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Abstract In the central nervous system, most excitatory

post-synapses are small subcellular structures called den-

dritic spines. Their structure and morphological remodeling

are tightly coupled to changes in synaptic transmission. The

F-actin cytoskeleton is the main driving force of dendritic

spine remodeling and sustains synaptic plasticity. It is

therefore essential to understand how changes in synaptic

transmission can regulate the organization and dynamics of

actin binding proteins (ABPs). In this review, we will pro-

vide a detailed description of the organization and dynamics

of F-actin and ABPs in dendritic spines and will discuss the

current models explaining how the actin cytoskeleton sus-

tains both structural and functional synaptic plasticity.
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Abbreviations

ABP Actin binding proteins

ASD Autism spectrum disorders

EM Electron microscopy

FRAP Fluorescence recovery after photobleaching

FRET Fluorescence resonance energy transfer

LTD Long-term depression

LTP Long-term potentiation

NPFs Nucleation promoting factors

PSD Post-synaptic density

SMLM Single molecule localization microscopy

sptPALM Single particle tracking photoactivation

localization microscopy

STED Simulated emission depletion microscopy

Introduction

In 1888, Ramón y Cajal described for the first time that the

surface of a neuron ‘‘appears bristling with thorns or short

spines’’ [1, 2]. In subsequent work, he speculated that

dendritic spines received axonal contacts and that their

morphological changes were associated with neuronal

function and learning processes [3–5]. Cajal’s hypothesis

that spines connect axons and dendrites was confirmed in

1959 by the first visualization of pre- and post-synaptic

contacts by electron microscopy (EM) [6–8]. Although it

was widely believed that long-lasting changes in synaptic

function are the cellular basis of learning and memory, [9–

11] it was only recently that direct links between synaptic

activity, dendritic spine morphology and the formation of a

memory trace in vivo were demonstrated [12, 13].

Dendritic spines are generally composed of a spine head

(200 nm to 1 lm in diameter) that is connected to dendrites

by a thin spine neck (100–200 nm thick) [14–17]. Spine

heads contain the post-synaptic density (PSD), a macro-

molecular structure essential for synaptic transmission

which mediates adhesion to the pre-synapse and anchoring

of post-synaptic glutamate receptors. Despite their archi-

tectural role, dendritic spines are highly dynamic structures
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that undergo distinct morphological changes on timescales

of seconds to minutes, hours and years, both in vitro and

in vivo [18–22]. The morphological remodeling of spines is

correlated with changes in synaptic transmission. Synaptic

plasticity-induced stimuli such as long-term potentiation

(LTP) or long-term depression (LTD) cause not only the

formation or removal of new spines [23–27] but also the

enlargement or shrinkage of pre-existing spines [27–31].

However, the in vivo longitudinal measurement of a single

spine experiencing morphological remodeling during LTP

and LTD has not yet been observed [32–34]. In this review,

this type of spine morphological remodeling will be

referred to as structural plasticity, while functional plas-

ticity is defined as increased or decreased synaptic

transmission.

While the function of dendritic spines had been the

major scope of pioneer studies, current studies are thor-

oughly focusing on their molecular composition.

Biochemical and proteomic studies have shown that den-

dritic spines are composed of a plethora of proteins

covering a wide range of functions including membrane

receptors and channels, scaffolding proteins, adhesion

proteins, molecular motors, GTPases, kinases/phosphatases

and cytoskeleton proteins [35]. Actin and actin binding

proteins (ABPs) are particularly enriched in PSD and

accumulate in dendritic spine heads [35–39], with F-actin

dynamics being the driving force of spine morphological

remodeling [19, 40, 41]. Indeed, the actin cytoskeleton

sustains the formation of dendritic spines during neuron

development and their enlargement and shrinkage upon

increase and decrease synaptic activity, respectively [28,

29, 42–44].

Filamentous actin (F-actin) consists of two-stranded

helical polymers arising from the polymerization of glob-

ular actin (G-actin) (Fig. 1a) [45, 46]. Actin assembles in a

head-to-tail manner giving rise to the structural polarity of

F-actin. Therefore, polymerization and depolymerization

occur preferentially at the barbed end and the pointed end,

respectively. This creates a net flow of actin monomers

within the filament called actin treadmilling. Fluorescence

microscopy revealed that the nature of ABPs but also the

spatiotemporal coordination of their activity determine the

organization and dynamics of F-actin in motile structures

such as the lamellipodium and filopodium (Fig. 1a) [45,

47]. In the past decade, seminal studies have established the

central role of F-actin dynamics and ABPs in spine mor-

phogenesis and in synaptic plasticity-induced

morphological remodeling [43, 44, 48, 49]. The spatial

resolution of conventional fluorescence microscopy is,

however, limited by the diffraction of light (around 250 nm

in the lateral direction), whereas many sub-synaptic struc-

tures are typically below this diffraction limit (synaptic

cleft: 20 nm; PSD thickness: 25–50 nm; spine neck width:

100–200 nm). To date, EM provided most of our knowl-

edge about synapse ultrastructure, including the synaptic

cleft size, the PSD and F-actin organization in dendritic

spines [15, 39, 50, 51]. In 2014, Eric Betzig, William

Moerner and Stefan Hell were awarded the Nobel Prize in

Chemistry for the recent development of single-molecule

and super-resolution light microscopy. These techniques

can circumvent the diffraction limit of light and have pro-

vided new insights into protein organization and dynamics

in different cellular systems including neurons [52, 53]. We

are therefore just starting to reach a deep understanding of

the sequence of molecular events leading to dendritic spines

functional and structural plasticity, such as neurotransmitter

receptor dynamics and organization, PSD remodeling, and

spine neck morphology [54–56]. In this review, we will

focus on the organization and dynamics of the F-actin

cytoskeleton in dendritic spines, the signaling cascades

driving F-actin remodeling upon changes in synaptic

activity, and the interplay between F-actin remodeling and

spine structural and functional plasticity. We will also

highlight how super-resolution microscopy and single-

molecule tracking approaches provided new understanding

on the architecture and the dynamics of actin and actin

regulatory proteins in dendritic spines.

Actin dynamics in dendritic spines

Actin dynamics in dendritic filopodia

During neuronal development, highly motile structures

called dendritic filopodia will emerge from dendrites [18].

Enlargement of dendritic filopodia occurs soon after their

contact with axons leading to the formation of a dendritic

spine [39, 57–60]. As opposed to the tight linear F-actin

bundles present in filopodia from motile cells, dendritic

filopodia are composed of unbundled F-actin of mixed

orientations [39, 61]. However, dendritic filopodia display

a fast retrograde actin flow powered by continuous poly-

merization of actin against the tip membrane protrusion, as

observed for the lamellipodium and filopodium of motile

cells and neuronal growth cones [62–67]. The molecular

motor myosin II, accumulates at the base of dendritic

filopodia and contributes to the retrograde F-actin flow [39,

66]. The initial contact between dendritic filopodia and the

axon is driven by N-cadherin adhesion proteins and dras-

tically reduces the retrograde F-actin flow [60]. This

interplay between cell adhesion and actin dynamics is

characteristic of a model used to explain cell migration

called the ‘molecular clutch’ [68–72]. The molecular

clutch consists of an assembly of ABPs that transmit forces

generated by the F-actin flow to adhesive structures

allowing cells to exert grip on the surrounding substrate or
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Fig. 1 Comparison of F-actin

and ABPs organization in the

lamellipodium and in dendritic

spines. a In lamellipodia of

motile cells, nucleation and

elongation of F-actin are co-

localized at the tip of membrane

protrusion triggering a fast and

concerted rearward flow of the

branched F-actin network.

Activation of the Arp2/3

complex is mediated by the

synchronized convergence of

prenylated Rac-GTP, PIP3,

IRSp53 and the WAVE

complex, while elongation of

F-actin filaments are powered

by VASP and FMNL2, all these

proteins being localized at the

lamellipodium tip. Capping

proteins are also enriched at the

lamellipodium tip, while

cortactin associates with the

entire F-actin network.

ADF/cofilin associates with the

entire F-actin network and

induces F-actin severing.

b Dendritic spine heads are

characterized by slow and non-

polarized motions of the

branched F-actin pool. This

distinct F-actin dynamics in

spines could be sustained by

spatial segregation between

stationary nucleation zones and

delocalizing elongation zones.

Indeed, since the PSD is a

persistent confinement zone for

the WAVE complex and

IRSp53, branched F-actin

nucleation occurs with a higher

probability at the PSD vicinity,

while elongation of F-actin

filaments by VASP and FMNL2

occur at the tip of finger-like

protrusions. Dendritic spines are

also composed of a

stable F-actin pool localizing at

the base of the spine head and

stabilized by the crosslinking

activity of myosin II. Dendritic

spine necks are composed of

both branched and non-

branched long F-actin filaments

that exhibit slow and non-

polarized motions
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cells and to generate membrane protrusions [70]. Accord-

ing to this model, dendritic filopodia that are not contacting

axons are in the slipping mode and display fast rearward

F-actin motion driven by F-actin polymerization and

myosin II activity. Upon filopodia/axon contact, clutch

engagement between N-cadherin and F-actin, possibly

mediated by a-catenin, will immobilize actin filaments

counteracting myosin II activity and leading to a reduction

of the F-actin flow, which causes F-actin growth to push

against the plasma membrane. The resulting F-actin accu-

mulation, decreased motility and dendritic filopodia

enlargement might therefore be required for the initiation

of dendritic spines [60].

Actin dynamics in mature dendritic spines

Motility of dendritic spines is characterized by the forma-

tion and retraction of membrane protrusions [22, 73, 74].

However, the precise role of those spine protrusions is still

unknown but might be needed to continuously adjust the

position of the post-synaptic structure to the pre-synaptic

one. Dendritic spines are F-actin-rich protrusions with a

dynamic equilibrium between G-actin and F-actin [75]. As

for dendritic filopodia, F-actin dynamics was demonstrated

to be the driving force of dendritic spine motility. Indeed,

pharmacological treatments preventing F-actin polymer-

ization (cytochalasin-D) or promoting F-actin

depolymerization (latrunculin-A) stop spine dynamics [19,

41]. Fluorescence recovery after photobleaching (FRAP)

and photoactivation experiments provided more insights

into actin dynamics in dendritic spines [76, 77]. These

studies revealed that F-actin was composed of a large

dynamic pool (80–95 %; 40 s turnover time constant) and

a small stable pool (5–20 %; 17 min turnover time con-

stant) (Fig. 1b); the size of the stable pool being positively

correlated with spine volume. While the stable pool

remains stationary at the base of the spine heads, the

dynamic pool exhibits a slow retrograde flow (5–20 nm/s)

from the tip to the base of the spine head [77, 78]. The

recent development of single-particle tracking photoacti-

vation localization microscopy (sptPALM) [79, 80] has

enabled F-actin tracking in dendritic spines [67, 78, 81].

Those studies did not reveal a concerted flow of F-actin

from the tip to the base of the spine head but rather an

overall non-polarized motion. A large fraction of actin

molecules had no detectable motion, while the remaining

ones displayed retrograde and anterograde motions with

heterogeneous speeds (8–40 nm/s). These dynamic prop-

erties are different from those found in other protrusive

structures such as the lamellipodium of motile cells, axonal

growth cones or dendritic filopodia where F-actin move-

ments are faster, highly polarized rearward and driven by

F-actin growth against the tip of membrane protrusions

[66, 67, 82, 83]. Therefore, slow actin movements found in

dendritic spines might result from a complex pattern of

force generation, involving polymerization of new fila-

ments pushing older filaments, F-actin severing and

recycling, but also protrusion ruffling [22, 77, 81, 84–86].

Interestingly, F-actin motions in dendritic spine necks are

also slow and non-polarized [39, 66]. This complex

F-actin dynamics could also arise from the distinct spatial

distribution and dynamics characterizing F-actin pools

and from a specific spatiotemporal organization of ABPs

in spines.

Actin organization in dendritic spines

Formation and organization of the branched F-actin

network in dendritic spines

Essential F-actin regulators are located in spines, and have

been found to critically control spinogenesis, spine mor-

phology and synaptic plasticity [44]. Despite having

different F-actin dynamics as compared to the lamel-

lipodium, dendritic spine heads are also composed of a

dense branched F-actin network, while the spine neck is

composed of both branched and non-branched long F-actin

filaments [39, 61, 87, 88]. The actin-related protein 2/3

(Arp2/3) complex is the only known actin nucleator

forming side branches on a ‘‘mother’’ actin filament [89–

92]. Knockout of a single Arp2/3 subunit decreases F-actin

turnover and spine head size, induces a progressive spine

loss, alters spine structural plasticity and leads to behav-

ioral abnormalities [93]. However, the Arp2/3 complex

possesses low intrinsic activity and requires nucleation

promoting factors (NPFs) for an efficient activation [92].

NPFs such as the WAVE complex and N-WASP can

activate Arp2/3 to induce branched actin nucleation; while

cortactin stabilizes Arp2/3 during and after nucleation [92,

94, 95]. The Arp2/3 complex can also be inhibited by

PICK1 [96]. Importantly, these proteins are all present in

dendritic spines, interact directly or indirectly with PSD

components and are involved in the regulation of spine

density, morphology and plasticity (WAVE [97–101];

cortactin [102, 103]; N-WASP [104, 105]; PICK1 [96,

106]).

Filament length is also an important factor determining

F-actin network dynamics [107]. Profilin binds with a one-

to-one ratio to G-actin favoring F-actin polymerization at

the barbed end [108, 109]. Profilin-II is enriched in spines

upon increased synaptic activity and preventing its binding

to G-actin destabilizes dendritic spines [110]. Vasodilator-

stimulated phosphoprotein (VASP) and formins promote

barbed end F-actin polymerization while capping proteins

(CP or CapZ) and EGFR substrate pathway #8 (Eps8) cap
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the barbed end to prevent F-actin polymerization [111–

115]. Interestingly, knockout of Eps8 and knockdown of

CP lead to the formation of thin long spines [116, 117],

whereas decreasing the activity of the formin mouse dia-

phanous 2 (mDia2) increases the proportion of large spines

[61]. Actin filaments decoration by sub-stoichiometric

densities of actin depolymerization factor/cofilin

(ADF/cofilin), in coordination with coronin and actin

interacting protein 1 (AIP1) recruitment, will induce sev-

ering and stochastic disassembly of F-actin [118–121].

Numerous studies have shown that ADF/cofilin and its

upstream regulators are tightly regulating dendritic spine

shape [29, 61, 122, 123].

Electron microscopy provided the first insights into

F-actin organization in dendritic spines [36, 39, 51]. By

performing single-molecule localization microscopy

(SMLM) and single-particle tracking, our recent study has

now revealed the specific nanoscale organization of ABPs

in dendritic spines [67] (Fig. 1b). Incorporation of Arp2/3

complexes into the F-actin network occurred in close

vicinity to the PSD, and the WAVE complex was found to

form a single stable domain overlapping with PSD-95 [67].

The insulin receptor substrate p53 (IRSp53), an I-BAR

protein binding and regulating the WAVE complex, was

also shown to form a stable domain overlapping with PSD-

95 [67, 124, 125]. PSD-95, IRSp53 and the WAVE com-

plex share similar diffusion properties suggesting that

branched F-actin nucleation occurs at the membrane

apposed to the PSD [67]. Consistently, IRSp53 and sub-

units of the WAVE and Arp2/3 complexes can directly

and/or indirectly bind to components of the PSD, including

PSD-95, Shank1, Shank3 and CaMKII [101, 126–129]. In

addition, the post-synaptic cell adhesion protein neuroligin-

1 bears an interacting sequence binding directly to the

WAVE complex [130]. Thus, sequestration of the WAVE

complex and IRSp53 at the PSD might provide an efficient

mechanism for spatiotemporal control of the branched

F-actin network during changes in synaptic transmission.

SMLM has also shown that VASP and the formin-like

proteins2 (FMNL2), but not the WAVE complex, accu-

mulate at the tip of finger-like protrusions growing away

from the PSD [67]. Thus, in contrast to the lamellipodium,

zones of branched F-actin nucleation and elongation do not

colocalize at protrusion tips [47, 82, 83, 131] (Fig. 1). This

demonstrates that it is the respective nanoscale organiza-

tion of F-actin regulators and not their nature that

determines the shape and dynamics of protrusive struc-

tures. Those finger-like protrusions might arise from the

branched F-actin network but are unlikely to be formed by

elongation of tight F-actin bundles, as demonstrated for

filopodia emerging from the lamellipodium [39, 132]. The

densely packed PSD could represent a physical barrier

forcing F-actin barbed ends to grow away and generate

finger-like protrusions in dendritic spines. Consistent with

this hypothesis, in an in vitro reconstituted system, bran-

ched F-actin networks can elongate their barbed ends away

for a nucleating surface [84]. Because of the inverse rela-

tionship between the rate of F-actin flow and membrane

protrusion, the nanoscale segregation between stationary

nucleation zones and the delocalizing elongation zones

could also explain the slow and non-polarized motion of

branched F-actin networks in dendritic spines [67, 133]

(Fig. 1b). Despite these recent findings, the current models

cannot yet assign a specific F-actin nanoscale organization

to the previously described stable and dynamic F-actin

pools.

Heterogeneity of F-actin crosslinker organization

in dendritic spines

F-actin organization is also controlled by crosslinking

proteins. Dendritic spines are for instance enriched in

F-actin crosslinkers including a-actinin, neurabins and the

neuron-specific F-actin parallel bundler drebrin (a-actinin

[134–136]; neurabins [137–141]; drebrin [142–145]). Fas-

cin, however, which stabilizes parallel F-actin bundles in

conventional filopodia, appears absent from dendritic

filopodia and spines [39, 146, 147]. While a-actinin

knockdown delays spine maturation [136] and neurabin

knockdown decreases surface glutamate receptor surface

expression [148], drebrin knockdown was suggested to

promote spine maturation [149]. This discrepancy might

arise from specific binding capabilities to different frac-

tions of the F-actin networks. On the one hand, a-actinin

was shown to be enriched at the PSD where it could bind

subunits of the GluN receptor (NMDA receptor), and

therefore link and stabilize GluN receptors with the bran-

ched F-actin network [150]. On the other hand, drebrin is

located at the spine center where it can associate with the

stable F-actin pool and prevent the F-actin remodeling

required for spine maturation [51, 151, 152].

The Ca2?/calmodulin-dependent protein kinase II

(CaMKII), an essential protein involved in post-synaptic

plasticity [153–155], can directly bundle and stabilize

F-actin in its inactive state via its CaMKIIb subunit [156,

157]. Under basal conditions, the binding of CaMKII to

F-actin prevents other ABPs, such as the Arp2/3 complex

and ADF/cofilin, to interact with F-actin, but upon GluN

receptor activation, autophosphorylation of CaMKII

prompts its release from F-actin allowing these ABPs to

bind and regulate F-actin organization and dynamics [158].

Accordingly, recent sptPALM experiments showed that

CaMKIIb shares similar dynamics to F-actin and that

depolymerization of the F-actin network (latrunculin-A) or
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dissociation of the CaMKIIb subunit from F-actin increase

CaMKII diffusion [158, 159]. The formation of F-actin

bundles by CaMKIIb could suggest an association with the

stable F-actin pool [156]. However, CaMKIIb displays

inward and forward movements in dendritic spines similar

to actin and Arp2/3, rather suggesting an association with

the dynamic F-actin pool [158]. In the following sections,

we will see how the activation status of CaMKII during

synaptic transmission can act as a gating mechanism to

trigger the nanoscale reorganization of the F-actin network

[49, 128, 158].

The molecular motor myosin II can bind and generate

forces on F-actin, leading to F-actin networks’ con-

traction and/or disassembly. Myosin II is therefore a

crucial regulator of F-actin dynamics and network

architecture in the lamellipodium and neuronal growth

cones [64, 65, 133, 160–164]. EM and SMLM studies

have shown that myosin II is found in both dendritic

spine heads and necks [39, 66] and that knockdown or

pharmacological inhibition of myosin II induces filo-

podium-like morphologies [165–168]. Myosin II

function in dendritic spines might be more complex than

just enhancing the retrograde F-actin flow [60, 169,

170]. A recent study suggests that myosin IIb can sta-

bilize the stable F-actin pool through actin crosslinking,

while its contractile activity increases the turnover rate

of the dynamic F-actin pool [170]. This dual function

might arise from differences in the structural organiza-

tion of actin filaments in the stable versus dynamic pool.

A very elegant in vitro study has shown that myosin II,

as well as myosin VI, can disassemble antiparallel but

not parallel F-actin bundles leading to a selective

actomyosin contractility and disassembly [163]. Taken

together with the localization of the parallel bundler

drebrin, this suggests that the stable F-actin pool is

mainly composed of parallel F-actin bundles stabilized

by drebrin and myosin II.

Other ABPs, such as actin binding protein 1 (ABP1),

synaptopodin and MAP1B, can be enriched in dendritic

spine and regulate spine morphology [171–176]. However,

the mechanism of F-actin regulation by those ABPs

remains largely unclear, and precludes any speculation

about their role in F-actin network organization and

dynamics.

Revealing the nanoscale organization and dynamics of a

subset of ABPs led to a deeper understanding of the

mechanisms linking F-actin generated forces to dendritic

spine motility during basal synaptic transmission. In the

following sections, we will focus on how changes in

synaptic activity can lead to transient and long-lasting

reorganization of the F-actin network.

The interplay between the actin cytoskeleton
and synaptic plasticity

The strength of synaptic transmission can be either

increased or decreased on a timescale of seconds to

months. These processes, called long-term potentiation

(LTP) and long-term depression (LTD), correlate with the

enlargement and shrinkage of dendritic spines, respec-

tively [27–29, 31, 43]. Therefore, the organization and

dynamics of the F-actin network requires to be adjusted

accordingly to the strength of synaptic transmission [177].

In this section, we will describe the signaling pathways

that can regulate F-actin networks during synaptic plas-

ticity, the sequence of events leading to the morphological

remodeling of dendritic spines and how the actin

cytoskeleton sustains both structural and functional

synaptic plasticity.

Signaling pathways that control activity-induced

reorganization of the actin cytoskeleton

Neuron depolarization leads to the pre-synaptic release of

glutamate and to the activation of post-synaptic receptors.

During synaptic plasticity, the opening of post-synaptic

GluN receptors (NMDA receptors) and voltage-gated cal-

cium channels induces Ca2? influx into dendritic spines

and activation of calmodulin (CaM) sensitive proteins

[153, 178]. CaM binding to CaMKII releases its auto-in-

hibition allowing autophosphorylation and leading to

transient kinase activity [153, 155] (Fig. 2a). As mentioned

previously, CaMKII autophosphorylation induces its dis-

sociation from F-actin. Once activated, CaMKII can in turn

phosphorylate several synaptic proteins, including regula-

tors of small Rho-familly GTPases. RhoGTPases can

switch from an active GTP-bound state to an inactive GDP-

bound state by intrinsic GTPase activity. Guanine nucleo-

tide exchange factors (GEFs) activate RhoGTPases by

stimulating the release of bound GDP and allowing the

binding of GTP. Conversely, GTP-activating proteins

(GAPs) can inactivate RhoGTPases by increasing GTPase

activity. Rac1, Cdc42 and RhoA are among the best

characterized small RhoGTPases and have been exten-

sively described as F-actin regulators in non-neuronal cells

[179–182]. Rac1 is responsible for lamellipodium forma-

tion, while Cdc42 is more involved in the formation of

conventional filopodia, and RhoA plays a role in the

assembly of stress fibers and adhesion sites. CaMKII can

directly phosphorylate and activate Rac1 GEFs such as

Tiam1 and Kalirin7 but can also directly phosphorylate and

inactivate Rac1 GAP, p250GAP, both signaling cascades

leading to enhanced Rac1 activity [183–186]. CaMKII
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phosphorylation of neurabin-II leads to the recruitment of a

RhoA GEF, Lfc (‘‘Lbc’s first cousin’’) [187, 188]. CaMKII

activity is also partially involved in Cdc42 activation,

although the signaling pathway has not been described in

dendritic spines [189]. An increase in intracellular Ca2?

can activate other CaM sensitive proteins involved in the

regulation of F-actin networks. CaMKK and CaMKI form

a multiprotein complex with another Rac1 GEF, bPIX

(‘‘Pak-interacting exchange factor’’), resulting in Rac1

activation [190, 191].

Many targets of RhoGTPases are present in dendritic

spines and are critical regulators of the actin cytoskeleton

(Fig. 2a). The WAVE complex and N-WASP, NPFs of the

Arp2/3 complex, are two main downstream targets of Rac1

and Cdc42, respectively [192–194]. p21-activated kinase

(PAK) is a downstream target of Rac1 and Cdc42, while

Rho-associated, coiled-coil-containing protein kinase

(ROCK), is a downstream target of RhoA [180, 195–197].

Both PAK and ROCK can activate LIM-kinase (LIMK)

that can in turn phosphorylate ADF/cofilin preventing its

Ca2+ influx via
GluN Receptors

CaM

p250GAPTiam1 Kalirin7βPIX

CAMKIICAMKK/CAMKI Calcineurin

GEF/GAP?

Rac1

WAVE PAK

RhoA Cdc42

ROCK NWASP

Arp2/3

Slingshot

cofilin

LIMK MLC

cofilin myosin II

PAK

ARP2/3

LIMK

a

b

CAMKII

Stable F-actin pool

Dynamic F-actin pool

Enlargment F-actin pool

Protrusion

P P

P P
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Transient 
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remodelling

P P
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PP
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Fig. 2 Activation of ABPs and reorganization of the F-actin

cytoskeleton during LTP. a Selected signaling cascades driving

F-actin remodeling upon Ca2? influx via GluN Receptors. CAMKII is

a key triggering protein both involved in functional and structural

LTP. CAMKII can activate small RhoGTPases (Rac1, Cdc42, RhoA)

by phosphorylating GEFs (Tiam1, Karilin7) and GAPs (p250GAAP).

This will control the spatiotemporal activation of several ABPs

(Arp2/3, myosin II, cofilin). Arrows indicate positive regulation. T-

shaped bars indicate negative regulation. GluN NMDA receptor,

CaM calmodulin, CaMK calcium-calmodulin dependent protein

kinase, GEF guanine nucleotide exchange factor, GAP GTPase

activating protein, bPIX b PAK interacting exchange factor, Tiam1 T

cell lymphoma invasion and metastasis-inducing protein 1, Rac1 Ras-

related C3 botulinum toxin substrate 1, Cdc42 cell division cycle 42,

RhoA Ras homologous member A, ROCK Rho-associated, coiled-coil

containing protein kinase, PAK p21-activated kinase, LIMK LIM-

kinase, N-WASP neuronal Wiskott–Aldrich syndrome protein, WAVE

WASP-family verprolin homologous protein, MLC myosin light

chain, Arp2/3 actin-related-protein 2/3. b A model for F-actin

reorganization during LTP. LTP induces a transient and long-lasting

increase of the spine head size, a shortening and widening of spine

neck and a concomitant ABPs and CaMKII spine recruitment.

Activated CAMKII will dissociate from F-actin and phosphorylate

multiple proteins leading to a fast F-actin reorganization and a

transient spine head enlargement. This transient reorganization is

characterized by the formation of an enlargement F-actin pool, an

increase in the F-actin/G-actin ratio and increased concentration of

cofilin and Arp2/3. Note that inactivation of cofilin is detected only

2 min after LTP induction, suggesting that cofilin might be only

transiently active before it gets inactivated to prevent further

depolymerization. This might be important to only transiently sever

F-actin filaments in order to generate new F-actin barbed ends, and to

increase F-actin polymerization and branching. During the long-

lasting spine head enlargement, most ABPs return to their basal

concentration, suggesting the formation of a larger dynamic and

stable F-actin pool. Those larger dendritic spines most likely provides

a ‘‘tag’’ for the capture of newly synthetized synaptic proteins in order

to sustain late LTP
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binding and severing activities. This inhibition of

ADF/cofilin can be counterbalanced by other signaling

pathways. CaM activates protein phosphatase 2B (PP2B or

calcineurin) triggering slingshot activation, which

dephosphorylates and activates ADF/cofilin leading to

enhanced F-actin severing [198, 199]. PAK and ROCK can

also phosphorylate the myosin light chain (MLC) leading

to increased myosin II activity [177, 195]. Finally, the

Arp2/3 complex inhibitor PICK1 can also be regulated by

synaptic activity since it is a low-affinity Ca2? sensor,

which binds to Rac1 and Cdc42 and is regulated by the

GTPase ADP-ribosylation factor 1 (Arf1) [200–202].

Although many studies revealed the complex signaling

pathways leading to F-actin network reorganization, their

spatiotemporal integration during synaptic plasticity is far

from being understood [181, 189, 203–205].

Morphological remodeling of dendritic spines and F-

actin reorganization during LTP and LTD

Early EM studies already reported that LTP induction

would increase dendritic spine head and PSD size [23,

206–208], increase the number of dendritic spine protru-

sions [25] and induce wider and shorter spine necks [207].

However, EM studies cannot provide longitudinal mea-

surements for single spines during LTP induction. Kasai

and co-workers performed two-photon glutamate uncaging

to release glutamate at single dendritic spines [28, 209].

This stimulation induced spine head enlargement, GluA1

recruitment and an increase in GluA-mediated current [28,

210]. More recently, time-lapse STED microscopy

revealed that shortening and widening of the spine neck

occurred in a concerted fashion with spine head enlarge-

ment [31]. These changes in spine head volume display two

distinct phases, a transient large volume increase (\5 min;

Dvolume 200–400 % increase) followed by long-lasting

smaller volume increase for small dendritic spines (60 min;

Dvolume 50–150 % increase), whereas spine neck changes

seem to display only a long-lasting change (D with 30 %

increase; Dlength 30 % decrease; [31]). Consistent with

previous studies demonstrating that F-actin dynamics

supports spine motility, pharmacological treatments that

increased F-actin depolymerization (latrunculin-A) pre-

vented transient and long-lasting changes of dendritic spine

head [28].

In vivo, LTP induction was shown to correlate with

increased F-actin content in dendritic spines visualized by

EM [211]. Fluorescence resonance energy transfer (FRET)

also revealed an increased F-actin/G-actin ratio after pre-

synaptic fiber tetanic stimulation, suggesting that LTP

promotes F-actin polymerization [75]. Subsequently, a very

elegant study explored F-actin reorganization by probing

photoactivable actin dynamics after two-photon glutamate

uncaging [77]. Single spine activation, which triggered

spine enlargement, induced the formation of a transient

enlargement F-actin pool distributed throughout the spine

head, displaying a distinct turnover compared to the

stable and dynamic F-actin pools (Fig. 2b). The localiza-

tion and dynamics of this enlargement pool often

synchronized with spine membrane protrusions, as if

F-actin polymerization drove the enlargement. However,

increased volumes triggered by LTP last longer than the

life-time of the enlargement pool, suggesting that the long-

lasting spine enlargement might be sustained by transfer of

F-actin from the enlargement into the stable pool.

GluN receptor-dependent Ca2? influx during LTP,

which leads to activation of the intracellular signaling

pathways, could increase F-actin polymerization and

reorganization [153, 212]. CaMKII is necessary and suffi-

cient for LTP induction; it is therefore not surprising that

pharmacological inhibition of CaMKII or expression of a

CaMKIIa kinase dead mutant in knock-in mouse disrupt

the long-lasting volume increase of dendritic spines [28,

205, 213]. Combining FRET with two-photon glutamate

uncaging, Yasuda and co-workers demonstrated that

CaMKII activity was only transiently increased (*2 min)

during spine head enlargement [205]. As mentioned in

‘‘Actin organization in dendritic spines’’ and ‘‘The inter-

play between the actin cytoskeleton and synaptic

plasticity’’, active CaMKIIb will dissociate from F-actin

and phosphorylate multiple proteins. Recently, Okamoto

and colleagues showed that CaMKIIb dissociation from

F-actin is required for structural and functional plasticity of

spines, and that this dissociation is not sufficient to induce

structural plasticity but permits ADF/cofilin binding to

F-actin [158]. The small RhoGTPases Cdc42 and RhoA

showed increases in transient (*2 min) but also long-

lasting (*40 min) activity [189]. These increased activi-

ties are dependent on CaMKII and GluN receptor.

Although this latter study did not study Rac1 activity pat-

tern during LTP, a previous study reported that kalirin-7

phosphorylation by CaMKII and subsequent Rac1 activa-

tion would lead to dendritic spine enlargement [186].

Overall, those studies suggest that the sustained activities

of Rac1, Cdc42 and RhoA might be the main mechanism to

relay the transient CaMKII activity for efficient F-actin

remodeling.

The main downstream targets of those proteins will

regulate F-actin branched nucleation by Arp2/3, ADF/co-

filin severing activity and myosin II function (Fig. 2a).

Studying the spatiotemporal coordination of various pro-

teins, Hayashi and co-workers have provided new insights

into F-actin cytoskeleton reorganization during two-photon

glutamate uncaging-induced LTP [49] (Fig. 2b).
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Concomitantly with spine enlargement, ABPs and CaMKII

were translocated into spines. However, while the con-

centration of cofilin, AIP1 and Arp2/3 in spines increased

during the transient spine enlargement phase, the concen-

tration of the crosslinking proteins CaMKIIb, a-actinin and

drebrin A decreased (relative to the spine volume) [49].

This qualitative switch in ABPs concentration in spines

suggests that the F-actin network undergoes a fast reorga-

nization that might be important for the formation of the

F-actin enlargement pool. Phosphorylation and inactivation

of cofilin is detected only 2 min after LTP induction [214],

suggesting that cofilin might be only transiently active

before it gets inactivated by LIMK to prevent further

F-actin severing [49]. Activation of Rac1 downstream

pathways might be the key for this short time window

activation of ADF/cofilin. Indeed, activation of Rac1 will

lead to increased F-actin branching via activation of

WAVE and Arp2/3 complexes but also decreased F-actin

severing via phosphorylation of ADF/cofilin by PAK/

LIMK pathways. A delayed activation of the PAK/LIMK

pathway as compared to the fast increase of AIP1 and

ADF/cofilin concentrations might provide this 2-min time

window for efficient F-actin severing [120]. Interestingly,

this transient activation fits with the CaMKII time window

of activity and its dissociation from the F-actin network

[158, 189]. This model is in agreement with the role that

ADF/cofilin might play to trigger membrane protrusions

[83, 215]. In that model, transient F-actin severing gener-

ates new F-actin barbeds ends, increasing F-actin

branching and polymerization without totally depolymer-

izing the F-actin network. Thus, during these 2-min time

windows, the actin cytoskeleton in spines could experience

drastic remodeling. Our recent findings provided some

insights into the links between spine enlargement and the

nanoscale reorganization of ABPs [67]. SMLM experi-

ments demonstrated that Rac1 activation correlates with its

immobilization in spines, spine enlargement and delocal-

ization of the WAVE complex from the PSD. In addition,

we found that Shank3 overexpression, which causes spine

enlargement and neuropsychiatric disorders [129, 216],

also induces delocalization of the WAVE complex from

the PSD [67]. Thus, alteration of spine morphology could

rely on the long-lasting or transient nanoscale relocaliza-

tion of ABPs, e.g., the WAVE complex, leading to

remodeling of the entire dendritic spine structure.

During the long-lasting spine volume increase, most

ABPs returned to their basal concentration, whereas cofilin

showed a persistent accumulation at the base of the spine

and increased F-actin binding [49]. Actin filaments fully

decorated by ADF/cofilin are stable, promoting F-actin

bundle stabilization in the absence of AIP1 [120, 121, 217].

The long-lasting ADF/cofilin pool might therefore be

associated with the stable F-actin pool. Accordingly,

drebrin-A is also slightly enriched at potentiated spines

during the long-lasting spine head enlargement [49, 218].

Maintaining high-concentration levels of ADF/cofilin dur-

ing a precise time window could be an interesting

mechanism to efficiently depotentiate newly potentiated

synapses [49, 219].

Although GluN receptor antagonist and F-actin

depolymerization (latrunculin-A) totally disrupt tran-

sient and long-lasting spine remodeling, inhibition of

CaMKII, Cdc42, ADF/cofilin or Arp2/3 blocks only the

long-lasting volume changes [28, 49, 93, 189, 205].

Thus, Ca2? influx might remodel the F-actin network via

distinct signaling pathways such as activation of CaMKI

or release of internal calcium stores [174, 220]. Acti-

vation of GluN receptor can also recruit and stabilize b-

catenin in dendritic spines [221]. According to the

molecular clutch hypothesis, connection of N-cadherin/

b-catenin to the acto-myosin network could transmit

forces that will lead to spine enlargement [60, 70, 222,

223]. Supporting the requirement of a clutch mechanism

for dendritic spine enlargement during LTP, inhibition of

RhoA and ROCK, needed for myosin II activity, also

disrupted transient and long-lasting volume changes [60,

189]. All these studies highlight the need for a spa-

tiotemporal coordination of F-actin polymerization,

branching, severing and bundling for transient and long-

lasting remodeling of the different F-actin pools in order

to sustain structural LTP.

Induction of synaptic LTD by electrical or chemical

stimulation can lead to dendritic spine shrinkage [29, 30,

75, 224, 225]. Adapting the two-photon glutamate unca-

ging to induce LTP, Zito and co-workers established a low

frequency uncaging (LFU) protocol to induce LTD at

individual spines [30]. Although LFU does not allow the

probing of structural remodeling at early time scales, the

authors were able to induce a long-lasting and saturable

volume shrinkage of small and large dendritic spines

(Dvolume 25 % decrease). Combining two-photon unca-

ging of glutamate and GABA to induce a distinct form of

LTD, Kasai and coworkers could induce larger volume

changes (DVolume 40 % decrease) and even spine elimi-

nation [226]. Spine shrinkage was first shown to correlate

with a decreased F-actin/G-actin ratio after pre-synaptic

fiber tetanic stimulation, suggesting F-actin depolymer-

ization [75], which, during GluN receptor-dependent LTD,

would be powered by activation of ADF/cofilin by cal-

cineurin via slingshot [29, 123, 198, 224]. Inhibition of

GluN receptors and calcineurin and also a phospho-cofilin

peptide can therefore abolish spine shrinkage [224, 226].

However, shrinkage of large spines requires additional

signaling from mGluR and internal calcium stores [30].

Dendritic spine shrinkage is also blocked after knockdown

of the Arp2/3 inhibitor PICK1 or expression of a PICK1
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mutant unable to bind Arp2/3 [106]. Therefore, as for LTP,

regulation of F-actin organization and dynamics might be

critical mechanisms for structural LTD.

How does the actin cytoskeleton sustain functional

LTP and LTD?

Dendritic spine structural plasticity and functional plas-

ticity share similar triggering molecules, such as CaMKII

for LTP and calcineurin for LTD. However, structural

plasticity and functional plasticity can be dissociated as

they do not strictly rely on the same intracellular signaling

pathways [43, 199, 224, 227–230]. Although regulation of

F-actin network assembly and disassembly is not sufficient

to induce synaptic plasticity, it is required for its formation

in vitro and in vivo [211, 231–233]. Likewise, knocking

out proteins involved in F-actin network organization and

dynamics, such as Rac1, IRSp53, subunits of WAVE or

Arp2/3 complexes, PAK1, PAK3, LIMK, ADF/cofilin and

Eps8 displayed impaired LTP and/or LTD and also spatial

and working memory deficits [93, 98, 100, 117, 122, 234–

239]. Neurological disorders associated with abnormal

spine morphologies such as autism spectrum disorders

(ASD) and schizophrenia can also be triggered by genetic

deregulation of proteins such as IRSp53, Shank3 and

FMRP (fragile X mental retardation protein) that directly

interact with subunits of the WAVE and Arp2/3 complexes

[129, 216, 239–242]. What could therefore be the mecha-

nisms behind F-actin cytoskeleton sustainment of synaptic

plasticity?

GluN and GluA receptors play a major role in the

induction and maintenance of synaptic plasticity, respec-

tively [199, 243, 244]. Trafficking of GluN and GluA in

and out of dendritic spines, but also their anchorage and

stabilization via interaction with PSD scaffold proteins,

are crucial mechanisms for LTP and LTD [245–248]).

PSD dynamic architecture and receptor trafficking are

supported and regulated by the F-actin cytoskeleton [43,

86, 249]. F-actin can regulate in many ways the dynamics

of key PSD scaffold proteins such as PSD-95, GKAP,

Shank and Homer [35]. First, actin filaments are in close

proximity with the PSD [36]. Second, the Arp2/3 and

WAVE complexes and cortactin can directly bind Shank3

[101, 129]. Third, proteins involved in the activation of

the WAVE complex, such as IRSp53 and the Rac1 GEF

bPIX, can interact with Shank family proteins and PSD95

[126, 127, 250–252]. Acute pharmacological treatment

inducing F-actin depolymerization (latrunculin-A) dis-

rupts PSD-95 nanoscale organization and dynamics but

only slightly affects its content in dendritic spines, prob-

ably because of its direct association with the plasma

membrane [253–255]. A similar treatment decreases

GKAP, Homer1C and Shank2 content in immature but not

mature spines [253, 254]. Thus, PSD scaffold matrix

remodeling relies on F-actin dynamics, but the inter-

molecular assembly between PSD proteins might be

strengthened during dendritic spine maturation to become

independent from the F-actin network [256]. Interestingly,

as for PSD95 proteins, the WAVE complex and IRSp53

are still present in dendritic spines after F-actin depoly-

merization, highlighting the tight functional coupling

between the PSD and F-actin regulators [67]. Pharmaco-

logical treatments which induce F-actin depolymerization

also disrupt GluA dynamic architecture, increasing their

surface diffusion, decreasing their spine content and

preventing their spine insertion during LTP [230, 238,

254, 257]. Furthermore, inhibiting F-actin dynamics

without disrupting the F-actin network (low concentra-

tions of latrunculin-A) does not decrease GluA content

but still prevents insertion of new GluA receptors upon

synaptic stimulation [228, 230, 232]. Altogether, these

findings suggest, first, that PSD reorganization by F-actin

controls the anchorage of a synaptic pool of GluA

receptors; second that PSD remodeling provides constant

accessibility of new binding sites for GluA; and finally

that maintenance and insertion of GluA receptors relies on

the F-actin cytoskeleton [230, 238, 254, 258–260].

Disrupting F-actin dynamics could also lead to impaired

exocytosis and endocytosis therefore preventing insertion

and removal of GluA receptors during LTP and LTD,

respectively [249, 261–265]. The plasma membrane

t-SNARE syntaxin 4 binds to actin and is involved in

exocytosis in dendritic spines and LTP [261, 266]. How-

ever, F-actin depolymerization does not change the

frequency and proportion of exocytotic events in the

somatodendritic compartment [267]. Spine-localized

endocytosis of GluA receptors is, on the other hand, well

established and relies on the actin cytoskeleton [249]. The

Arp2/3 inhibitor PICK1 binds to GluA2/3 subunits and

plays a critical role in their surface expression. Preventing

PICK1 binding to Arp2/3 disrupts GluA internalization

during LTD induction therefore occluding LTD [96, 106].

Interestingly, PICK1 is a Ca2? sensor, and the PICK1-

mediated inhibition of Arp2/3 is enhanced by GluA2-

PICK1 interaction thus providing spatiotemporal control of

GluA endocytosis during LTD [96, 200]. Since PICK1

knockdown also prevents LTP, branched F-actin nucleation

and its regulation by PICK1 could be more generally

involved in the recycling endosomal pathway and in the

constant supply of GluA receptors [249, 268, 269].

Intracellular transport of recycling endosomes (RE) into

and out of dendritic spines relies on myosin motors moving

on actin filaments: myosin V and myosin VI walking

towards the barbed- and pointed-end, respectively. Spine

necks are composed of both branched and non-branched

long F-actin filaments of mixed orientation, thus providing
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tracks for myosin V and VI to enter and exit dendritic

spines [39, 66]. As mentioned previously, LTP induction

induces shortening and widening of the spine neck and

could therefore facilitate in and out trafficking mediated by

myosin motors [31]. Myosin VI was first shown to be

involved in stimulation-induced GluA1 endocytosis [270].

Myosin Vb was also shown to be recruited to RE upon

Ca2? influx and LTP induction, triggering translocation of

RE into spines and GluA1 surface insertion [271]. Fur-

thermore, acute blockade of Myosin Vb ATP activity,

needed for its movements along F-actin, attenuates LTP

maintenance [271].

While the mechanisms described above were shown to

be essential to sustain the early phase of LTP and LTD

(1–4 h), protein synthesis is required to sustain the later

phases (C4 h) [49, 199, 272–277]. Late LTP (L-LTP)

requires, for instance, the supply of newly synthetized PSD

proteins to increase the number of available binding sites

for GluA receptors in order to prevent synaptic saturation

[278]. Interestingly, inhibiting CaMKII activity only during

LTP induction or inhibiting F-actin dynamics during LTP

induction up to 30 min after induction are sufficient to

occlude L-LTP [233, 279]. Therefore, activation of the

CaMKII signaling cascade, reorganization of the F-actin

cytoskeleton and dendritic spine morphological remodeling

could all represent a synaptic ‘‘tag’’ for efficient delivery

and capture of newly synthetized proteins in order to sus-

tain long-term synaptic plasticity and memory storage [49,

280].

Conclusion/outlook

In this review, we have highlighted that, as for many other

motile sub-cellular compartments, dendritic spine motility

and remodeling are sustained by F-actin cytoskeleton

dynamics. The unique F-actin dynamics of dendritic spines

results from the nanoscale organization of various ABPs

within different sub-spine compartments [67]. However, to

completely understand how the nanoscale organization of

ABPs can lead to the coexistence of several F-actin pools

with distinct dynamic properties will require further studies.

Correlative live cell and super-resolution microscopy could,

for instance, enable correlation between F-actin dynamics

and ABP nanoscale organization [281]. Because of the

heterogeneity of dendritic spine morphologies, multiplex

SMLM could represent a powerful tool to visualize mem-

brane, ABPs, PSD proteins and post-synaptic receptors

within an individual spine. Multiplex SMLM can be

achieved by linking DNA-PAINT (DNA-Point Accumula-

tion for Imaging in Nanoscale Topography) docking strands

to antibodies [282, 283]; by using virtual grids and sequential

immunostaining and imaging [284]; or more recently by

spectrally resolving single molecules from different dyes

[285]. This last approach might, however, be challenging

regarding the density of proteins in dendritic spines.

Regulation of the spatiotemporal activity of ABPs is a

fundamental mechanism to induce spine structural plas-

ticity during LTP and LTD. Recent work has provided a

detailed picture of this spatiotemporal coordination [49,

189, 286]. However, those studies could not provide the

nanoscale organization of ABPs at sub-spine resolution. So

far, SMLM has reached the highest resolution for fluores-

cence microscopy on both live and fixed biological samples

in 2D and 3D [53, 80, 287, 288]. Deep tissue and in vivo

imaging of dendritic spines is, however, still a challenge

[289, 290]. Super-resolution microscopy techniques, such

as simulated emission depletion microscopy (STED), can

perform live recordings of dendritic spines in brain slices

and in vivo [22, 31, 291]. However, high-power lasers used

for STED induce high photobleaching and requires high

labeling density or replenishment of a cytosolic fluo-

rophore. Reversible saturable optical fluorescence

transitions microscopy can overcome those drawbacks by

exploiting reversibly photoswitchable fluorophores [292,

293]. Structured illumination microscopy is also well sui-

ted for three-dimensional multi-color live imaging, and

recent improvements of its spatial resolution in combina-

tion with light sheet microscopy could represent a valuable

tool to study the spatiotemporal reorganization of synaptic

proteins in brain slices and in vivo during synaptic plas-

ticity [294–299].

Spine structural plasticity and the underlying reorgani-

zation of F-actin networks could represent a synaptic ‘‘tag’’

required for the maintenance of functional plasticity [75,

153, 233, 280]. Recently, Kasai and co-workers have

demonstrated that motor task learning could be disrupted

by optical shrinkage of the potentiated spines, therefore

establishing a direct link between dendritic spine mor-

phology and the formation of a memory trace in vivo [13].

The exact mechanism by which the F-actin cytoskeleton

sustains functional plasticity is, however, still unclear.

Most likely, it involves efficient delivery and capture of

newly synthetized proteins as well as the regulation of PSD

proteins and post-synaptic receptors dynamics and stabil-

ity. The coordinated structural remodeling of pre- and post-

synaptic structures could also be a key mechanism for

maintenance of functional plasticity and might require tight

coordination between the F-actin cytoskeleton and trans-

synaptic adhesion proteins [286, 300]. Further development

in optogenetics will allow the manipulation of synaptic

protein interactions in vitro and in vivo and could tackle

those hypotheses to refine the model behind the sustain-

ment of functional synaptic plasticity by F-actin

cytoskeleton reorganization [301, 302]. However, how this

knowledge, acquired at a single spine and neuron level, can
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be implemented in neural networks models that can gen-

erate behavior, cognition and mental disease remains a

main challenge in neuroscience [303, 304].
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plasticity regulates compartmentalization of synapses. Nat

Neurosci 17:678–685. doi:10.1038/nn.3682

32. Noguchi J, Nagaoka A, Watanabe S, Ellis-Davies GCR, Kita-

mura K, Kano M, Matsuzaki M, Kasai H (2011) In vivo two-

photon uncaging of glutamate revealing the structure-function

relationships of dendritic spines in the neocortex of adult mice.

J Physiol 589:2447–2457. doi:10.1113/jphysiol.2011.207100

33. Loewenstein Y, Kuras A, Rumpel S (2011) Multiplicative

dynamics underlie the emergence of the log-normal distribution

of spine sizes in the neocortex in vivo. J Neurosci

31:9481–9488. doi:10.1523/JNEUROSCI.6130-10.2011

34. Zhang Y, Cudmore RH, Lin D-T, Linden DJ, Huganir RL

(2015) Visualization of NMDA receptor-dependent AMPA

receptor synaptic plasticity in vivo. Nat Neurosci 18:402–407.

doi:10.1038/nn.3936

35. Sheng M, Hoogenraad CC (2007) The postsynaptic architecture

of excitatory synapses: a more quantitative view. Annu Rev

Biochem 76:823–847. doi:10.1146/annurev.biochem.76.060805.

160029

36. Fifkova E, Delay RJ (1982) Cytoplasmic actin in neuronal

processes as a possible mediator of synaptic plasticity. J Cell

Biol 95:345–350

3064 A. Chazeau, G. Giannone

123

http://dx.doi.org/10.3389/fnana.2015.00018
http://dx.doi.org/10.1038/1831592a0
http://dx.doi.org/10.1038/1831592a0
http://dx.doi.org/10.1016/S0166-2236(00)01635-0
http://dx.doi.org/10.1523/JNEUROSCI.3958-09.2009
http://dx.doi.org/10.1523/JNEUROSCI.3958-09.2009
http://dx.doi.org/10.1523/JNEUROSCI.3575-09.2009
http://dx.doi.org/10.1038/nature13294
http://dx.doi.org/10.1038/nature15257
http://dx.doi.org/10.1146/annurev.neuro.31.060407.125646
http://dx.doi.org/10.1073/pnas.0810028105
http://dx.doi.org/10.1073/pnas.0810028105
http://dx.doi.org/10.1371/journal.pone.0015611
http://dx.doi.org/10.1038/35009107
http://dx.doi.org/10.1038/35009107
http://dx.doi.org/10.1038/nature01276
http://dx.doi.org/10.1038/nature01276
http://dx.doi.org/10.1126/science.1215369
http://dx.doi.org/10.1126/science.1215369
http://dx.doi.org/10.1038/19978
http://dx.doi.org/10.1038/46574
http://dx.doi.org/10.1038/46574
http://dx.doi.org/10.1016/j.neuron.2004.11.016
http://dx.doi.org/10.1016/j.neuron.2004.11.016
http://dx.doi.org/10.1016/j.neuron.2015.05.043
http://dx.doi.org/10.1016/j.neuron.2015.05.043
http://dx.doi.org/10.1038/nature02617
http://dx.doi.org/10.1016/j.neuron.2004.11.011
http://dx.doi.org/10.1016/j.neuron.2004.11.011
http://dx.doi.org/10.1073/pnas.1214705110
http://dx.doi.org/10.1038/nn.3682
http://dx.doi.org/10.1113/jphysiol.2011.207100
http://dx.doi.org/10.1523/JNEUROSCI.6130-10.2011
http://dx.doi.org/10.1038/nn.3936
http://dx.doi.org/10.1146/annurev.biochem.76.060805.160029
http://dx.doi.org/10.1146/annurev.biochem.76.060805.160029


37. Kaech S, Fischer M, Doll T, Matus A (1997) Isoform specificity

in the relationship of actin to dendritic spines. J Neurosci

17:9565–9572

38. Cheng D, Hoogenraad C, Rush J, Schlager M, Duong D, Xu P,

Wijayawardana S, Hanfelt J, Nakagawa T, Sheng M, Peng J

(2006) Relative and absolute quantification of postsynaptic

density proteome isolated from rat forebrain and cerebellum.

Mol Cell Proteomics 5:1158–1170. doi:10.1074/mcp.D500009-

MCP200

39. Korobova F, Svitkina T (2010) Molecular architecture of

synaptic actin cytoskeleton in hippocampal neurons reveals a

mechanism of dendritic spine morphogenesis. Mol Biol Cell

21:165–176. doi:10.1091/mbc.E09-07-0596

40. Dunaevsky A, Tashiro A, Majewska A, Mason C, Yuste R

(1999) Developmental regulation of spine motility in the

mammalian central nervous system. Proc Natl Acad Sci USA

96:13438–13443

41. Korkotian E, Segal M (2001) Regulation of dendritic spine

motility in cultured hippocampal neurons. J Neurosci

21:6115–6124

42. Portera-Cailliau C, Pan DT, Yuste R (2003) Activity-regulated

dynamic behavior of early dendritic protrusions: evidence for

different types of dendritic filopodia. J Neurosci 23:7129–7142

43. Cingolani LA, Goda Y (2008) Actin in action: the interplay

between the actin cytoskeleton and synaptic efficacy. Nat Rev

Neurosci 9:344–356. doi:10.1038/nrn2373

44. Hotulainen P, Hoogenraad CC (2010) Actin in dendritic spines:

connecting dynamics to function. J Cell Biol 189:619–629.

doi:10.1083/jcb.201003008

45. Pollard TD, Cooper JA (2009) Actin, a central player in cell

shape and movement. Science 326:1208–1212. doi:10.1126/

science.1175862

46. Carlier M-F, Pernier J, Montaville P, Shekhar S, Kühn S (2015)
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Thoumine O (2008) A molecular clutch between the actin flow

and N-cadherin adhesions drives growth cone migration.

J Neurosci 28:5879–5890. doi:10.1523/JNEUROSCI.5331-07.

2008

72. Garcia M, Leduc C, Lagardère M, Argento A, Sibarita J-B,

Thoumine O (2015) Two-tiered coupling between flowing actin

and immobilized N-cadherin/catenin complexes in neuronal

growth cones. Proc Natl Acad Sci USA 112:201423455. doi:10.

1073/pnas.1423455112

Organization and dynamics of the actin cytoskeleton during dendritic spine morphological… 3065

123

http://dx.doi.org/10.1074/mcp.D500009-MCP200
http://dx.doi.org/10.1074/mcp.D500009-MCP200
http://dx.doi.org/10.1091/mbc.E09-07-0596
http://dx.doi.org/10.1038/nrn2373
http://dx.doi.org/10.1083/jcb.201003008
http://dx.doi.org/10.1126/science.1175862
http://dx.doi.org/10.1126/science.1175862
http://dx.doi.org/10.1007/s00018-015-1914-2
http://dx.doi.org/10.1007/s00018-015-1914-2
http://dx.doi.org/10.15252/embj.201490137
http://dx.doi.org/10.2174/1874082000903020054
http://dx.doi.org/10.1016/j.neuron.2014.03.021
http://dx.doi.org/10.1073/pnas.0800897105
http://dx.doi.org/10.1007/s12035-012-8345-y
http://dx.doi.org/10.1007/s12035-012-8345-y
http://dx.doi.org/10.1146/annurev.biochem.77.061906.092014
http://dx.doi.org/10.1146/annurev.biochem.77.061906.092014
http://dx.doi.org/10.1038/nn.3403
http://dx.doi.org/10.1016/j.neuron.2013.10.013
http://dx.doi.org/10.3389/fnana.2014.00142
http://dx.doi.org/10.1016/j.yexcr.2015.02.024
http://dx.doi.org/10.1016/j.yexcr.2015.02.024
http://dx.doi.org/10.1038/nrn1300
http://dx.doi.org/10.1016/j.neuron.2005.04.001
http://dx.doi.org/10.1091/mbc.E14-06-1086
http://dx.doi.org/10.1091/mbc.E14-06-1086
http://dx.doi.org/10.1083/jcb.200809046
http://dx.doi.org/10.1083/jcb.200809046
http://dx.doi.org/10.1083/jcb.146.5.1097
http://dx.doi.org/10.1083/jcb.146.5.1097
http://dx.doi.org/10.1126/science.1100533
http://dx.doi.org/10.1126/science.1100533
http://dx.doi.org/10.1038/ncb1367
http://dx.doi.org/10.1016/j.cell.2006.12.039
http://dx.doi.org/10.1016/j.cell.2006.12.039
http://dx.doi.org/10.1091/mbc.E12-02-0165
http://dx.doi.org/10.15252/embj.201488837
http://dx.doi.org/10.15252/embj.201488837
http://dx.doi.org/10.1002/1097-4695(200008)44:2%3c97:AID-NEU2%3e3.3.CO;2-L
http://dx.doi.org/10.1002/1097-4695(200008)44:2%3c97:AID-NEU2%3e3.3.CO;2-L
http://dx.doi.org/10.1016/j.tcb.2009.07.001
http://dx.doi.org/10.1523/JNEUROSCI.5331-07.2008
http://dx.doi.org/10.1523/JNEUROSCI.5331-07.2008
http://dx.doi.org/10.1073/pnas.1423455112
http://dx.doi.org/10.1073/pnas.1423455112


73. Spacek J, Harris KM (2004) Trans-endocytosis via spinules in

adult rat hippocampus. J Neurosci 24:4233–4241. doi:10.1523/

JNEUROSCI.0287-04.2004

74. Tao-Cheng J-H, Dosemeci A, Gallant PE, Miller S, Galbraith

JA, Winters CA, Azzam R, Reese TS (2009) Rapid turnover of

spinules at synaptic terminals. Neuroscience 160:42–50. doi:10.

1016/j.neuroscience.2009.02.031

75. Okamoto K-I, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid

and persistent modulation of actin dynamics regulates postsy-

naptic reorganization underlying bidirectional plasticity. Nat

Neurosci 7:1104–1112. doi:10.1038/nn1311nn1311

76. Star EN, Kwiatkowski DJ, Murthy VN (2002) Rapid turnover of

actin in dendritic spines and its regulation by activity. Nat

Neurosci 5:239–246. doi:10.1038/nn811

77. Honkura N, Matsuzaki M, Noguchi J, Ellis-Davies GCR, Kasai

H (2008) The subspine organization of actin fibers regulates the

structure and plasticity of dendritic spines. Neuron 57:719–729.

doi:10.1016/j.neuron.2008.01.013

78. Frost NA, Shroff H, Kong H, Betzig E, Blanpied TA (2010)

Single-molecule discrimination of discrete perisynaptic and

distributed sites of actin filament assembly within dendritic

spines. Neuron 67:86–99. doi:10.1016/j.neuron.2010.05.026

79. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S,

Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF

(2006) Imaging intracellular fluorescent proteins at nanometer

resolution. Science 313:1642–1645. doi:10.1126/science.

1127344

80. Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF,

Betzig E, Lippincott-Schwartz J (2008) High-density map-

ping of single-molecule trajectories with photoactivated

localization microscopy. Nat Methods 5:155–157. doi:10.

1038/nmeth.1176

81. Tatavarty V, Kim E-J, Rodionov V, Yu J (2009) Investigating

sub-spine actin dynamics in rat hippocampal neurons with

super-resolution optical imaging. PLoS ONE 4:e7724. doi:10.

1371/journal.pone.0007724

82. Pollard TD (2003) The cytoskeleton, cellular motility and the

reductionist agenda. Nature 422:741–745. doi:10.1038/

nature01598

83. Lai FPL, Szczodrak M, Block J, Faix J, Breitsprecher D,

Mannherz HG, Stradal TEB, Dunn GA, Small JV, Rottner K

(2008) Arp2/3 complex interactions and actin network turnover

in lamellipodia. EMBO J 27:982–992. doi:10.1038/emboj.2008.

34

84. Achard V, Martiel J-L, Michelot A, Guérin C, Reymann A-C,
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ProSAP/Shank postsynaptic density proteins interact with insu-

lin receptor tyrosine kinase substrate IRSp53. J Neurochem

83:1013–1017

127. Choi J, Ko J, Racz B, Burette A, Lee J-R, Kim S, Na M, Lee

HW, Kim K, Weinberg RJ, Kim E (2005) Regulation of den-

dritic spine morphogenesis by insulin receptor substrate 53, a

downstream effector of Rac1 and Cdc42 small GTPases.

J Neurosci 25:869–879. doi:10.1523/JNEUROSCI.3212-04.

2005

128. Park E, Chi S, Park D (2012) Activity-dependent modulation of

the interaction between CaMKIIa and Abi1 and its involvement

in spine maturation. J Neurosci 32:13177–13188. doi:10.1523/

JNEUROSCI.2257-12.2012

129. Han K, Holder JL, Schaaf CP, Lu H, Chen H, Kang H, Tang J,

Wu Z, Hao S, Cheung SW, Yu P, Sun H, Breman AM, Patel A,

Lu H-C, Zoghbi HY (2013) SHANK3 overexpression causes

manic-like behaviour with unique pharmacogenetic properties.

Nature 503:72–77. doi:10.1038/nature12630

130. Chen B, Brinkmann K, Chen Z, Pak CW, Liao Y, Shi S, Henry

L, Grishin NV, Bogdan S, Rosen MK (2014) The WAVE reg-

ulatory complex links diverse receptors to the actin

cytoskeleton. Cell 156:195–207. doi:10.1016/j.cell.2013.11.048

131. Chen XJ, Squarr AJ, Stephan R, Chen B, Higgins TE, Barry DJ,

Martin MC, Rosen MK, Bogdan S, Way M (2014) Ena/VASP

proteins cooperate with the WAVE complex to regulate the actin

cytoskeleton. Dev Cell 30:569–584. doi:10.1016/j.devcel.2014.

08.001

132. Yang C, Svitkina T (2011) Filopodia initiation: focus on the

Arp2/3 complex and formins. Cell Adh Migr 5(5):402–408. doi:

10.4161/cam.5.5.16971

133. Giannone G, Dubin-Thaler BJ, Döbereiner H-G, Kieffer N,
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