation of such pathogenic

aggregates is the downregulation of proteolytic pathways

triggering a feed-forward loop that in the end destroy

essential proteolytic networks. Eukaryotic cells contain a

diverse set of proteases that mediate protein degradation

and protein cleavage [9]. However, two proteolytic

machineries, namely the proteasomal system and autop-

hagy, regulate the majority of protein catabolism and the

interdependent regulation of these two sophisticated sys-

tems is responsible for overall protein quality control and

proteostasis. Autophagy, literally ‘‘self-eating’’, is a pro-

teolytic process in charge of the recycling of both

extracellular and intracellular components. Autophagic

pathways are divided into macroautophagy, chaperone-

mediated autophagy (CMA) and microautophagy,

depending on the mechanism by which cellular cargoes are

delivered to the lysosome [10]. Proteolysis by autophagy is

finally mediated by lysosomal hydrolytic enzymes, such as

phosphatases, nucleases, glycosidases, proteases, pepti-

dases, sulfatases, and lipases [11]. In details, autophagy

mediates the digestion of exogenous particles and long-

lived proteins, and contributes to the renewal of damaged

and/or dysfunctional organelles [1, 12, 13]. Numerous

papers reported on the occurrence of disturbances in

autophagy in several human neurodegenerative disorders

[11, 14]. For example, in AD an altered lysosomal acidi-

fication and the lysosomal proteolytic disruption are major

contributors to autophagy failure and its pathological

consequences [15]. The inactivation of the autophagy-re-

lated proteins 5 or 7 (Atg5 and Atg7, respectively) leads to

neurodegeneration with abnormal increase of intracellular

proteins in inclusions bodies [16, 17]. Moreover, AD

patients with the familial amyloid precursor protein

(AbPP) Swedish mutation showed the accumulation of

markers of the autophagy-lysosomal pathway and their

colocalization with hyperphosphorylated tau protein [18].

The proteasomal proteolytic system, in turn, mediates

the degradation of short-lived, oxidatively damaged,

modified and misfolded proteins (collectively accounting

for more than 70–80 % of intracellular proteins) both in

the cytoplasm and the nucleus [19]. Proteasome targets

include also regulatory proteins such as cyclins (cyclins

A, B, D and E), cyclin-dependent kinases, cyclin-depen-

dent kinase inhibitors (p21 and p27), inhibitory proteins

(Fos and Myc) and tumour suppressors (cyclin B1, p53),

the degradation of which is a key event in cell cycle

progression [20–28]. Proteasome activity differs from the

lysosomal-dependent proteolysis because proteasome-

mediated protein degradation occurs at neutral pH and

does not require calcium or organelle compartmentaliza-

tion. The 20S proteasome can degrade substrates either

alone or in association with regulatory particles to form a

complex, the 26S proteasome, which specifically recog-

nizes ubiquitin (Ub)-tagged proteins [19, 29]. This 26S-

mediated pathway of protein degradation is known as the

Ub-proteasome system (UPS) and most of its substrates,

as mentioned, have to be polyubiquitinated. Ubiquitina-

tion is a post-translational modification that forms an

isopeptide bond between a substrate lysine residue and the

C-terminus of Ub and requires a complex system of four

different kinds of enzymes (known as E1–E2–E3–E4) [19,

30, 31]. The proteasome takes part in the ‘‘quality con-

trol’’ of newly synthesized proteins in association with the

endoplasmic reticulum (ERAD, endoplasmic reticulum

associated degradation). This pathway assures that

improperly folded proteins in the ER are targeted for

degradation by the UPS [32, 33]. Different molecular

chaperones, such as heat shock proteins (Hsps), help both

newly synthesized and misfolded proteins reaching/

restoring their native and nontoxic conformation. If

unsuccessful, irreversibly damaged proteins are driven to

the UPS for final degradation [34–37]. Several studies

described dysfunctions in proteasome functionality in

neurodegenerative diseases, including AD [38–40]. In

particular, it was observed that the accumulation of

abnormal deposits of pathogenic proteins, like prion

protein, a-synuclein and huntingtin protein, inhibits the

functionality of some UPS components, including the

proteasome [41–43]. The proteasome and autophagic

pathways were long considered as distinct and indepen-

dent proteolytic systems. Conversely, numerous

publications recently highlighted their intimate correla-

tion and a considerable interplay between them, with the

downregulation of one clearance machinery resulting in

compensatory changes in the other pathway [4, 44].

Several proteins, including sequestosome 1/p62

(SQSTM1/p62), neighbour of BRCA1 gene (NBR1),

histone deacetylase 6 (HDAC6), optineurin (OPTN),

nuclear dot protein 52 (NDP52), valosin containing pro-

tein (p97/VCP), autophagy-linked FYVE protein (Alfy)

and Bcl-2-associated athanogene (BAG) proteins, serve as

linkers between the two pathways facilitating this inter-

play, and possess the ability to directly or indirectly

associate with both ubiquitin and components of the

autophagic system. This review article focuses on the role

of the proteasome and autophagy in AD, with a particular

emphasis on their crosstalk and on the molecules that

mediate this interplay.
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The proteasomal system

The 20S proteasome

The proteasomal system regulates the intracellular

degradation of oxidized proteins and transcriptional fac-

tors, and controls signal transduction, immune response,

carcinogenesis, cell division, growth and differentiation,

DNA repair, morphogenesis of neuronal networks, and

apoptotic process [1, 19, 29]. The main particle of this

machinery is the 20S proteasome that possesses the cat-

alytic activities responsible for substrate degradation.

Numerous studies suggest that its structure and biogenesis

are highly conserved from yeast to mammals [31, 45]. The

20S proteasome is a large, barrel-shaped complex with a

molecular weight of about 700 kDa and constitutes up to

1 % of the total cellular protein. It consists of four stacked

rings, two a-rings and two b-rings, delimiting an internal

cavity and arranged as follows: abba. Each ring is made

of seven distinct subunits leading to a definitive config-

uration a(1–7)b(1–7)b(1–7)a(1–7). The b-rings define the

main internal chamber of the complex and carry the cat-

alytic activity, whereas the outer a-rings regulate the

substrate enter into the catalytic chamber and the binding

of different regulatory proteins [31, 46]. Mutagenesis

studies characterized subunits b1, b2 and b5 as the sub-

units responsible for the catalytic activities. Subunit b1 is

associated with the caspase activity and possesses a lim-

ited branched chain amino acid preferring (BrAAP)

activity whereas subunit b2 has the trypsin-like (T-L)

activity. Subunits b5 accounts for the chymotrypsin-like

(ChT-L) activity, but given its tendency to cleave after

small neutral and branched side chains also the SNAAP

and BrAAP activities can be assigned to this subunit [46,

47]. Substrates degradation originates small peptides with

an average length of 8-12 amino acids. Studies of pro-

teasome-mediated degradation revealed that the

nucleophilic attack is mediated by the N-terminal thre-

onine of the three catalytic b subunits [48]. This feature

classifies the proteasome as a member of the N-terminal

nucleophile amino-hydrolase family. The free 20S pro-

teasome constitutes a major portion of the total amount of

proteasomes in cells suggesting an independent involve-

ment of this complex in intracellular proteolysis [49]. The

20S proteasome is usually found in its ‘‘inactive’’ form

but regulatory proteins, unfolded proteins or proteasomal

substrates can eventually activate it. Proteasome-medi-

ated protein degradation requires the substrate unfolding

and the contemporary opening of the gate formed by the

N-terminal ends of the a2, a3 and a4 subunits in the outer

rings. Furthermore, hydrophobic residues exposed by

damaged or improperly folded proteins make the proteins

susceptible to degradation and induce proteasome con-

formational changes favouring its proteolytic activity

[50].

The ubiquitin–proteasome system (UPS)

The interaction of the regulatory particle 19S with both a
rings of the 20S proteasome generates a 2 MDa large

complex, the so-called 26S proteasome, which is the main

proteolytic component of the Ub pathway and responsible

for the ATP-dependent degradation of Ub-tagged sub-

strates [29, 51]. Ub is a 76 amino acid protein highly

conserved and universally distributed among eukaryotes,

with only three amino acids differing between yeast and

human Ub [52]. Ub tagging controls and directs substrates

for final degradation and recycling, and regulates key cel-

lular processes including gene transcription, cell cycle

progression, DNA repair, apoptosis, virus budding and

receptor endocytosis [53]. Degradation of a protein via the

UPS encompasses a cascade of enzymatic reactions. The

first step regards the generation of a polyubiquitin chain

and its covalent conjugation to the protein substrate,

whereas the second step consists in the degradation of the

tagged protein by the 26S proteasome (Fig. 1) [51]. Sub-

strate ubiquitination is a very complex process that requires

the presence of four different classes of enzymes: E1 (Ub

activating enzymes)—E2 (Ub-carrier proteins or Ub-con-

jugating enzymes, Ubcs)—E3 (Ub-protein ligases)—E4

(Ub conjugation factor). E1 activates, ATP-dependently,

Ub in its C-terminal glycine residue. After activation, E2

transfers Ub from E1 to a member of the Ub-protein ligase

family, E3, to which the substrate protein is specifically

bound [19, 51]. This enzyme catalyses the third step in the

conjugation process, the covalent attachment of Ub to a

lysine (K) residue of the substrate. After this, both E2 and

E3 are released. The cyclic transfer of more Ub-molecules

to the first Ub attached to the substrate is performed by

these enzymes and by another enzyme, E4, and the so-

formed chain serves as the recognition signal for the final

degradation [19, 51, 54, 55]. Once the degradation is

completed, deubiquitinating enzymes, such as the ubiquitin

carboxyl-terminal hydrolase L1 (UCHL1), release the

single Ub-molecules from the Ub chains, in order to

maintain the free pool of cellular Ub and to guarantee the

formation of new chains [51]. Ub can be attached to the

substrate as a single molecule at one or more amino acidic

residues (respectively, monoubiquitination and multiple

monoubiquitination) or as a polyubiquitin chain [56].

Monoubiquitination mainly regulate processes such as

DNA repair, viral budding, and transcriptional regulation,

whereas multiubiquitination is the principal signal for

receptor endocytosis [57, 58]. Depending on which of the
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seven lysines of Ub is tagged (K6, K11, K27, K29, K33,

K48, or K63) a protein will be transferred for degradation

to the proteasome or to an autophagosome. Although the

biological role of polyubiquitination is still under debate,

the ‘‘classical’’ attachment of the C-terminus of one ubiq-

uitin to the K48 of an adjacent Ub (a chain of at least four

Ub moieties is necessary), is considered an established

marker for proteasomal degradation, whereas substrates

with single Ub-molecules or polyubiquitin chains that are

attached on other lysine residues, mainly K63, are destined

to the autophagosomes [53, 59]. Specific cellular proteins

prevent the association of K63 Ub chains with protea-

somes. Nathan et al. showed that proteins ESCRT

(Endosomal Sorting Complex Required for Transport) and

its components, STAM and Hrs, strongly associate with

K63-ubiquitinated proteins and block their binding to

proteasomes. In addition, they found that the Rad23 pro-

teins, associate specifically with K48 conjugates and

promote their binding to the 26S complex [60]. However,

the possibility that also unconventional polyubiquitin

chains linkages, including those on K11 and K63, are

involved in proteasome-mediated proteolysis has not been

excluded [53, 61, 62]. Upon K63-linked ubiquitination,

adaptor molecules drive ubiquitinated substrates towards

autophagy degradative pathway. The p62 protein is one of

the most studied among these molecules and interacts with

a higher affinity with monoubiquitinated and K63 polyu-

biquitinated chains through its Ub-associated (UBA)

domain. Interestingly, in condition of proteasomal dys-

functions, p62 can also recognize K48-linked chains

bringing them to the autophagosome [63]. Similarly,

HDAC6 and NBR1, showing preference for K63-linked

polyubiquitin chains, favour autophagic removal of protein

aggregates [64–66]. Besides their role in directing sub-

strates toward autophagy, K63-linked chains are involved

in DNA repair, inflammation, apoptosis, internalization of

plasma membrane proteins, and protein sorting to multi-

vesicular bodies [67–71]. In a broad spectrum of human

neurodegenerative disorders, the biogenesis and autop-

hagy-mediated clearance of inclusion bodies are enhanced

and facilitated by K63-linked Ub modifications [72, 73].

Components of the ubiquitination process and the nature of

Fig. 1 Schematic representation of the collaboration among UPS,

autophagic pathways and molecular adaptors. a The ubiquitination

process is the first event in the removal of misfolded/aggregated

proteins or cellular organelles. b Attachment of the protein substrate

to a K48/K11-linked Ub chain is the signal for 26S proteasome-

mediated degradation. The chaperone BAG-1 selects substrates for

proteasome degradation. c K63-linked Ub chains tag substrates to the

autophagosome. p62, NBR1, NDP52 and OPTN directly associate

with Ub and LC3 driving ubiquitinated cargo to the autophagosome

for final degradation. BAG3 and Alfy vehicle substrates to the

autophagic pathway. Under condition of proteasomal impairment,

HDAC6 and p97 favour the autophagic removal of aggregates. d The

autophagosome fuses with the lysosome and the protein cargo is

finally degraded in the lysosomal lumen by the action of specific

hydrolases
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the Ub linkage play a critical role in AD. The overex-

pression of the E3 ligase parkin decreases Ab load and

gliosis in the brain of AD transgenic mice and its overex-

pression protects against deficits in memory, locomotion

and neuropsychiatric behaviours [74]. In addition, parkin

acts decreasing intracellular Ab levels and extracellular

plaque deposition, attenuating caspase activity, preventing

mitochondrial dysfunction and oxidative stress and restor-

ing neurotransmitter synthesis [75]. UCHL1 increases free

Ub level and accelerates the lysosomal degradation of

AbPP by promoting its ubiquitination. Furthermore, over-

expression of UCHL1 reduces Ab production and

ameliorates classical AD symptoms in a transgenic mouse

model suggesting that UCHL1 may be a safe and effective

disease-modifying strategy to treat AD [76]. Interestingly,

the final degradation of UCHL1 by the autophagy-lysoso-

mal pathway is controlled by its parkin-mediated K63-

linked polyubiquitination [77].

Autophagy

Autophagy is a highly conserved system of quality control

by which cells capture intracellular components and deliver

them to the lysosomal compartment where they are finally

degraded [78]. The products of this degradation are recy-

cled for the synthesis of new molecules. Nutrient

deficiency or other stress conditions upregulate this cata-

bolic process in order to either provide the cells for

alternative energy metabolism pathways or remove toxic

components thus maintaining cellular homeostasis [79].

Autophagy was originally considered a non-selective

pathway induced in response to stressful environment but

recently it emerged as a highly selective process involved

in the clearance of dysfunctional organelles, protein

aggregates and intracellular pathogens [80, 81]. Mounting

evidences implicate autophagy flaws in numerous neu-

rodegenerative conditions, particularly AD [15–18]. In

mammalian cells, there are three distinct types of autop-

hagy differing in the way cargo proteins are delivered to

the lysosomes: macroautophagy, CMA and microau-

tophagy [82]. Only proteins can be delivered to lysosomes

via CMA, whereas macroautophagy and microautophagy

concern the degradation of proteins and organelles [83].

Macroautophagy

Macroautophagy is a conserved process and the major

lysosomal degradative pathway involving more than 30

autophagy-related genes (Atgs) [84]. The process starts

with the formation of double-membrane vesicles (phago-

phore) originated from the ER/Golgi, which engulfs the

cytoplasmic cargo forming the autophagosome [79, 83].

Once formed, autophagosomes move along microtubules

toward the perinuclear microtubule-organizing centre

(MTOC) of the neuron, where the concentration of lyso-

somes is higher [85]. In response to specific stimuli, such

as nutrient deprivation or rapamycin treatment, the activity

of autophagy-inhibitory complexes (such as the mam-

malian target of rapamycin or mTOR, a serine–threonine

kinase) is inhibited, contributing to autophagy activation.

The autophagosome formation process consists of three

phases: initiation, nucleation and elongation of the mem-

brane. The unc-51-like kinase (ULK1) complex is activated

upon the dissociation from mTOR and induces the pha-

gophore. Membrane nucleation involves the formation of a

complex between beclin-1 (BECN1, the mammalian

homologue of Atg6) and phosphatidylinositol 3-kinase

(PI3K), whose components are BECN1, PIK3, activating

molecule in BECN1-regulated autophagy protein 1

(AMBRA1), vacuolar protein sorting 34 (Vps34), vacuolar

protein sorting 15 (Vps15), and Atg14. ULK1 phosphory-

lates AMBRA1 and, upon phosphorylation, BECN1

promotes the local production of the lipid signalling

molecule phosphatidylinositol 3-phosphate (PI3P) by

Vps34 that recruits other Atg proteins allowing the

expansion of the autophagosomal membrane [81]. The

elongation step requires Atg3, Atg4, Atg7, Atg10, and an

Atg5-Atg12-Atg16L1 complex to conjugate phos-

phatidylethanolamine (PE) to LC3 (microtubule-associated

protein light 3). LC3 is the mammalian homologue of Atg8

and exists in two forms, namely LC3-I (cytosolic) and

LC3-II (membrane-bound). In this phase, LC3-I is recrui-

ted into the autophagosome where LC3-II is generated by

site-specific proteolysis and covalent conjugation to PE,

leading to the translocation of LC3 from cytoplasm to the

membrane of the forming autophagosomes. This event

contributes to the closure of the membrane and to the

complete formation of the autophagosome [85, 86]. In the

final step, the autophagosome merges with the lysosome

that releases hydrolases, resulting in the degradation of the

autolysosome content. The fusion process is regulated by

several proteins such as the lysosome-associated membrane

protein type 2A (LAMP2), the Rubicon-UVRAG complex,

the soluble N-ethylmalemide sensitive factor attachment

protein receptor (SNAREs), homotypic fusion and protein

sorting (HOPS), Ras [rat sarcoma] like in rat brain (Rab),

ESCRT, and LC3 [78]. Autophagy can also be induced in a

mTOR-independent manner with compounds that decrease

inositol (Ins) or inositol 1,4,5-trisphosphate (IP3) levels in

the phosphoinositol-signalling pathway. These agents

include drugs such as lithium and L-690,330 that inhibit

inositol monophosphatase (IMPase), and carbamazepine

and sodium valproate that inhibit inositol synthesis [87–

89]. Besides the non-selective engulfment, the autophago-

somal vesicle membrane can also selectively recognize its
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substrates, particularly in the case of damaged organelles or

aggregated proteins. Selective autophagy recognizes ubiq-

uitinated cargos through molecular adaptors including p62,

NBR1, ALFY, NDP52, VCP and OPTN, which bind on

one side to Ub and, on the other end, to autophagosome-

specific proteins, such as LC3 (Fig. 1) [85]. These regu-

latory proteins together with ubiquitinated substrates and

heat shock proteins, like Hsp70, are components of

aggresomes. These structures are transient cytoplasmic

inclusions that serve as storage sites for misfolded/dam-

aged proteins and their aggregates that are not immediately

delivered to autophagosomes or degraded by the UPS, thus

minimizing their toxicity [90, 91]. In this selective form of

macroautophagy, known as aggrephagy, harmful proteins

are packaged into larger insoluble structures and driven to

the MTOC near the nucleus with the aid of HDAC6, a key

regulator of this pathway [90].

Chaperone-mediated autophagy (CMA)

Chaperone-mediated autophagy is a selective form of

autophagy that differs from the above-described autopha-

gic pathway in that vesicles are not involved in the

transport of the cytosolic component to the lysosomes.

Indeed, it regards the degradation of cytosolic proteins

harbouring in their primary sequence the consensus pen-

tapeptide motif KFERQ, which is recognized by the

cytosolic chaperone heat shock cognate protein of 70 kDa

(Hsc70). This binding is necessary for the lysosomal

degradation of the substrate protein [92]. CMA is a multi-

step process including cargo recognition and lysosomal

targeting, substrate binding and unfolding, substrate

translocation and lysosomal degradation. Once identified,

the substrate is unfolded and targeted by Hsc70 in the

presence of co-chaperones (BAG1, Hip, Hop, and Hsp40/

DNAJB1, Hsp90) that modulate the interaction [93]. At

this point, the complex moves to the lysosomal membrane

where it interacts with the cytosolic region of the mono-

meric form of the protein LAMP-2A. The multimerization

of this single-span membrane protein is then necessary for

substrate translocation into the lysosomal lumen where the

rapid degradation finally occurs [94, 95]. Interestingly,

dynamic organization of LAMP-2A at the lysosomal

membrane is specifically regulated by the functional

interaction between Hsc70 and Hsp90. In details, Hsc70

was suggested to promote the organization of LAMP-2A

into monomers or smaller complexes whereas the stability

of LAMP-2A during the formation of the multimeric

complex is maintained through its interaction with a form

of Hsp90 located at the lysosomal membrane [96]. Clearly,

the coordinated activity of all the chaperones participating

in this process is essential for the correct unfolding of the

substrate and for its translocation and final degradation in

the lysosome. Interestingly, an internal direct crosstalk

exists between CMA and macroautophagy, with the

blockage of macroautophagy leading to up-regulation of

CMA [97].

Microautophagy

Microautophagy is the third form of autophagy, well

characterized in yeast but not completely in eukaryotic

cells [98]. It is a constitutive process but both rapamycin

and starvation can induce it. Major functions of microau-

tophagy are the maintenance of organelles size, membrane

composition and cell survival under condition of nitrogen

restriction [99]. In microautophagy, the transfer of protein

substrates into the lysosomes occurs through a direct

invagination of the lysosomal membrane resulting in

vesicles budding into the lumen of the lysosome. These

vesicles then pinch off into the lysosomal lumen and are

degraded by lysosomal proteases [79, 100]. For small

particles and some proteins (non-selective microau-

tophagy), the vacuolar membrane forms tubular

invaginations from which small microautophagic vesicles

pinch off. Conversely, when the degradation regards larger

structures, including organelles, localized interactions with

the vacuolar membrane and/or finger-like protrusions of

the vacuole surround the targeted cellular component des-

tined for degradation [100, 101]. Selective forms of

microautophagy were mainly described in yeasts and

regard the degradation of peroxisomes (micropexophagy),

of non-essential portions of the nucleus, and of mitochon-

dria (micromitophagy) [99]. A novel form of

microautophagy, named endosomal microautophagy, was

shown to share molecular components, such as the Hsc70

protein, with both the other autophagic pathways and to

contribute to the degradation of cytosolic elements upon

internalization in late endosomes [102, 103].

UPS and autophagy in AD

UPS and autophagy play a crucial role in the processing of

proteins involved in the onset of AD and their activities are

heavily downregulated by protein aggregates in AD neu-

rons. The proteasome participates in Ab degradation and,

at the same time, is affected by Ab. In a 2003 research,

Lopez Salon et al. demonstrated that the inhibition of the

26S proteasome with lactacystin promoted a marked

decrease in Ab42 in primary cultures of cortical neurons

and astrocytes, suggesting that the peptide could be a

possible substrate of this enzymatic complex [104].

Treatment of neuronal cells with different Ab peptides and

with aggregated forms of the amyloid protein induced a

strong inhibition of the proteasomal complex [104–106].
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Ab oligomers accumulation is responsible for neuronal

cells death in transgenic mice through the induction of ER

stress, endosomal/lysosomal leakage, and mitochondrial

dysfunction [107]. Furthermore, through the degradation of

the c-secretase activating protein (GSAP) the proteasome

system regulates AbPP metabolism and Ab formation

[108]. In addition, several research groups established that

full-length AbPP undergo degradation by the UPS upon

ubiquitination and that, when proteasome activity is

inhibited, AbPP co-localizes and interacts with aggresome

markers [109–112]. There are evidences that indicate the

UPS as responsible for tau protein degradation, albeit other

studies suggest that tau is not an effective substrate of the

proteasome [113, 114]. In AD neurons, tau becomes

hyperphosphorylated and forms filamentous inclusions

called paired helical filaments (PHFs), which are the main

constituents of neurofibrillary tangles (NFT). In vivo and

in vitro experiments using lactacystin showed the accu-

mulation, insolubility and ubiquitination of tau proteins and

of phosphorylated tau, respectively [115, 116]. Numerous

evidences indicate the presence of tau aggregates in

immunoprecipitates of proteasome subunits and the local-

ization and accumulation of Ub in both PHFs and NFTs

[39, 117]. These findings identify bound PHF-tau as the

reason for impaired proteasome function in AD brain [39].

In addition, it was shown that tau removal might be

accomplished by the 20S and 26S proteasomes, thus both

in Ub-independent and Ub-dependent (and ATP-depen-

dent) manner [118, 119]. The development of proteasome

inhibition in AD can be also due to Ab- and tau-indepen-

dent mechanisms, including mutations in genes encoding

for components of the UPS and excessive oxidative stress.

A mutant form of Ub B, the UBB?1 protein, is known to

accumulate in disease-specific aggregates, to inhibit the

proteasome and therefore to contribute to the disease pro-

gression [120, 121]. Recently, Bilguvar et al. identified a

homozygous missense mutation within the Ub-binding

domain of UCHL1 that almost completely abolish the

hydrolase activity leading to a childhood-onset multisys-

tem neurodegenerative syndrome and definitely linking the

loss of UCHL1 function with a broad range of neurode-

generations [122]. Abnormal levels of oxidative and

nitrosative stress favour both structural modifications of the

proteasome, such as protein carbonyls, 4-hydroxynonenal-

conjugation, neuroprostane-conjugation, and increased

levels of oxidized substrates, this latter associating with the

loss of the 20S proteasome activity [38, 123, 124]. UCHL1

is an extremely susceptible target of oxidative damage and

numerous findings, based also on redox proteomics anal-

ysis, evidenced its specific oxidative modifications in AD

brains, including carbonyl formation, methionine and cys-

teine oxidation providing an additional direct link between

oxidative damage to the proteasomal machinery and the

pathogenesis of AD [125–127].

Autophagy is considerably involved in amyloid degra-

dation [128]. Autophagy and the BECN1–PIK3C3 complex

regulate AbPP processing in AD [129]. Autophagic vac-

uoles contain AbPP and are highly enriched in active

enzymes needed to generate Ab (c-secretase components,

b-secretase activity and, to a lesser extent, BACE and c-

secretase activity) [130]. The autophagic-lysosomal system

plays a role in the clearance of tau and the use of autophagy

inhibitors delays tau degradation and favours the formation

of high molecular weight species of tau including oligo-

mers and insoluble aggregates [131]. Additionally,

autophagy stimulation successfully reduces the number of

tau inclusions and improves nerve cell survival in a mouse

model of human tauopathy [132]. The lysosomal hydrolase

cathepsin D was shown to degrade tau proteins in cultured

hippocampal slices [133]. The involvement of autophagy in

the pathology of AD is extensively documented. The

observation in AD human brain tissues of accumulated

autophagic and lysosomal markers indicated a defect of the

autophagosome–lysosome pathway that contribute to the

development of tau pathology [18]. The analysis of neo-

cortical biopsies from AD brains revealed the striking

accumulation of immature autophagic vacuoles in dys-

trophic neurites, suggesting that their transport and

maturation to lysosomes may be impaired in such neu-

rodegenerative condition [134]. Again, AD-associated

disruption of lysosomal proteolysis slowed the axonal

transport of autolysosomes, late endosomes, and lysosomes

and caused their selective accumulation within dystrophic

axons [135]. Presenili-1 was shown to be fundamental for

correct lysosomal acidification and its mutations that are

responsible for an early-onset form of AD determine a

defective lysosomal proteolysis [136]. In the brain at early

stages of sporadic AD and in the PS1/AbPP transgenic

mouse model of AD pathology, macroautophagy is both

induced and impaired, leading to the accumulation of Ab-

containing autophagic vacuoles within affected neurons

[137]. Defective autophagic recycling of mitochondria and

consequent mitochondria accumulation were observed in

hippocampal brain samples of sporadic AD patients [138].

CMA is involved in normal tau degradation upon Hsc70

recognition of one of the two targeting motifs in the tau

sequence. Differently, mutant tau variants, once bound to

LAMP-2A, are only partially internalized and they

remained associated with the lysosomal surface where they

form oligomeric structures. This process alters the lysoso-

mal membrane integrity and blocks the normal lysosomal

functionality finally contributing to AD pathogenesis [139].

Besides tau, the regulator of calcineurin 1 (RCAN1) rep-

resents another link between CMA and AD. The
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degradation of RCAN1 is mediated by the proteasome and

CMA and, as observed in AD and Down syndrome

patients, their inhibition contributes to RCAN1 overex-

pression in the brain, which may eventually lead to

disrupted neural function and neurodegeneration [140]. It

has been suggested that the effects of mutant tau and the

abnormal levels of RCAN1 are interconnected and both

contribute to the severity of the AD pathology [95].

The AD neuropathology, with the associated alterations

in both UPS and autophagy, frequently characterizes Down

Syndrome (DS)-affected subjects, with an early onset

usually after the age of 40. Since numerous similarities

exist between the two pathological conditions, DS is con-

sidered an optimal model for the study of the

pathophysiological events that occur early in AD. This

disorder is a genetic condition due to the partial or com-

plete triplication of chromosome 21, which harbours the

gene encoding for the AbPP resulting in premature and

excessive amyloid production and deposition. Recent

findings suggest that DS brains are extremely vulnerable to

oxidative stress and, prior to significant AD pathology,

show early disturbances of the proteostasis network pos-

sibly linked to this increased oxidative condition. In details,

Di Domenico et al. found general oxidative damage in

lipids and proteins, such as glucose-regulated protein 78,

UCH-L1, cathepsin D, V0-type proton ATPase subunit B

and glial fibrillary acidic protein, which coupled with

decreased activity of the proteasome and impaired autop-

hagy [141, 142]. These data indicate that oxidative damage

accumulation is a central event in DS and that, dramatically

altering proteostasis network, it ultimately contributes to

the development of AD pathogenesis.

UPS and autophagy crosstalk in AD

The UPS and autophagy were extensively considered as

two essentially independent cellular catabolic pathways

with difference in substrates, mechanisms and speed of

degradation (autophagy is a slower process). Neverthe-

less, recent advances strongly suggest that their activities

are carefully orchestrated and some crosstalk mechanisms

have been suggested. Interestingly, the two pathways can

both degrade ubiquitinated substrates and share common

substrates, such as a-synuclein and regulatory proteins

[143]. In addition, under specific conditions, autophagy

can selectively degrade short-lived proteins, whereas the

UPS can degrade long-lived proteins [144, 145]. In neu-

rodegenerative conditions, where the accumulation of

toxic species becomes prominent, cells can reorganize

proteolysis regulating the communication between the

two proteolytic pathways. Furthermore, the accumulation

of amyloid-b plaques, a major hallmark of the pathology,

is influenced by both the UPS system and autophagy [146,

147]. When one proteolytic system is damaged and shows

a reduced functionality, the enhanced activity of the other

pathway may become a compensatory mechanism nec-

essary to protect neuronal cells against the accumulation

of toxic species. An example of the inter-regulation

between the UPS and autophagy is the observation that

impairment in the UPS-mediated degradation leads to an

increased autophagic function. The activation of this

compensatory mechanism allows cells to reduce the

number of aggregates formed in response to proteasomal

inhibition [148, 149]. Pandey et al. found that HDAC6-

dependent compensatory autophagy was induced in Dro-

sophila melanogaster in response to mutations affecting

the proteasome, suggesting that damages to the autopha-

gic pathway might predispose to neurodegenerative

processes [149, 150]. Similarly, Iwata et al. demonstrated

the induction of the autophagosome formation in response

to impaired UPS activity. They described an HDAC6-

dependent retrograde transport on microtubules respon-

sible for the recruitment of autophagy-related proteins and

lysosomes to pericentriolar cytoplasmic inclusion bodies.

This mechanism efficiently and selectively enhanced the

autophagic degradation of aggregated huntingtin [151].

We previously dissected the regulation of the two prote-

olytic systems in SH-SY5Y cells overexpressing either

the wild-type AbPP gene or the 717 valine-to-glycine

AbPP-mutated gene. The overexpression of the AbPP,

besides increasing oxidative stress, correlated with a

reorganization of the cellular proteolytic machineries with

marked inhibition of proteasome activities, impairment in

the autophagic flux and increased HDAC6 expression as

an attempt to activate compensatory autophagy [152].

Interestingly, we observed that the induction of pharma-

cological inhibition of one system promoted a

compensatory reaction of the other, with a bidirectional

effect [153]. Furthermore, the wild-type or mutated AbPP

sequence influenced proteasome or autophagy activities in

response to treatment with specific inhibitors and, upon

MG132 administration, significantly enhanced the induc-

tion in cathepsin B [153]. Using the same AD model, we

recently demonstrated that ghrelin, an orexigenic hor-

mone involved in the onset and progression of

neurodegenerative disorders, affects the crosstalk between

UPS and autophagy successfully promoting the protea-

some functionality in response to a compromised

autophagy [154]. The induction of proteasomal inhibition

in embryonic rat cortical neurons activated macroau-

tophagy and the lysosomal pathway with the resulting

dissolution of ubiquitinated inclusions into small aggre-

gates, without a direct influence on neuronal cell death

[155].
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Molecules mediators of the crosstalk

Numerous proteins mediators with crucial regulatory roles

in the UPS-autophagy crosstalk in AD have been identified

and classified based on their ability to bind or not the

ubiquitin protein and the autophagy-related protein LC3.

Proteins and their domains are summerized in Fig. 2 and

their role and function are reviewed below.

p62

p62, also called SQSTM1, is a highly conserved cytosolic

protein that functions as an adaptor molecule driving

ubiquitinated proteins to the autophagic cascade [156]. p62

was detected in inclusion bodies in many protein confor-

mational diseases, including Lewy bodies-containing a-

synuclein in Parkinson’s disease, neurofibrillary tangles of

tau protein in AD and huntingtin aggregates in Hunting-

ton’s disease [157, 158]. p62 itself is then removed by

autophagy and accumulates in the cell when this pathway is

altered. p62 contains numerous interacting motifs through

which it associates with several proteins to regulate their

homeostasis, trafficking, aggregation and degradation

[159]. The ability of p62 to act as shuttle for autophagic

cargo depends on its specific interaction with Atg8/LC3/

GABARAP proteins. Specifically, p62 shows a short LIR

(LC3-interacting region) sequence of 22-amino acids

responsible for the interaction with LC3-II, the active form

of LC3, an autophagosomal marker (Fig. 2) [160]. As

previously mentioned, p62 harbours in its C-terminal

region an Ub-associated (UBA) domain through which the

protein interacts non-covalently with ubiquitinated proteins

[161]. In addition, at its N-terminus p62 has a Phox-BEM1

(PB1) domain, a protein–protein interaction domain that

can assume an Ub-like folding and can directly bind to the

proteasomal subunit S5a and other proteins containing the

same domain, including p62. p62 supports tau polyubiq-

uitination by the ligase TRAF6, shuttles polyubiquitinated

tau to the proteasome and favours the autophagy-mediated

clearance of aggregated tau [162]. In addition, Seibenhener

et al. demonstrated that p62 favours tau degradation

binding the proteasome through its N-terminal PB1 domain

and interacting with polyubiquitinated tau through the

UBA domain [161]. p62 plays a key role in the regulation

of aggregation and in the formation of inclusion bodies. A

decline in p62 expression or a decrease in proteasome

activity contributed to accumulation of insoluble/aggre-

gated K63-polyubiquitinated tau [161]. Studies on p62

knockout mice clearly demonstrated that the deficiency of

the p62 protein leads to accumulation of hyperphosphory-

lated tau and neurofibrillary tangles accompanied by

evident other symptoms of neurodegeneration [163]. Other

studies in tauopathies and synucleinopathies demonstrated

that Ub-containing protein inclusions show positive stain-

ing for p62 [157]. The same authors evidenced that p62

immunoreactivity appears early during neurofibrillary

pathogenesis and is invariably and stably present in neu-

rofibrillary tangles [164]. In a p62-null mouse model, the

Fig. 2 Proteins involved in the

mediation of the crosstalk

between the UPS and autophagy

in Alzheimer’s disease. They

are classified based on their

ability to interact with Ub and

LC3. BUZ, Ub-binding zinc-

finger domain; PB1, Phox and

Bem1p domain; ZZ, Zinc-finger

domain; TB, TRAF6 binding

domain; LIR, LC3-interacting

domain; KIR, Keap1-interacting

region; UBA, Ub-associated

domain; CC, coiled-coil

domain; SKICH, SKIP–

carboxyl homology domain;

Gal-8, Galectin-8 binding

domain; UBZ, Ub-binding zinc-

finger domain; NLS, nuclear

localization signal; BAG, Bcl-2-

associated athanogene 1

domain; BEACH, BEACH

domain; WD40, WD40 repeats;

FYVE, Fab1,YOTB/ZK632.12,

Vac1, and EEA1 domain; WW,

WW domain
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lack of p62 inhibited the formation of Ub-positive protein

aggregates in neurons with impaired autophagy, indicating

that p62 plays an important role in inclusion body forma-

tion [165].

NBR1

NBR1 was originally cloned as a candidate gene for the

ovarian cancer antigen CA125 [166] and then proposed as

another autophagic receptor for ubiquitinated substrates

[64]. NBR1 directly interacts with p62. The two proteins

show a poorly conserved primary sequence with NBR1

more than twice as large as p62 but with similar interacting

motifs [64]. In fact, NBR1 contains both a LIR domain

through which it interacts with LC3-II and a C-terminal

UBA domain interacting with Ub, with a preference toward

the K63-linked polyUb chain (Fig. 2). The interaction with

p62 is mediated by the PB1 domain and its homodimer-

ization occurs via the N-terminal two coiled-coil domains.

NBR1 is an autophagic substrate, it is degraded in a LIR-

dependent manner and, as shown in p62-deficient cells, in

the absence of p62 [64]. Proteasome inhibition did not

affect NBR1 levels, which in turn were dramatically

increased upon blocking lysosomal acidification [64].

NBR1, together with p62, plays a role in the sequestration

of misfolded and ubiquitinated proteins in p62 bodies and

both proteins are necessary for the final autophagic-medi-

ated degradation of such substrates [167]. Lamark et al.

described a model for the degradation of ubiquitinated

cargo by selective autophagy where oligomers of NBR1

and polymeric forms of p62 act as adaptors or cargo

receptors linking the ubiquitinated substrate to the nascent

autophagosome [167].

OPTN

OPTN is a 577 amino acid protein encoded by the OPTN

gene, whose mutations are associated with normal tension

glaucoma and amyotrophic lateral sclerosis. It is a cyto-

plasmic protein ubiquitously expressed in the heart, brain,

skeletal muscle, liver, and the eye [168]. This protein

contains several domains including an Ub-binding domain

(UBD), that allows the binding to both K63 and linear

chains, and a LC3-interacting region (LIR), through which

it binds and brings polyubiquitinated cargoes to

autophagosomes (Fig. 2) [169]. OPTN contributes to a

wide range of cellular functions such as vesicle trafficking,

maintenance of the Golgi apparatus, NF-jB pathway,

antibacterial and antiviral signalling, cell division control,

and autophagy. As p62, OPTN can polymerize and become

a substrate for autophagic degradation [169]. Its role as an

autophagy receptor can be both Ub-dependent and inde-

pendent [169, 170]. The processing of endogenous OPTN

is mainly mediated by the UPS. Overexpression of wild-

type or mutant E50 K OPTN in RGC-5 cells downregu-

lated the level of proteasome b5 subunit and enhanced

LC3-II indicating that the UPS function was compromised

whereas autophagy was induced [171]. Cho et al. demon-

strated that OPTN favours the autophagic clearance of

extracellular Ab by microglia mediating the interaction of

the amyloid protein with LC3-II [172]. OPTN immunore-

activity was widely detected not only in inclusions in

amyotrophic lateral sclerosis but also in senile plaques and

neurofibrillary tangles in AD and other neurodegenerations

[173]. Interestingly, these aggregates show also positive

staining for Ub and p62. The same authors suggested that

the expression of OPTN could be upregulated in these

pathological conditions [173].

NDP52

NDP52 is expressed in neurons, microglia and astrocytes

[174]. NDP52 was principally characterized for its role in

the autophagic removal of cytosolic bacteria. On this

regard, several mechanisms of action were described and

one of them is based on the property of the protein to detect

galectin-8-positive bacteria. Galectin-8 controls endosomal

and lysosomal integrity and individuate bacteria presence

by binding host glycans exposed on damaged Salmonella-

containing vacuoles. Upon recognition, galectin 8 recruits

NDP52 and activates antibacterial autophagy [175]. In

addition, other studies showed how human cells utilize the

Ub system and NDP52 to activate autophagy against bac-

teria [176, 177]. The Ub-binding preference of NDP52 is

not established. In AD, NDP52 co-localizes with both

phosphorylated tau and intracellular Ab indicating a role in

the autophagic clearance of both proteins [174]. On this

regard, NDP52 is strongly regulated by Nrf2 and plays a

role in the amelioration of AD symptoms through the

clearance of phosphorylated tau [178].

HDAC6

HDAC6 is a multidomain microtubule-associated

deacetylase not only dedicated to genomic functions, but

also involved in cytoplasmic pathways. HDAC6 has a

number of cytoplasmic substrates including a-tubulin,

cortactin, Hsp90 and peroxiredoxin. Differently from p62

and NBR1, HDAC6 possesses no LIR. It binds to Ub via a

highly conserved Zn-finger Ub-binding domain and it

shows preference for K63-linked Ub chains. The binding to

polyubiquitinated proteins and dynein molecular motors

provides HDAC6 with the ability to act as a physical link

between ubiquitinated cargo and transport machinery. In

addition, HDAC6 is involved in the formation and clear-

ance of aggresomes, structures required for the autophagic
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degradation of abnormal aggregated proteins [151, 179].

Cells deficient in HDAC6 fail to clear misfolded protein

aggregates from the cytoplasm, cannot form aggresomes

properly, and are hypersensitive to the accumulation of

misfolded proteins [179]. HDAC6 also facilitates the

fusion of autophagosomes with lysosomes leading to

autophagic clearance of substrates [180]. Pharmacological

inhibition of HDAC6 in oligodendrocytes alters the

assembly of protein aggregates formed in response to

proteasomal inhibition and leads to the accumulation of

autophagosomal vacuoles and increase in LC3-II

immunoreactivity as a consequent of impairment of the

autophagic flux [181]. Yan et al. suggested a crucial role

for p62 in regulating HDAC6 activity [182]. They identi-

fied a specific binding domain of p62 which interacts with a

catalytic domain of HDAC6 resulting in the modulation of

the deacetylase activity. Lack of p62 favours HDAC6

hyper-activation with elevated de-acetylation of the

HDAC6 specific substrates a-tubulin and cortactin [182].

HDAC6 activity can be also modulated by tau protein that,

upon binding, decreases the functionality of the deacetylase

with a consequent increase in tubulin acetylation, as

observed in AD [183]. An excess of tau protein, as a

HDAC6 inhibitor, prevents the induction of autophagy

upon inhibition of proteasome function [183]. Recent evi-

dences suggested a role for HDCA6 in the mediation of the

crosstalk between the UPS and autophagy. Using Droso-

phila models of neurodegenerative diseases, Pandey et al.

revealed that HDAC6 was able to suppress degeneration

associated with proteasome mutations and impairment

through the activation of autophagy as a compensatory

degradation system [149, 150]. The authors suggested that

increasing HDAC6 levels could be a strategy to enhance

autophagy in neurodegeneration thus favouring the elimi-

nation of toxic species [149]. In addition, in an AD cellular

model with evident impairment in proteasome functionality

we described an increased expression of HDAC6 as an

attempt to activate compensatory autophagy [152].

p97 (VCP)

p97/VCP is a AAA? protein with an ATPase activity

involved in various cellular processes such as membrane

fusion, apoptosis, cell cycle regulation, DNA damage

repair, regulation of transcription, metabolic modulation,

and protein degradation [184–187]. Phosphorylation and

acetylation at specific amino-acidic residues and interac-

tion with a wide number of cofactors regulates the activity

of the enzyme [184, 188, 189]. p97 acts as a Ub-selective

chaperone using the energy generated from the hydrolysis

of ATP to induce conformational changes of target pro-

teins. These ubiquitinated substrates are separated from

their protein complexes and then released for proteasomal

degradation or recycling [186]. p97/VCP has also the

ability to interact with HDAC6 and to modulate its func-

tionality, originating a system able to determine the fate of

ubiquitinated cellular proteins [190]. Interestingly, in con-

dition of proteasomal impairment, the two proteins

encourage the accumulation of misfolded proteins in

aggresomes. p97 contributes also to the autophagosome

formation. Mutations in p97 were associated with the

IBMPFD (inclusion body myopathy with early-onset Paget

disease and frontotemporal dementia) disease. Cells

expressing the mutant form of p97 that correlates with this

pathology display increased levels of the autophagosome

markers p62 and LC3 II [191]. In addition, autophagic

vesicles that accumulate in response to p97 mutations are

extremely rich in Ub suggesting that p97 may be selec-

tively required for autophagic degradation of ubiquitinated

substrates [192]. Halawani et al. demonstrated that p97 is a

substrate of Caspase-6 and that the cleavage generates a

fragment able to impair UPS-mediated protein degradation

in AD [193]. A role for p97 was described also in selective

autophagy, specifically in the removal of mitochondria

(mitophagy), peroxisomes (pexophagy) and 60S ribosomal

subunit (ribophagy) [189].

Alfy

Alfy is another molecular link between autophagy and the

proteasome system, but differently from the previously

described molecules, it does not bind Ub. Alfy is a large

protein member of the FYVE-domain family of proteins

and is implicated in membrane trafficking. The FYVE

domain is a zinc-finger domain shown to interact specifi-

cally with PI3P, which plays an important role in

endosomal and autophagosomal membrane traffic. Alfy co-

localizes with autophagic but not endocytic markers [194].

Simonsen et al. proposed that Alfy might recognize protein

aggregates and then act as a scaffold for the autophagic

machinery [195]. In normal condition, Alfy localizes in the

nucleus but upon induction of autophagy, accumulation of

Alfy-positive structures was detected in the cytoplasm,

with interactions with autophagic markers. In addition, the

inhibition of proteasome-mediated degradation caused a

strong increase in the number of cytoplasmic Alfy-positive

structures [195]. Alfy and p62 were shown to interact

forming protein bodies that contain misfolded and ubiqui-

tinated substrates then degraded by autophagy [196]. The

importance of Alfy in removing toxic aggregates was

confirmed by a study on a fruit flies mutant for the Alfy

homologue, blue cheese (Bchs), which showed a reduced

life span due to accumulation of ubiquitinated protein

aggregates in the brain [197].
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BAG-1 and BAG-3

Other co-chaperones known to be involved in the regula-

tion of the interplay between the UPS and autophagy are

members of the BAG protein family. BAG1 and BAG3

regulate the trafficking of polyubiquitinated substrates:

BAG1 directs them to the proteasomal system, whereas

BAG3, facilitates the degradation of substrates via the

autophagic process interaction with p62 [198]. Although

BAG3 is poorly expressed in young cells, an increase in the

BAG3/BAG1 ratio was observed in ageing, indicating that

autophagy is predominant in aged cells, because of accu-

mulated protein aggregates that cannot be degraded by the

proteasome [198]. These proteins can bind through their

BAG domain to chaperones of the Hsc/Hsp70 family, thus

modulating chaperone function [198]. Both BAG1 and

BAG3 are involved in tau degradation in AD. Elliott et al.

demonstrated the Hsc70-dependent interaction between

BAG-1 and tau protein. They found that BAG-1 favours

accumulation of tau protein by inhibiting its proteasomal

degradation and that it co-localizes with aggregated tau in

an AD mouse model suggesting an involvement of BAG-1

in the AD pathogenesis [199]. The same authors evidenced

a significant increase of the BAG-1M isoform in the hip-

pocampus of AD patients. In addition, BAG-1 was also

found to co-localize and physically associate with intra-

cellular tau and amyloid [200]. BAG3 regulates the

clearance of tau in neurons through selective autophagy. In

fact, the activation of autophagy consequent to proteasome

inhibition resulted in upregulation of BAG3 and in a sig-

nificant decrease in tau and phospho-tau levels [201].

Conclusion

The proteasome and autophagy are two proteolytic systems

with a fundamental role in protein quality control and in

the maintenance of cellular homeostasis. Alterations that

reduce their functionality favour accumulation of toxic

protein aggregates that alter neuronal trafficking and trig-

ger neurons death as reported in numerous protein

conformational disorders, including AD. In AD, amyloid

peptides and tau protein tend to aggregate and form oli-

gomers with a high b-sheet content that favours the

formation of extracellular plaques and neurofibrillary tan-

gles. These inclusions can impair the proteasome as well as

autophagy interacting with various strategic components of

the two proteolytic pathways. In this review, we described

the sophisticated crosstalk between UPS and autophagy in

the removal of such deleterious structures. The fine col-

laboration between these two pathways, with the inhibition

of one system favouring the activation of the other, is

essential to protein quality control in neurons. This

interplay is rigorously coordinated by numerous shuttle

factors and chaperones that are used for cargo selection and

delivery to one system or the other. Specific protein

domains allow these components to interact with Ub and

LC3 thus determining the fate of the substrate. Besides

their role in the control of protein degradation, they are also

extremely useful to the cell to sequester toxic species in

inclusion bodies, especially if proteolytic pathways are for

some reasons defective. Thanks to this ability, which pre-

vents harmful molecules from interfering and altering other

fundamental intracellular processes, these shuttle mole-

cules gain a role also in cell survival and in the delay of the

progression of the neurodegeneration [179, 202]. The

thorough control and manipulation of all the actors playing

in cellular proteolysis could be therefore a promising

strategy in the view of developing pharmacological inter-

ventions for therapeutic goals in AD and other

neuropathies characterized by detrimental inclusions.

Undoubtedly, additional data are needed to gain a better

understanding of the connections between UPS and

autophagy.
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