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Abstract A large body of literature has emerged sup-

porting the importance of cancer stem cells (CSCs) in the

pathogenesis of head and neck cancers. CSCs are a sub-

population of cells within a tumor that share the properties

of self-renewal and multipotency with stem cells from

normal tissue. Their functional relevance to the pathobi-

ology of cancer arises from the unique properties of

tumorigenicity, chemotherapy resistance, and their ability

to metastasize and invade distant tissues. Several molecular

profiles have been used to discriminate a stem cell from a

non-stem cell. CSCs can be grown for study and further

enriched using a number of in vitro techniques. An

evolving option for translational research is the use of

mathematical and computational models to describe the

role of CSCs in complex tumor environments. This review

is focused discussing the evidence emerging from model-

ing approaches that have clarified the impact of CSCs to

the biology of cancer.
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Abbreviations

HNSCC Head and neck squamous cell carcinoma

HPV Human papilloma virus

CSC Cancer stem cell

PDX Patient-derived xenograft

Introduction

Head and neck cancers are a heterogeneous group of can-

cers arising in the epithelial tissue from the paranasal sinus,

lip, oral cavity, nasal cavity, pharynx, and larynx. In 2014,

an estimated 55,070 new cases of oral cavity, pharyngeal,

and laryngeal cancers occurred in the USA [1] and

400,000–600,000 annual cases worldwide [2]. Head and

neck squamous cell carcinoma (HNSCC) is the most

common histologic subtype, comprising approximately

90 % of the tumors of the head and neck region [3]. Other

histologic subtypes including melanoma, adenocarcinoma,

and mucoepidermoid, acinic, and adenoid cystic carcinoma

also occur, albeit with much lower frequencies [4, 5].

The most common historical risk factors for HNSCC are

alcohol consumption and tobacco use, which contribute to

approximately 75 % of cancers [6–8]. High risk strains of

human papilloma virus (HPV 16, 18) have recently
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presented as an emerging risk factor [9]. HPV-associated

HNSCC has a favorable clinical profile compared to

tobacco- and alcohol-associated HNSCC [10].

Treatment decisions for HNSCC are complex, and a

multidisciplinary approach is recommended according to

US guidelines [3]. Treatment recommendations are based

on cancer stage [11], location, and histological features.

Treatment may include surgical resection, radiation ther-

apy, chemotherapy, or a combination of these modalities.

Treatment is complicated by a high rate of therapy-related

morbidities [12], including swallowing changes, nutritional

complications, and airway compromise. Medical oncology

innovation has been slow, with only one new agent (ce-

tuximab) being approved for HNSCC in the last 15 years

[13, 14], and consequently survival rates for patients with

head and neck cancers have improved less than those for

patients with other malignancies [15]. Head and neck

cancer is responsible for approximately 350,000 global

deaths from cancer annually [1]. Much of this HNSCC

mortality is due to cancer recurrence, with 20–40 % of

patients developing loco-regional recurrence and 5–20 %

developing distant metastases at 2 years [16].

Molecular pathogenesis of HNSCC

There are numerous molecular pathways contributing to

the pathogenesis of HNSCC [17]. Generally, carcinoma

cells arise from premalignant precursor lesions following

the activation of proto-oncogenes or inactivation of cancer

suppressors, respectively [18]. A majority of HNSCC cases

have loss of heterozygosity at chromosome regions 9q21 or

3p14 [19]. Telomerase is reactivated both in precursor

lesions and in HNSCC [20], thereby assisting in the

preservation of genetic changes. Epithelial growth factor

receptor (EGFR) expression is seen in the preponderance of

HNSCC [21], and overexpression of EGFR portends a poor

clinical outcome [22]. Interleukin-6 (IL-6) has also been

shown to have a strong correlation with clinical outcomes

[23]. Endothelial cells secrete IL-6 in response to inflam-

matory stimuli [24], and IL-6 activates its downstream

target signal transducer and activator of transcription 3

(STAT3), which is activated in head and neck cancer [25].

The pro-angiogenic chemokine C-X-C motif Ligand 8

(CXCL8 or IL-8) has also been shown to increase

endothelial cell proliferation and migration [26, 27], and is

produced by HNSCC cells [28].

A recent analysis by the Cancer Genome Atlas provided

a genomic landscape for HNSCC [29]. They described

distinct profiles for HPV- and smoking-related HNSCC. In

this study, HPV-related tumors exhibited mutations in

oncogene PIK3CA, loss of TRAF3, and amplification of

the cell cycle gene E2F1, while smoking-related tumors

exhibited loss-of-function TP53 mutations and CDKN2A

inactivation, as well as copy number alterations. Cigarette

smoking produces reactive oxygen species [30], which

damage the cellular membranes, inducing DNA damage

and activating oxidative-sensing cellular pathways [31,

32]. These activated signaling pathways lead to inflam-

matory gene activation, including CXCL8 (interleukin-8),

mitogen-activated protein kinase (MAP kinase), nuclear

factor-jB (NK-jB), signal transducer and activator of

transcription (STAT)-3, and tumor necrosis factor (TNF)-a
[33–38]. Smoking damage induces field cancerization

throughout the aerodigestive tract and increases the risk for

subsequent second primary cancer formation [39]. Human

papillomaviruses in infected head and neck tissue express

viral oncoproteins E6 and E7, which ubiquitinate tumor

suppressor proteins p53 and retinoblastoma (pRb),

respectively [40–44].

Stem cells in head and neck cancer

Pluripotent stem cells have been extensively described as

an essential component of normal human tissue [45, 46].

The fundamental feature of a stem cell is its ability to

recapitulate a heterogeneous organ from a single progenitor

cell. This function can be activated in response to growth

stimuli, injury repair, or organogenesis. The cancer stem

cell hypothesis extends this principle to describe key phe-

nomena observed during tumor growth. Cancer stem cells

(CSCs) are defined as having properties of tumorigenesis,

self-renewal, and the capacity to differentiate [47, 48].

When a CSC divides, it may either undergo self-renewal

(creating two self-same daughter cells), or asymmetric

division (creating one CSC and one more differentiated

cell). Factors that shift the balance between self-renewal

and asymmetric division may change the ultimate propor-

tion of CSCs within the full tumor population (Fig. 1).

For the purposes of the study, we must also have the

ability to identify, enrich, or isolate this population by

some means. Cancer stem cell populations have now been

identified in a variety of tumors [49–51], including head

and neck squamous cell carcinoma [52]. Whether head and

neck CSCs arise from changes within stem cells or from

non-stem cells gaining stem cell properties remains an

open topic of debate [53, 54].

Stemness markers in HNSCC

Head and neck CSCs are an important research focus

because of their unique pathogenic properties. Other terms

including ‘‘cancer progenitor cells’’, ‘‘tumorigenic cells’’,

and ‘‘tumor initiating cells’’ are used to describe CSCs.

However, ‘‘cancer stem cells’’ generally remains the
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preferred term and describes shared functional relation-

ships of CSCs with embryological stem cells [55]. The

three primary embryological stem cell regulators of

undifferentiated state and symmetrical cell division are

Oct-4 [56], Nanog [57], and Sox-2 [58, 59]. Octamer-

binding transcription factor-4 (Oct-4) is a POU-domain

family transcription factor involved in maintaining devel-

opmental potency in embryonic stem cells [60]. Similarly,

Nanog is a homeodomain transcription factor responsible

for blocking cell differentiation and maintaining pluripo-

tentiality of embryonic stem cells [57]. Sex determining

region Y-box 2 (Sox-2) is a member of the SOX protein

family, which shares conserved DNA-binding domains

with the high mobility group family of chromosomal pro-

teins. Sox-2 aids in cell fate regulation in early

development [58] and has also been proposed as a squa-

mous cell cancer histology-specific lineage marker [61].

Head and neck cancer cells enriched for CSCs using

sphere assays had increased expression of Nanog, Oct-4,

and Sox2 [62]. Furthermore, positive correlations of Nanog

and Oct-4 with tumor stage at presentation and poor clin-

ical prognosis have been described [63]. Nanog and Oct-4

may also play a role in chemotherapy resistance, as their

expression levels are both increased in cisplatin-resistant

cell lines [64]. The ‘‘pro-stemness’’ gene B cell-specific

Moloney murine leukemia virus-insertion site (BMI)-1 is

expressed in populations of HNSCC CSCs and is largely

absent in non-CSC populations [65]. Hypoxic conditions

have been shown to enhance stem cell properties of tumors

via hypoxia inducible factors (HIF) and increased expres-

sion of Oct-4, as well as other pathways [66, 67].

CSC therapeutic resistance

Head and neck CSCs exhibit enhanced tumorigenicity and

exhibit a higher yield with fewer cancer cells compared to

non-CSCs [52, 65, 68]. Even though they represent less

than 10 % of the total tumor population, CSCs can initiate

full tumors with as few as 50 cells [69]. Similarly, isolated

non-stem cells are much less likely to form tumors [70]. In

addition to their tumorigenic properties, head and neck

CSCs are resistant to therapeutic intervention with tradi-

tional cytotoxic agents. CSCs are differentially more

resistant to both the chemotherapy and radiation therapy

that would typically target proliferative cells [71]. Cisplatin

and fluorouracil chemotherapies have both been shown to

increase the population of head and neck CSCs, implying

at least a differential effect of chemotherapy [72, 73].

Cisplatin also upregulates the stem cell marker BMI-1 [74]

as well as Oct4 and Nanog [64] in head and neck CSCs.

Silencing of BMI-1 subsequently increases the sensitivity

of HNSCC cells to chemotherapy and radiation [75].

Recent analysis has indicated that a number of pathways

are upregulated in HNSCC following cisplatin treatment,

including TNFa, IFN, IL-6/STAT, and NF-jB [76]. Work

in other tumor histologies has also supported a phenotypic

shift of cancer cells induced following chemotherapy [77].

CSCs in the tumor microenvironment

Finally, emerging evidence supports the theory that the

local environment plays an important role in the behavioral

governance and regulation of stem cells [78], including the

propensity to migrate and adapt to new local environments,

forming metastases. This process is generally referred to as

the epithelial to mesenchymal transition (EMT) and may

endow cancer cells with a stem cell phenotype [79]. This

EMT process is governed by transcription factors Snail and

Twist [80]. The increased expression of Twist results in

decreased expression of the adherence molecule E-cad-

herin and the resultant propensity to migrate [81]. Twist is

also upregulated by the hypoxia-related HIF1 in the

Fig. 1 Factors affecting the

self-renewal or differentiation

of head and neck CSCs
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induction of metastases [82]. Following migration, the

CSCs are dependent on factors produced in the niche to

maintain their survival and stem cell-like state. Gene

expression analysis has shown that endothelial cells

upregulate IL-6, CXCL8 (IL-8), and EGF when co-cultured

with HNSCC cells [83]. When endothelial cells are selec-

tively ablated, the proportion of cancer stem cells in

HNSCC xenograft tumors decreases [65]. Given their

augmented tumorigenic potential and propensity to form

metastases, CSCs are an appealing target for translational

research. The disrupting the CSC niche provides a potential

opportunity for therapeutic intervention.

CSC in vitro modeling techniques

Several different methods have been used for the isolation

of head and neck squamous cell carcinoma CSCs. A

number of putative CSC markers compatible with antibody

or enzymatic detection have been defined, including ele-

vated aldehyde dehydrogenase-1(ALDH1) [69, 70], CD44

[52], and CD133 expressions [84, 85] on cancer cells. The

CSC phenotype can be improved using combinations of

these markers [65]. Each of these markers has fluores-

cence-assisted cell sorting (FACS)-compatible antibodies

or assays available, making the identification of HNSCC

CSCs via FACS convenient. The side population (SP)

assay can identify CSCs via FACS based on the identifi-

cation of functional characteristics. CSCs are known to be

resistant to chemotherapy and are hypothesized to have

differentially increased efflux toxin pumps compared to

non-CSCs. Side population cells are identified based on

their ability to eliminate the nucleic acid stain Hoechst

33342, which is fluorescent when bound to double-stranded

DNA [86, 87]. Side population cells have been identified

and characterized and also express augmented stem cell

marker expression [72, 88–90].

Other culture-based assays for HNSCC CSC identifica-

tion also rely on the functional characteristics. Cancer stem

cells including HNSCC are able to grow in an anoikis-

independent manner, and thereby evade apoptotic signaling

from loss of extracellular membrane contact [91–95].

Anchorage-independent growth can be leveraged to isolate

CSCs by designing culture environments with low or

absent cellular attachment. While protocols differ by type

of cancer, putative CSCs grown in cell culture dishes

designed to minimize attachment and fed with media with

selected growth factors, but in the absence of serum,

enriches spheres of CSCs [94, 96, 97] (Fig. 2b). Head and

neck cancer-specific orospheres and their respective isola-

tion protocols have been identified [65, 98]. To further

improve the quality of CSC isolation by minimizing

attachment, recent reports have included tumor sphere

isolation in both hanging drops [99] and non-attachment

ware systems [62].

To identify and manipulate the cancer stem cell popu-

lation, a source for tumor cells is required. Immortalized

cancer cell lines have been developed in a variety of cancer

types, including HNSCC [100]. For translational experi-

ments, cell lines are implanted in immune suppressed mice

to form tumors, but the therapeutic responses of these

xenograft tumors does not always correspond with results

from human trials [101]. Numerous HNSCC cell lines have

been characterized [102] (Fig. 2a). To improve the con-

cordance between laboratory experiments and clinical data,

patient-derived xenografts (PDX) were developed with

hopes of maintaining an in vivo tumor model with a closer

relationship to the original tissue [103–105]. PDX models

are now considered the gold standard for pre-clinical trials

for testing of new therapies in vivo (Fig. 2c).

In silico CSC modeling techniques

As the approaches above imply, there are numerous tech-

nical hurdles that must be overcome to study a rare cellular

population like the CSC pool. As computing resources

have become faster and more accessible, mathematical

models have become increasingly appealing to help

extrapolate and explain data from experimental studies in

the larger context of tumor growth dynamics [106–108].

The literature on cancer stem cell modeling is vast, and we

will highlight the differences between approaches here

without delving deeply into technical aspects of the mod-

els, with specific highlights for models that have been used

to model head and neck cancer stem cells (Table 1).

Stochastic probability theory has given rise to a number

of different modeling tools, including Markov chains.

Markov chains are appealing in their ability to generate a

unique long-term stationary equilibrium distribution inde-

pendent of the starting state [109–111]. Markov chains

require the restrictive assumption that different cell states

all have equal growth rates [112], which limits their utility

in realistically estimating the cell numbers. However, other

stochastic process-based methods have been developed to

model cancer stem cell growth and resistance [113]. The

probabilities for extinction of a given subgroup have been

modeled using birth/death processes [114, 115]. Multistate

branching processes have been deployed to model cellular

hierarchies, such as the relationships between cancer stem

cells and non-stem cells [116–118]. Explicit application of

branching process theory to real-world data can be limited

by formal requirements on the composition of the transition

matrix [118]. Some feedback between cellular states is

likely required to reach long-term equilibrium in stochastic

models [119–121]. In one stochastic modeling application,
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in vitro experiments were used to validate unexpected

model predictions that indicated isolated populations of

breast cancer stem cells pass through an intermediate cell

subtype before settling into a stable resting distribution

[112]. The output from stochastic models can often express

the relative probabilities of different results classes

(Fig. 3a).

In parallel to stochastic process approaches, a wide

variety of deterministic mathematical approaches have also

been developed to model cancer stem cells. In contrast to

stochastic models, deterministic models generally offer

more flexible options for defining the growth and propor-

tional changes between their cell states. One unifying

component of modeling techniques specific for stem cells

is the assumption that stem cells are a distinct

subpopulation of cells, and that the transition or division

hierarchies between cells can be defined. The defined

hierarchies between cell subtypes have also been used to

model the pattern of mutations leading a cell from normal

to pre-malignant to carcinoma [122, 123] and the initiation

of tumors by CSCs [124]. When the goal is to model tumor

size changes or CSC proportion differences, discrete

methods [125], ordinary differential equations [122, 126,

127], and partial [128, 129] differential equation networks

have all been employed. The flexibility of differential

equation-based models is balanced by the complexity of

the resultant equation networks and the number of

parameter values required for simulation experiments.

Mathematical models output can vary widely based on

small variations of some parameters, or parameters may not

Fig. 2 In vitro and in vivo modeling: a i–iv Real-time fluorescent

microscopy of head and neck squamous cell carcinoma cells

undergoing mitosis in standard cell culture with red (nuclear) and

green (cytoplasm) fluorescent reporters. b HNSCC sphere grown in

sphere media. c Patient-derived xenograft tumors grown and excised

from murine hosts

Table 1 Advantages and disadvantages of selected cancer stem cell in silico modeling techniques

Modeling technique Advantages Disadvantages

Markov Establishes the steady-state proportion of the given

cell types

Requires cell types to grow at equal rates

Stochastic processes (birth/death

and branching)

Estimates both cell number and proportions Requires feedback between states to reach a

stable steady state

Differential equation based (partial

and ordinary)

Flexible, deployable to address a large number of

questions

Requires numerous parameters, some of which

might not be measurable

Agent-based models and cellular

automaton

Details of three-dimensional growth of tumors

composed of individual cells

Computationally expensive, complex to construct,

assumption dependent
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be observable by experimental means. Deterministic

models have been used to investigate a wide range of

cancer stem cell-driven tumor growth dynamics and have

shown that genetic increases in the number of mutations,

particularly in stem cells, leads to a more rapid rise in

cancerous cell population than increases in the cellular

growth rate or decreases in the cellular death rate [126].

Deterministic models can be helpful for visualizing the

estimated relationships over a range of variable values

(Fig. 3c).

A most recent area of advancement in mathematical and

computational approaches includes hybrid and multiscale

cellular automaton and agent-based models. These methods

share the approach of assigning behavioral constraints to a

number of objects within an in silico environment with

defined rules. Simulations can then provide visualization

outcomes of different environmental conditions or treat-

ments within a multidimensional environment [130].

Newer hybrid cellular automaton models incorporate the

responses to additional non-local elements (such as a

treatment or signal) as part of the computational simulation

[131, 132] and include the three-dimensional shape of a

tumor as part of the output [133, 134]. Multiscale hybrid

cellular automaton models can also be formulated to allow

phenotypic evolution of cells within the model to more

richly replicate the tumor environment in silico [135].

Software packages have been developed to allow

researchers to deploy simple cellular automaton models

without significant programming expertise, but more

complex cellular automaton and agent-based models still

require programming proficiency and can be time con-

suming as computer processors predict a multitude of

dependent interactions. Agent-based cellular automaton

models are able to explore a wide range of spatio-temporal

tumor growth dynamics and have shown that more phe-

notypically homogeneous tumors grow in a more regular

spherical pattern [133]. Unique to agent-based models and

cellular automaton programming is the production of a full

tumor representation that can be visually inspected for its

characteristics (Fig. 3b).

Head and neck cancer offers unique opportunities for

modeling advancement, given the combination of complex

three-dimensional environment, field risk effect, viral

infection component, and multimodality treatment. These

opportunities have not translated into a large number of

advancements in head and neck cancer modeling. Recently,

mathematical models were developed to describe complex

tissue shapes to help describe the field effect [136], but

they have not been deployed specifically on head and neck

data. The role of random chance in the elimination of HPV

in squamous cell carcinomas was modeled in relation to

CSCs [137]. Models have also been developed with

HNSCC data to describe the interaction between head and

neck carcinoma cells and tumor endothelial cells under

different treatment conditions [138–140].

In silico models of CSCs are an emerging means to

explain complex phenomena, yet have also generated a

Fig. 3 Different modeling schematics require different levels of

assumptions for output: Here, we illustrate the output for three general

modeling approaches. a Example of stochastic modeling output for a

model simulating the number of simulated cancer cells persisting

following administration of chemotherapy. b Example of ABM

output for a simulated tumor consisting of both stem cells and non-

stem cells. c Deterministic modeling output illustrating the number of

cells in a tissue culture media over time with different treatment

dosages applied
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number of intriguing hypotheses. Combinations of math-

ematical results show that the CSC fraction will continue

to increase over time until CSCs encompass 100 % of the

tumor population [133, 134, 141]. Additionally, agent-

based models have shown that therapeutic treatment of

tumors with chemotherapy or radiation could uncover a

new aggressive, CSC-enriched tumor population [142].

Finally, one research group integrated modeling into

translational research by designing a differential equation

network based on interactions of the B-cell lymphoma

(BCL) cell death regulating family of proteins [139]. The

simulation-based optimal metronomic dosing design was

validated in a series of laboratory studies [143] and

resulted in a clinical trial (ClinicalTrials.gov ID:

NCT01285635).

Conclusions and future directions

Cancer stem cells are an emerging culprit for pathogen-

esis in head and neck cancers. While no single molecular

profile predominates, CSCs share the ability to form

tumors with few initiating cells and evade traditional

cytotoxic chemotherapy approaches for eradication. To

more efficiently study this important cellular sub-popu-

lation, several specific in vivo and in vitro methods have

been developed for CSC isolation. The complexity of the

data produced by a translational laboratory has increased

dramatically in recent years. This offers an opportunity

for computational modeling to bridge the gap between

the significant complexity within true biological systems

and the measurable outputs within the laboratory setting.

A number of innovative approaches which merge labo-

ratory data and mathematics have been investigated, but

head and neck cancer has seen few disease-specific

models.

A current area of interest for both CSC and non-CSC

oriented research are the phenotypic changes induced in

tumors following chemotherapy. Because the ability of

computational approaches represent potentially very small

cell populations (such as cancer stem cells), mathematical

models are a useful tool to describe how therapy changes

the tumor milieu. Ultimately, an understanding of how the

metastatic niche and treatment factors modify the behavior

of head and neck cancer stem cells will enable a rational

prioritization of therapeutic investigation.
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