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Abstract Multiple myeloma (MM) is a tumor of termi-

nally differentiated B cells that arises in the bone marrow.

Immune interactions appear as key determinants of MM

progression.Whilemyeloid cells fostermyeloma-promoting

inflammation, Natural Killer cells and T lymphocytes

mediate protective anti-myeloma responses. The profound

immune deregulation occurring in MM patients may be

involved in the transition from a premalignant to amalignant

stage of the disease. In the last decades, the advent of stem

cell transplantation and new therapeutic agents including

proteasome inhibitors and immunoregulatory drugs has

dramatically improved patient outcomes, suggesting poten-

tially key roles for innate and adaptive immunity in disease

control. Nevertheless, MM remains largely incurable for the

vast majority of patients. A better understanding of the

complex interplay betweenmyeloma cells and their immune

environment should pave the way for designing better

immunotherapieswith the potential of very long termdisease

control. Here, we review the immunological microenviron-

ment in myeloma. We discuss the role of naturally arising

anti-myeloma immune responses and their potential cor-

ruption in MM patients. Finally, we detail the numerous

promising immune-targeting strategies approved or in clin-

ical trials for the treatment of MM.
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Abbreviations

ADCC Antibody-dependent cellular cytotoxicity

APC Antigen presenting cell

APRIL A proliferation-inducing ligand

BAFF B-cell activating factor

BM Bone marrow

BMSC BM stromal cell

CAM-DR Cell-adhesion mediated drug resistance

CAR Chimeric antigen receptor

DAMPs Damage-associated molecular patterns

DC Dendritic cell

GvHD Graft versus host disease

GvM Graft-versus-myeloma

IFN Interferon

Ig Immunoglobulin

ILC Innate lymphoid cell

KIR Killer cell immunoglobulin-like receptor

LPS Lipopolysaccharide

mAb Monoclonal antibody

MDSC Myeloid-derived suppressor cells

MGUS Monoclonal gammopathy of undetermined

significance

MHC Major histocompatibility complex

MM Multiple myeloma

MSC Mesenchymal stem cell

NK Natural killer

PAMPs Pathogen-associated molecular patterns

pDC Plasmacytoid DC

PBMC Peripheral blood mononuclear cells

RANK Receptor activator of NF-jB

& Mark J. Smyth

mark.smyth@qimrberghofer.edu.au

1 Immunology of Cancer and Infection Laboratory, QIMR

Berghofer Medical Research Institute, 300 Herston Road,

Herston, QLD 4006, Australia

2 School of Medicine, The University of Queensland, Herston

Road, Herston, QLD 4072, Australia

3 Bone Marrow Transplantation Laboratory, QIMR Berghofer

Medical Research Institute, Herston, QLD 4006, Australia

Cell. Mol. Life Sci. (2016) 73:1569–1589

DOI 10.1007/s00018-016-2135-z Cellular and Molecular Life Sciences

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-016-2135-z&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-016-2135-z&amp;domain=pdf


SCID Severe combined immunodeficient

TAM Tumor-associated macrophages

TCR T cell receptor

TGF Transforming growth factor

TLR Toll-like receptor

TRAIL TNF-related apoptosis inducing ligand

Treg Regulatory T cell

VEGF Vascular endothelial growth factor

Introduction

Multiple myeloma (MM) is a tumor localized at various

sites within the bone marrow (BM) [1]. With over 20,000

new cases diagnosed per year in the United States, MM

represents 1 % of all cancers and approximately 10 % of

all hematological malignancies. The median age at diag-

nosis is 65 years [2]. MM is clinically defined by the

CRAB symptoms: hyperCalcemia, Renal insufficiency,

Anemia and/or Bone lesions [3]. Autologous stem cell

transplantation (SCT) in eligible patients, proteasome

inhibitors and immunoregulatory drugs have substantially

increased response rates and overall survival during the

past two decades [4]. In spite of these tremendous

improvements, MM remains a largely incurable disease

with a median survival of 6 years.

Myeloma cells are the malignant counterpart of plasma

cells, which are terminally differentiated B cells. Antibody-

secreting plasma cells differentiate from naı̈ve B cells that

have recognized a foreign antigen [5]. This takes place in

germinal centers of secondary lymphoid organs, whereB cells

undergo proliferation and somatic hypermutations followed

by the selection of B cells with high antigen affinity. Plas-

mablasts exiting the germinal center migrate to the BMwhere

they find an appropriate environment allowing them to dif-

ferentiate intomature long-lived plasma cells [5, 6]. Similarly,

myeloma cells depend on the BMmicroenvironment for their

survival, growth and differentiation [7]. The primary function

of long-lived plasma cells is the secretion of antibodies (im-

munoglobulin, Ig) that mediate humoral immunity against

infections. In contrast to normal plasma cells, myeloma cells

secrete monoclonal Ig (M-proteins) which are central to dis-

ease pathogenesis and serve as diagnosticmarker detectable in

the blood and urine of MM patients.

MM is a multistep progressing disease that starts with an

asymptomatic premalignant lesion called monoclonal

gammopathy of undetermined significance (MGUS).

MGUS is present in 1 % of the adult population and pro-

gresses to malignant MM at the rate of 1 % per year [7].

Although MM develops in the BM, late stages may involve

a loss of BM-dependency and the development of extra-

medullary tumors in the blood, liver, spleen, lymph nodes,

pleural fluid and skin [8]. When a high percentage ([20 %)

of malignant plasma cells is detected in the blood, the dis-

ease is then called plasma-cell leukemia. Malignant plasma

cells arise from successive genetic lesions [9]. Early

immortalizing events likely occur in germinal centers and

involve translocations between Ig enhancers and onco-

genes. Subsequently, secondary translocations activating

proliferation and survival pathways contribute to increased

tumor growth and extramedullary spread. Yet, the factors

determining the progression from a premalignant MGUS

stage to active myeloma are not well understood.

Microarray expression analysis has revealed a large number

of genes differentially expressed between plasma cells of

healthy donors and those of MGUS/MM patients; but very

few genes could distinguish MGUS from MM plasma cells

[10]. Along with genetic changes in plasma cells, the BM

microenvironment is believed to play a crucial role in dis-

ease progression to symptomatic myeloma. Immune cells

are important components of this microenvironment. Here,

we review the importance of the immune network in pro-

moting or controlling myeloma growth. We describe the

interactions between the different members of the immune

system, the BM stroma and the myeloma cells. Finally, we

discuss various strategies implemented to trigger the

immune elimination of myeloma cells.

Role of the BM microenvironment in MM
pathology

Immune composition of the BM microenvironment

MM develops in the BM, a well organized tissue residing

in the cavities of bones. In adults, the BM is the primary

site of hematopoiesis, the process by which hematopoietic

stem cells give rise to the different types of blood cells

including erythrocytes, megakaryocytes, platelets and

immune cells. Besides providing hematopoietic stem cells

with the specific microenvironmental niches required for

their maintenance, proliferation and differentiation [11],

the BM is also the primary residential site of plasma cells

[5, 6]. Factors provided by highly specialized niches within

the BM allow plasma cells to survive for years, even for

decades. It is postulated that the same factors support the

growth of myeloma cells.

The BM microenvironment consists of a cellular com-

partment, the extracellular matrix and soluble factors such

as cytokines, chemokines and growth factors [12, 13]. BM

residing cells can be subdivided into hematopoietic cells

including immune cells, and non-hematopoietic cells such

as stromal cells, adipocytes, osteoclasts, osteoblasts and

components of the vasculature. Complex interactions

between immune, non-immune and malignant myeloma
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cells influence MM progression (Fig. 1). The crucial role of

immunity in the development and pathology of MM are the

main focus of this review.

The BM is a primary organ of hematopoiesis and

therefore contains hematopoietic stem cells and progenitors

of the myeloid and lymphoid lineages [11]. Myeloid cells

such as monocytes, macrophages, dendritic cells (DCs) and

granulocytes develop in the BM, are rapidly recruited to

damaged or infected tissues and play major roles in early

immune responses [14]. Their immature precursors may

participate to MM pathology by favoring the proliferation

of malignant plasma cells [15]. Monocytes differentiate

into inflammatory macrophages or monocyte-derived DCs.

Macrophages are phagocytes that contribute to inflamma-

tory and healing responses through the secretion of diverse

cytokines. Abundant in the BM of MM patients [16],

macrophages have been shown to support the proliferation

and the survival of myeloma cells [17]. DCs have major

functions in the initiation and orientation of adaptive

immune responses. Indeed, to acquire effector function,

naı̈ve T cells need to be ‘educated’ by antigen presenting

cells (APCs). DCs are professional APCs that display

antigens on major histocompatibility complex (MHC)

molecules and deliver the appropriate signals (co-stimula-

tion and cytokines) necessary for T cell activation. Distinct

subsets of DCs harbor specific antigen presenting and

immunoregulatory capacities [18]. The BM contains pro-

genitors of conventional DCs as well as developing and

mature plasmacytoid DCs (pDCs) [19]. In addition, circu-

lating conventional DCs can migrate back to the BM where

they may stimulate T cell proliferation [20]. Such local

activation of T cell responses may have considerable

impact on the T cell mediated control of MM. Granulo-

cytes are subdivided into neutrophils, eosinophils and

basophils [14]. Neutrophils are functionally impaired in

MM patients [21], while eosinophils promote human and

mouse myeloma cell growth [22, 23].

The lymphoid lineage comprises innate lymphoid cells

(ILCs) and T and B lymphocytes. ILC progenitors, including

the common helper ILC progenitor [24], group 2 ILC-re-

stricted [25] and natural killer (NK) cell-restricted

progenitors [26] are present in the BM. So far, NK cells have

been the most studied members of the ILC family. NK cells

play an important role in cancer immunology due to their

capacity to directly recognize and kill tumor cells [27] and

have received particular interest in MM [28]. B and T lym-

phocytes mediate adaptive immunity. Adaptive immune

responses are antigen-specific but develop slower than innate

responses carried on by myeloid cells or ILCs. An important

feature of adaptive immune responses is the memory that

allows faster and more potent responses following a subse-

quent encounter with the same antigen. Memory T cells

certainly play a crucial role in controlling dormant tumor

cells and preventing relapse [29]. B cells complete their

development in the BM whereas early T cell progenitors

leave the BM to achieve their development in the thymus. In

addition, the BM cellular compartment typically contains

less than 5 % plasma cells [6, 30] and 1–5 % of re-circu-

lating mature T cells [31, 32]. There are different subsets of T

cells. CD8 T cells are cytotoxic lymphocytes that eliminate

tumor cells in an antigen-specific manner. Memory CD8 T

cells preferentially home to the BM where they undergo

basal proliferation allowing the maintenance of a cytotoxic

memory [31]. CD4 T cells, also called helper T cells (Th),

secrete cytokines that regulate immune responses [33]. They

also help CD8 T cells functions as well as B cell differenti-

ation into long-lived antibody-secreting plasma cells.

Depending on the signals they receive, naive CD4 T cells

differentiate into different helper lineages with distinct

cytokine secretion profiles. For instance, Th1 cells mainly

produce interferon (IFN)-c whereas Th2 cells secrete IL-4,

IL-5, IL-10 and IL-13. Regulatory T cells (Treg) are another

CD4 T cell subset characterized by the expression of the

Foxp3 transcription factor. These cells down-regulate

immune responses and are often, albeit not always, associ-

ated with poor outcome in cancer patients [34]. Interestingly,

the BM is particularly rich in Tregs, which represent 25 % of

CD4 T cells in this organ [35]. High numbers of immature

myeloid cells and Tregs in the BM indicate a tolerance-prone

microenvironment that may hamper the development of

protective immune responses against MM.

Dependency of myeloma cells on the BM

microenvironment

Even though extramedullary disease is detected in 7–18 % of

newly diagnosed MM patients [36], myeloma cells are

believed to be strictly confined to the BM in the early stages of

the disease [7]. The observation that MM cells do not pro-

liferate when cultured alone highlights the strong dependency

of these cells on microenvironmental factors [30].

The chemokine stromal derived factor-1 (SDF-1 or

CXCL12) is a key regulator of myeloma cell homing to the

BM [37]. CXCL12 is produced by BM stromal cells

(BMSCs) and interacts with CXCR4 on myeloma cells. In

addition, the retention of myeloma cells within the BM is

ensured by a range of interactions between myeloma cells,

the BMSCs and the extracellular matrix. For instance,

syndican-1 (CD138), CD44, CD38 and integrins expressed

by myeloma cells bind to various components of the

extracellular matrix and serve as major anchors mediating

physical interactions between malignant plasma cells and

the solid textures of the BM [37]. Importantly, these

receptors do not only mediate adhesion but also initiate

signaling cascades within myeloma cells that contribute to

their proliferation and survival.
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The cytokine IL-6 is probably the most important factor

sustaining MM growth in the BM [38]. In fact, the loss of

IL-6 dependency observed in advanced disease stages may

facilitate the colonization of extramedullary sites by mye-

loma cells [39]. It is interesting to note that normal and

malignant plasma cells respond quite differently to IL-6

stimulation: IL-6 increases Ig production by normal plasma

cells but stimulates proliferation and resistance to apoptosis

in MM cells [40]. BMSCs as well as T cells, B cells,

monocytes or myeloma cells themselves produce IL-6 [41].

BMSCs are considered as the predominant source of IL-6

in MM [42]. Still, the role of immune cells in IL-6-driven

myeloma pathology should not be neglected. For instance,

macrophages promote the proliferation of human MM cells

in an IL-6-dependent manner [17]. Interestingly, mouse

eosinophil-derived IL-6 contributes to the maintenance of

long-lived plasma cells in the BM [43]. Similarly, human

eosinophils have been shown to enhance the proliferation

of MM cell lines, even though the IL-6-dependency of this

phenomena was questioned [22]. Despite being a key

myeloma growth factor, IL-6 blockade with monoclonal

antibodies has shown disappointing results in MM patients

when administered with conventional chemotherapeutics

[44]. This suggests that IL-6 inhibition is likely to be

redundant for disease control during currently standard

therapies.

B-cell activating factor (BAFF) and a proliferation-in-

ducing ligand (APRIL) are related members of the TNF

superfamily whose receptors are expressed on B cells at

different stages of differentiation [5]. BAFF is necessary

for the early stages of human plasmablast differentiation

whereas long-term survival of plasma cells is APRIL-de-

pendent [6]. Human primary myeloma cells express

receptors for BAFF and APRIL [45]. Addition of these

growth factors to an IL-6-deprived milieu rescues IL-6-

dependent myeloma cell lines from apoptosis [46]. In the

myeloma-infiltrated BM microenvironment, monocytes

and neutrophils are the mains source of BAFF, while

APRIL is produced by monocytes and osteoclasts [47].

Moreover, APRIL is expressed by mouse BM eosinophils

that support normal plasma cell survival [43], but the role

of APRIL production by eosinophils in MM requires fur-

ther investigation.

Although IL-6, BAFF and APRIL are probably the

key proliferation and survival factors for myeloma cells,

other factors contribute to the MM pathology. In late

MM stages, insulin-like growth factor (IGF)-1 may drive

proliferation and survival of IL-6-independent myeloma

cells [40]. Additional growth factors and cytokines

promoting MM growth include G-CSF, GM-CSF, SCF,

TNF-a, HGF, IL-3, IL-10, IL-15, IL-17, IL-21, vascular
endothelial growth factor (VEGF) and osteopontin [8,

12, 48].

Impact of myeloma on the BM microenvironment

The BM provides survival niches for both normal and

malignant plasma cells. In MM, malignant plasma cells

hijack the diverse components of this microenvironment to

further sustain MM growth and development. For instance,

myeloma cells induce BMSCs, osteoblasts and immature

myeloid cells to produce IL-6, thereby promoting their own

proliferation [8, 15, 49]. Importantly, myeloma perturbs

normal bone remodeling, promotes angiogenesis and cau-

ses immune deficiencies.

Bone destruction is a key pathological feature of MM.

Development of focal lytic bone lesions or diffuse

osteopenia leads to spontaneous fractures and increased

calcium release that largely contribute to MM morbidity

and mortality [40]. A study performed in a humanized

severe combined immunodeficient (SCID) mouse model

suggested that bone remodeling might also contribute to

MM progression [50]. This process involves multiple

interactions between myeloma cells, BMSCs, and bone

forming and resorbing cells and their progenitors. In

physiological conditions, osteoclasts clear away old bone

tissue while osteoblasts create new bone. In MM, the bal-

ance between bone resorption and bone formation is

disturbed. Myeloma cells inhibit osteoblast differentiation

and promote osteoclast differentiation and activity [13].

Several factors have been involved in myeloma-induced

osteolysis. Interactions between the receptor activator of

NF-jB (RANK) and its ligand (RANKL) are thought to

play a crucial role in this process [40]. Even if immune

cells have been poorly investigated in the context of

myeloma bone disease, few studies indicated a pivotal role

of T cells. In MM patients, T cells are the main source of

IL-3, a cytokine that triggers osteoclast formation while

blocking osteoblast formation [51]. In addition, human

MM cell lines induce RANKL expression on T cells, thus

favoring osteoclastogenesis [52]. Interestingly, IL-17-pro-

ducing T cells were shown to induce osteoclast activation

and the levels of IL-17 were found to directly correlate

with lytic bone disease in MM patients [53]. Thus, T cells

significantly contribute to myeloma-induced osteolysis.

Further work should determine whether other members of

the immune system are also involved.

Angiogenesis is increased in patients with active MM, in

comparison with MGUS or smoldering MM patients [54]

and BM microvessel density has emerged as an indepen-

dent prognosis factor in myeloma [55]. Inflammatory cells

recruited and activated within the tumor microenvironment

trigger the angiogenic switch [56]. In particular, MM-as-

sociated macrophages were shown to promote

neovascularization [57]. Intriguingly, in solid tumors,

vessels derived from neoangiogenesis show impaired

structure and function, thus influencing leukocytes
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recruitment from the blood [58]. In these settings, angio-

genesis blockade could reverse immunosuppression. The

role of angiogenesis on the immune composition of the BM

microenvironment remains to be investigated in MM.

It is widely recognized that MM patients have greater

susceptibility to infections and secondary malignancies

[59]. Immune dysfunctions are the consequences of both

niche-occupancy and direct immunosuppression by

malignant plasma cells [60]. Specific immune deregula-

tions and their impact on anti-myeloma responses will be

discussed later.

The BM niche protects myeloma cells

from chemotherapy

Reciprocal interactions involving myeloma cells and the

BM milieu contribute to the resistance to conventional

chemotherapeutic agents. Therefore, novel therapeutic

approaches aim to target not only the malignant cells, but

also myeloma cell-stromal cell interactions and the BM

microenvironment [51].

Response of myeloma cells to conventional therapies,

such as glucocorticoids or cytotoxic chemotherapeutics, is

attenuated by the presence of BMSCs [40]. The concept of

cell-adhesion mediated drug resistance (CAM-DR) was

first introduced in 1999 to describe the role of fibronectin-

adhesion in protecting myeloma cells against apoptosis

when exposed to cytotoxic agents. Fibronectin or BMSCs

induce CAM-DR to a variety of drugs (e.g. bortezomib,

vincristine, doxorubicin and dexamethasone) and integrins

expressed by malignant plasma cells play a key role in this

process [37]. In addition to cell-to-cell contacts, soluble

factors such as IL-6 contribute to myeloma cell resistance

to chemotherapy [61]. The role of immune cells in drug

resistance has been poorly investigated. Still, macrophages

were found to protect myeloma cells from dexamethasone-,

melphalan-, bortezomib- and doxorubicin- induced apop-

tosis [16, 62].

Furthermore, hematopoietic stem cell niches in the BM

might promote the survival of MM stem cells. Even if the

concept of cancer stem cell in MM remains controversial,

these cells have been proposed to be the root cause of drug

resistance [63].

Spontaneous immune responses to MM

Myeloid cells promote inflammation in the MM

microenvironment

Inflammation is one of the hallmarks of cancer [64]. It has

been well established that the inflammatory microenvi-

ronment facilitates proliferation, invasion, and metastasis

of malignant cells in solid tumors [65]. In this context,

myeloid cells are key inflammatory mediators that produce

proinflammatory cytokines through recognition of diverse

pathogen-associated molecular patterns (PAMPs) or dam-

age-associated molecular patterns (DAMPs) by their

pattern-recognition receptors [66, 67]. Recently, subpopu-

lations of tumor-associated myeloid cells have gained

prominence due to their immunosuppressive functions.

These cells include myeloid-derived suppressor cells

(MDSC) and tumor-associated macrophages (TAM) [68].

Although these myeloid cells have been intensively studied

in solid tumors, there is emerging evidence that they are

key players in BM milieu of hematological malignancies

including MM [57].

MDSC

MDSC are heterogeneous immature myeloid cells which

are characterized by a potent ability to suppress anti-tumor

immune responses mediated by T cells and NK cells [68,

69]. Under pathological conditions including cancer, per-

turbation of normal differentiation of myeloid cells leads to

generation of MDSC, which is triggered by persistent

exposure to tumor microenvironment-derived soluble fac-

tors such as stem-cell factor, GM-CSF, prostaglandins, IL-

6, and VEGF [70]. MDSC are subsequently recruited into

tumor site or lymphoid tissues in response to CCL2 [71],

CXCL5 [72], and S100 proteins [73]. Initially, MDSC were

identified in tumor-bearing mice as Gr-1?CD11b? cells

[74, 75]. Phenotypically, MDSC can be divided into

granulocytic subset (CD11b?Gr-1highLy6G?Ly6Clow

G-MDSC) or monocytic subset (CD11b?Gr-

1midLy6G-Ly6Chigh MO-MDSC) [68]. Accordingly, two

subsets of MDSC possess different suppressive mecha-

nisms: G-MDSC chiefly use reactive oxygen-species

(ROS) such as hydrogen-peroxidase, whereas MO-MDSC

use inducible nitric oxide synthase (iNOS) and arginase.

Hydrogen-peroxide and iNOS-derived peroxynitrite inhibit

T-cell receptor signal transduction [68], whereas arginase

sequestrates L-arginine that is required for T cell prolifer-

ation [76], both of which dampen T cell-mediated anti-

tumour immune responses in a cell-to-cell contact depen-

dent manner. In addition to their direct immunosuppressive

activities, MDSC are capable of inducing Tregs. Though

the exact mechanism has not been fully understood, diverse

molecules are reported to be implicated in the cross-talk

between MDSC and Treg cells including arginase [77],

CD40 [78] or cytokines (TGF-b, IFN-c and IL-10) [79].

Moreover, MDSC stimulate tumor angiogenesis through

secretion of MMP-9 or direct differentiation into CD31?

endothelial cells [80]. Thus, MDSC have multifaceted pro-

tumor functions in tumor microenvironment. Recently,

several studies have shown that MDSC are important
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players in myeloma-infiltrated immune microenviron-

ments. In ATLN and DP42 murine myeloma models, both

the proportion and the absolute number of G-MDSC and

MO-MDSC in BM were significantly increased as early as

1 week after inoculation, and thereafter gradually

decreased due to progressive expansion of myeloma cells

[81]. Similar results were reported by another group in

5TMM models [82, 83], suggesting that the expansion of

MDSC is an early event in MM. Proinflammatory S100

proteins play a pivotal role in the accumulation of MDSC

in solid tumors [73]. Notably, S100A9-deficient mice

showed prolonged survival compared to wild type mice

after inoculation of OVA-expressing DP42 cells, which

was associated with a reduction of MDSC in BM and an

increase in OVA-specific CD8? T cells. Furthermore, the

survival benefit in S100A9-deficient mice was abrogated

by antibody depletion of CD8? T cells or adoptive transfer

of MDSC [81], demonstrating that MDSCs dampen CD8?

T cell-dependent anti-myeloma immune responses, leading

to myeloma progression.

In humans, Brimnes et al. [84] firstly reported that newly

diagnosed MM patients have increased frequencies of

CD14? MO-MDSC in peripheral blood compared to

healthy donors. On the contrary, recent studies showed that

CD14-CD15? G-MDSC, but not CD14? MO-MDSC are

increased in myeloma patients [81, 85, 86], while both

subsets show the same level of suppressive activity against

autologous T cells [86, 87]. In addition to their immuno-

suppressive activities, MDSC can directly stimulate

proliferation of myeloma cells. Görgün et al. [85] showed

that co-culture with MDSC marked enhanced proliferation

of myeloma cells in vitro. Importantly, in this study, co-

culture of myeloma cells and peripheral blood mononu-

clear cells (PBMC) from healthy donors was able to induce

generation of MDSC, providing evidence for bidirectional

interaction between myeloma cells and MDSC. Moreover,

Favaloro et al. [86] reported that MDSC from MM patients

can markedly induce Treg after co-culture with PBMC.

Thus, MDSC contribute to immunosuppressive, tumor-fa-

voring environment, providing a potential target in

myeloma therapy.

Myeloma-associated macrophages

It is now established that tumor tissues are abundantly

infiltrated by TAMs, which support tumor progression by

angiogenesis, matrix remodeling and potent immunosup-

pression [88, 89]. In general, higher level of TAMs

correlates with poor prognosis in many types of solid

tumors [90] as well as hematological malignancies

including MM [91]. In terms of ontogeny of TAMs, both

tissue-resident macrophages and recruited macrophages

coexist in tumor microenvironment [92]; however, recent

studies have clarified that TAMs are phenotypically dis-

tinct from residential macrophages, and originate from

circulating Ly6C? inflammatory monocytes [71, 93, 94].

Colony-stimulating factor-1 receptor (CSF1R) signaling

and CCL2-CCR2 interaction are implicated in the recruit-

ment of monocytes to tumor microenvironment [71, 95]

where differentiation and functional maturation of TAMs

are regulated by Notch signaling and environmental factors

such as hypoxia [94, 96, 97]. It remains unknown whether

myeloma-associated macrophages originate from circulat-

ing monocytes or BM residential precursors; however,

massive BM infiltration by CD68? macrophages are

observed in active MM patients, but not in MGUS patients

or healthy donors [16, 98], indicating that macrophages

represent a pivotal cellular component of the myeloma

microenvironment. Myeloma-associated macrophages

contribute to myeloma pathology by at least three different

ways.

Firstly, myeloma-associated macrophages support

myeloma growth through cytokine production. Impor-

tantly, myeloma-associated macrophages highly express

IL-1 and TNF-a [99, 100], both of which stimulate pro-

duction of IL-6 from mesenchymal stem cells (MSCs).

Additionally, myeloma-associated macrophages secrete the

anti-inflammatory cytokine IL-10, another growth factor

for myeloma cells [100, 101]. Until recently, it remained

unclear whether or not myeloma-associated macrophages

produce cytokines in response to specific PAMPs and/or

endogenous DAMPs in the myeloma microenvironment.

Hope et al. firstly showed that myeloma-associated mac-

rophages contribute to the inflammatory milieu through

toll-like receptor (TLR)-2/6-mediated recognition of its

proteoglycan agonist, versican. Furthermore, they also

found that genetic ablation of tpl2 (Cot/MAP3K8), a

downstream effector of TLRs, delays myeloma progression

in Vk*myc transgenic mice [100], highlighting the

importance of this pathway.

Another important function of myeloma-associated

macrophages is angiogenesis and vasculogenesis. Angio-

genesis within the myeloma microenvironment is amplified

by a positive feedback loop of proangiogenic factors

including VEGF, basic fibroblast growth factor (bFGF),

TNF-a, and IL-6 [102]. In addition to secretion of these

proangiogenic factors, myeloma-associated macrophages

contribute to angiogenesis through a commitment toward

an endothelial phenotype. Scavelli et al. [98] reported that

exposure to VEGF and bFGF convert myeloma-associated

macrophages into cells which are functionally and pheno-

typically similar to endothelial cells, leading to formation

of capillary-like structures.

Lastly, myeloma-associated macrophages support mye-

loma cells in a cell-to-cell contact dependent manner.

Zheng et al. [16] reported that myeloma-associated
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macrophages protect myeloma cells from caspase-depen-

dent apoptosis, which confers resistance to chemotherapy.

Notably, IL-6 was dispensable in this mechanism. Instead,

macrophage-mediated myeloma survival was depend on

interaction between P-selectin glycoprotein ligand-1

(PSGL-1)/selectins and ICAM-1/CD18 which transmit

survival signaling including Src, Erk1/2 and c-myc [62].

NK cells mediate early responses to MM

NK cells are ILCs which play a key role in tumor

immunosurveillance [27]. They express a wide range of

germline-encoded receptors that allow them to recognize

stressed or unhealthy cells such as tumor cells. NK cells

directly kill the target cells by releasing lytic granules

containing granzymes and perforin or through the mem-

brane death receptors TNF-related apoptosis inducing

ligand (TRAIL) and Fas ligand (FasL). NK cells also

secrete a large array of cytokines and chemokines, among

which IFN-c is known for its potent anti-tumor properties.

In humans, NK cells are often characterized as

CD3-CD56? lymphocytes, which are further divided into

two populations: CD56dimCD16? and CD56brightCD16-

cells [103]. Noteworthy, CD56 expression by malignant

plasma cells represents an obstacle to NK cell analysis in

MM patients, even if size parameters should allow the

distinction between NK cells and myeloma cells [104].

NK cells recognize and kill myeloma cells

The importance of NK cells for the control of myeloma

progression has been demonstrated using NK cell-depleting

antibodies in various mouse MM models [105, 106]. Fur-

thermore, several groups established the ability of human

NK cells to kill MM cell lines [107–109]; and cytotoxic

activity of autologous NK cells against patient-derived

myeloma targets has also been reported [108, 110].

A particularity of NK cells is their ability to sense cells

that have down-regulated MHC class I molecules. Human

NK cells express various combinations of killer cell

immunoglobulin–like receptors (KIR) that deliver negative

signals upon binding to MHC class I molecules, thus pre-

venting reactivity against normal healthy cells [111]. MHC

class I down-regulation is frequently observed in cancer

cells. Accordingly, early stages myeloma cells express low

levels of MHC I, and are readily recognized by NK cells

[108].

In addition, myeloma cell recognition by NK cells

involves various activating receptors including NKG2D,

DNAX accessory molecule (DNAM-1 or CD226) and the

natural cytotoxicity receptors (NCRs) NKp46, NKp30,

NKp44 [107, 108]. NKp46 is certainly a key receptor for

NK cell recognition of malignant plasma cells because its

inhibition strongly reduced NK cell-mediated killing of all

the myeloma cell lines so far tested [107]. Human NKG2D

binds to MHC class I related chain A and B (MICA/MICB)

and to UL16 binding proteins (ULBP1-6). ULPB1-3 has

been detected on some myeloma cell lines while high

levels of MICA were observed on BM-derived MM cells

[108]. The NK cell-mediated killing of MICA-expressing

myeloma cells was found to be NKG2D-dependent [107].

Moreover, nectin-2 (CD112) and the poliovirus receptor

(PVR, CD155), the two known DNAM-1 ligands, are

heterogeneously expressed on malignant plasma cells.

Indeed, a study including 12 MM patients revealed CD155

and/or CD112 expression on all but two samples [107].

Blocking DNAM-1 inhibited the in vitro killing of CD155-

expressing myeloma cell lines [107]. Importantly, the role

of DNAM-1 in controlling myeloma progression has been

investigated in vivo, in Vk*myc transgenic mice that

spontaneously develop MM [105]. In this study, DNAM-

1?/?, DNAM-1?/- and DNAM-1-/- Vk*myc mice were

monitored for disease development and survival over

800 days. Mice lacking DNAM-1 exhibited higher levels

of serum monoclonal protein and succumbed earlier to

MM. Although this work highlights the importance of

DNAM-1 in MM immunosurveillance, the role of DNAM-

1 for NK cell-mediated control of MM growth is still to be

demonstrated because, akin to NKG2D, DNAM-1 is not a

NK cell-specific receptor but is also expressed on T cells.

Most studies have focused on the cytolytic activity of

NK cells against MM cells. However, little is known about

NK cell-derived IFN-c in this context. Interestingly, IFN-c-
deficient mice injected with MM cell lines show shorter

survival associated with higher tumor burden, when com-

pared with WT mice [105]. IFN-c not only stimulates

innate and adaptive immune responses [112], but it also

inhibits the in vitro proliferation of myeloma cells [113]

and interferes with the RANKL signaling pathway to

decrease osteoclastogenesis [114]. Thus, IFN-c production

by NK cells may significantly reduce MM pathology and

this pathway would require further investigation.

Impaired NK cell activity in MM

An early report described increased numbers of

CD56?CD3- NK cells in the BM and blood of newly

diagnosed myeloma patients [104]. Subsequent studies

confirmed that patients with MGUS or active myeloma

present elevated numbers of circulating NK cells [115].

Surprisingly, patients with higher numbers of NK cells at

diagnosis were found to have worse prognoses [104]. In

fact, increased NK cell numbers may be seen as an

unsuccessful attempt of the immune system to control

myeloma cell expansion. It is now well established that NK

cell activity is largely compromised in MM patients since
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various mechanisms contribute to impair NK cell recog-

nition and killing of myeloma cells.

Immune escape of cancer cells involves two mecha-

nisms: the immunoediting of tumor cells and the

suppression of immune functions [116]. Both phenomena

have been observed in MM. Interestingly, NK cell

receptor ligands on myeloma cells are progressively edited

during myeloma progression, outlining the role of NK cell

control in the early stages of the disease and suggesting

that impairment of NK cells responses may constitute a

major event in promoting MGUS progression to MM.

Indeed, malignant plasma cells or myeloma cell lines

derived from early-stage MM/MGUS patients exhibit

higher levels of MICA or Fas than plasma cells obtained

from patients with active disease or cell lines derived from

late-stage pleural effusions [108, 117, 118]. In addition,

two studies observed a down-regulation of MHC class I

molecules on the surface of plasma cells from early stages

but not late stages MM patients [108, 117]. Of note, these

results contrast with a third study that reported opposite

observations i.e. an up-regulation of MHC class I mole-

cules on BM plasma cells from MGUS patients compared

with healthy donors and MM patients [119]. Still, mye-

loma cell-lines established from the BM are sensitive to

NK cell-mediated lysis whereas cell-lines generated from

pleural effusions from the same donor are resistant [108].

Likewise, increased degranulation of NK cells in the BM

of MM-bearing mice could only be observed at early time

points of disease development [106]. MICA shedding from

the surface of malignant plasma cells generates soluble

MICA that may contribute to altered NKG2D expression

and defective NK cell functions [118]. While decreased

NKG2D expression on NK cells from MM patients has

been confirmed by another study, the role of soluble

MICA in this process has been questioned [120]. In

addition to NKG2D, other activating receptors showed

reduced expression on NK cells from active myeloma

patients. These include DNAM-1, 2B4/CD244 as well as

the low affinity Fc receptor CD16 [107, 121]. Therefore,

altered expression of activating receptors is likely to

contribute to myeloma cell escape from cancer immuno-

surveillance. A recent study indicated that skewed

chemokine levels hinder NK cell trafficking to the BM

during the early asymptomatic stages of the disease [106].

This may represent another mechanism that contributes to

myeloma cell escape from NK cell control.

T cell responses are altered in MM

Compared with healthy donors, CD4/CD8 T cell ratios are

decreased in the blood of MM patients [122]. Soluble

factors present in the MM microenvironment (e.g. TGF-b,
IL-10 and VEGF) along with defective antigen

presentation by DCs may lead to deficient T cell responses

in MM patients [123, 124].

Alterations of DC functions result in impaired T cell

priming

Though BM is a primary lymphoid organ, BM also func-

tions as a secondary lymphoid organ where T cells

responses are initiated [125]. In this context, efficient

uptake and processing of circulating tumor-associated

antigens by BM CD11c? DCs is critical for the priming of

T cell-mediated anti-tumor immune responses. Many

studies concluded that DCs from MM patients have

impaired T-cell stimulation capacities, whereas contradic-

tory results exist regarding the frequency and phenotype of

DCs [126–129]. Several soluble factors including IL-6,

TGF-b and IL-10 seem to be involved in the impairment of

DC functions [127, 128]. Recently, Leone et al. reported

that DCs accumulate in BM during the MGUS-to-MM

progression. In this study, DCs purified from MGUS/MM

patients were able to engulf apoptotic myeloma cells,

cross-present them and activate tumor-specific CD8? T

cells whereas CD28–CD80/86 interaction between live

myeloma cells and DCs down-regulated expression of

proteasome subunits in myeloma cells [130]. This mecha-

nism may enable myeloma cells to evade CD8? T-cell

killing in spite of efficient T cell priming.

pDCs, the other major subset of DCs, are also involved

in myeloma pathology. pDCs play pivotal roles for gen-

eration of normal plasma cells and antibody responses

through secretion of type I IFN and IL-6 [131]. Chauhan

et al. [132] showed that numbers and frequency of BM

pDCs are increased in MM patients and that pDCs confer

growth, survival, chemotaxis, and drug resistance in mye-

loma cells.

Myeloma-specific T cell responses

Mouse models support an instrumental role of cytotoxic

CD8 T cells in MM immunosurveillance [105]. Several

pieces of evidence indicate that myeloma cells express

tumor antigens able to trigger T cell responses. Analysis of

the T cell receptor (TCR) variable gene repertoire revealed

clonal expansions of CD8 T cells in MGUS and early stage

MM patients that probably reflect chronic stimulations with

myeloma-derived antigens [133]. Tumor-specific T cells

able to lyse autologous myeloma cells can be generated

from the blood or BM of myeloma patients using myeloma

lysate-pulsed DCs [134, 135]. Nonetheless, T cells freshly

isolated from MM patients fail to recognize autologous

tumor cells and to secrete IFN-c, suggesting that they

probably do not exert a strong anti-myeloma activity

in vivo [134]. Conversely, freshly isolated T cells from the
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BM of MGUS patients produce IFN-c when stimulated

in vitro with DCs loaded with autologous tumor cells [136].

These data suggest that the anti-myeloma activity of tumor

antigen-specific T cells is lost during the progression from

MGUS to active myeloma. Noteworthy, T cells reactive

against the embryonal stem cell-associated antigen SOX2

have been detected in MGUS but not MM patients [137].

SOX2 was reported to be expressed in a progenitor fraction

of myeloma cells and anti-SOX2 T cell immunity corre-

lates with a favorable outcome. In addition, patients that

survived more than 10 years present expanded cytolytic T

cell clones that, unlike the majority of MM patients,

respond to stimulation by proliferating and producing IFN-

c [138]. Interestingly, T cells isolated from MGUS or MM

patients are activated by DCs loaded with autologous but

not allogeneic tumor lysates [134–136]. This indicates that

T cell responses against MM are specific of each myeloma

clone and differ from one patient to another. The antigenic

properties of the variable region of the secreted monoclonal

protein (idiotope) have been extensively studied [139].

Unfortunately, idiotype-specific responses are usually hin-

der by several tolerance mechanisms, including the

deletion of high avidity idiotype-specific T cells [140]. In

addition to idiotopes, general tumor antigens are shared

among MM cells from different patients. Those include

NY-ESO-1, MAGE-A3, Muc-1, sperm protein 17, PRDI-

BF1 and XBP-1 and CD138 [139]. Adoptive transfer of T

cells engineered to express a high affinity TCR for a

myeloma-specific antigen represents an attractive therapy.

As a example, the infusion of NY-ESO-1-specific engi-

neered T cells recently showed promising results in a phase

I/II clinical trial [141].

Helper T cell subsets in MM

Helper T cells play pivotal roles in adaptive immune

responses and imbalanced polarization of CD4 T cell

responses could largely impact on MM growth. Several

reports describe a deregulated cytokine network in MM but

not all of them agree on the nature of the changes. An early

study established that T cells from MGUS patients stimu-

lated with autologous monoclonal IgG are more efficient

producers of IL-2 and IFN-c when compared with idiotype-

reactive T cells from late MM patients [142]. In the same

line, increased IL-4 production by T cells from MM

patients indicated that a shift toward Th2 polarization

emerges with disease progression. This hypothesis is sup-

ported by another study describing decreased levels of IFN-

c and increased levels of IL-10 and IL-4 in the serum of 62

myeloma patients compared with 50 healthy donors [143].

IL-6 production by T cells may contribute to decreased Th1

responses in MM patients [144]. However, elevated Th1/

Th2 ratios in the blood of MM patients in initial diagnosis

and refractory phase have also been reported [145, 146]

and high percentages of IFN-c producing T cells were

observed in MM patients [147]. Further work is needed to

determine whether these discrepancies could account for

variations in Th1/Th2 polarization during the course of the

disease or may be explained by differences between BM

and peripheral blood. Likewise, the role of Treg responses

in MM is still unclear. An initial study demonstrated

decreased FoxP3-expressing Tregs in spite of elevated

percentages of CD25?CD4? cells in the blood of MGUS

and MM patients [148]. This group suggested that CD25?

T cells from MGUS or MM patients failed to suppress the

proliferation of PBMC stimulated with anti-CD3 and

concluded that MM Tregs were dysfunctional. However,

one caveat in this assay is the intrinsic defect in the pro-

liferation of PBMC isolated from MM patients. It was later

established that CD4?CD25hi Tregs from MM patients are

as efficient as Tregs from healthy donors at suppressing

allogeneic T cell proliferation [149]. Results are still con-

flicting regarding Treg frequencies that are alternatively

described as increased [138, 149, 150] or reduced [147,

148] in MM patients. Interestingly, patients with high

peripheral Treg frequencies show reduced survival [150].

Th17 cells are a pro-inflammatory subset of CD4 T cells

that produces IL-17 and IL-22. IL-6 plays a pivotal role in

dictating the balance between Tregs and Th17 cells [151].

Treg/Th17 ratios were reportedly increased in MM

patients, albeit lower in patients with long-term survival

[138]. Yet, increased proportions of IL-17-producing CD4

T cells and increased serum concentrations of the Th17-

associated cytokines IL-1b, IL-6, IL-17, IL-21, IL-22 and

IL-23 have been observed in MM patients, when compared

with healthy controls [48, 147, 152]. IL-17 might con-

tribute to MM pathology as it induces the proliferation of

MM cell lines in vitro [48] and promotes MM-associated

bone lesions [53]. Finally, increased frequency of IL-22

and IL-13 double-producing T cells has been detected in

the blood and BM of relapsed and late stage MM patients

[153]. These Th22 cells are likely to sustain MM pathology

since IL-22 favors the proliferation and resistance to drug-

induced cell death of some MM cell lines and IL-13 indi-

rectly promotes MM cell survival through the activation of

BMSCs.

NKT cells recognize and respond to MM cells

NKT cells are characterized by the expression of both T

cell and NK cell receptors. NKT cells recognize glycolipid

antigens presented by the MHC-class I-like molecule CD1d

and exert strong anti-tumor responses through direct

cytotoxicity or release of pro-inflammatory cytokines,

including IFN-c [154]. Despite its absence on MM cell

lines, CD1d is expressed by primary myeloma cells [155].
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Lisophosphatidylcholine has been identified as a NKT cell

ligand expressed on plasma cells from MM patients [156].

Interestingly, frequencies of lisophosphatidylcholine-rec-

ognizing NKT cells are dramatically increased in MM

patients. Lisophosphatidylcholine stimulates IL-13 pro-

duction by NKT and thus probably favors angiogenesis and

tumor-promoting inflammation. Actually, NKT cells from

MM patients are dysfunctional and unable to produce IFN-

c when stimulated with the glycolipid a-galactosylce-
ramide [157]. Of note, similarly to conventional T cells,

NKT cells isolated from MM patients can be rescued

in vitro; and APC-stimulated NKT cells efficiently lyse

primary autologous myeloma targets as well as CD1d-

transfected MM cell lines [155, 157].

MR1-restricted mucosal associated invariant T (MAIT)

cells are another type of invariant T cells that, similarly to

NKT cells, have simplified patterns of TCR expression and

respond immediately to antigen stimulation [158]. Albeit

abundant in humans (5 % of total blood T cells), MAIT

cells have not been investigated in the context of MM.

Harnessing the immune system to cure MM

Immunosuppression is an important characteristic of MM

pathology [159]. Reversing this immunesuppression could

potentially restore myeloma immunosurveillance and

improve disease control (Fig. 2).

Stem cell transplantation

Although MM remains an incurable malignancy, the

introduction of autologous stem cell transplantation (SCT)

following myeloablative treatment contributed signifi-

cantly to the improved survival of MM patients observed in

the last 15 years [160]. By introducing a new immune

system and facilitating homeostatic lymphocytic prolifer-

ation in the setting of minimal residual disease, autologous

SCT may overcome the acquired immune defects induced

by myeloma. Absolute lymphocyte count recovery post-

autologous SCT constitutes an independent prognostic

factor for transplanted MM patients [161]. Intriguingly,

Wolniak et al. [162] described a clonal population of

CD8?CD57? large granular lymphocytes in the BM and

blood of MM patients post-autologous SCT. Although the

specificity of these cells remains to be established, they

might recognize tumor antigens and potentially drive graft-

versus-myeloma (GvM) responses. Unfortunately, the

GvM induced by autologous SCT, if it exists, is generally

weak and most patients relapse. The transfer of marrow-

infiltrating lymphocytes enriched in myeloma-specific T

cells may enhance GvM effect [163]. An alternative is

allogeneic SCT, which has the advantage of providing

recipients with new T cell repertoire and triggers potent

GvM effects against multiple minor histocomaptibility

antigens [164]. The infusion of primed lymphocytes col-

lected after donor immunization with a tumor-specific

antigen may further enhance the GvM effect following

SCT [165]. An interesting study used a pre-clinical

humanized mouse model of MM to demonstrate the ther-

apeutic potential of allogeneic T cell infusions [166].

Immunodeficient mice were used as a recipient for human

MM cell lines and transferred or not with naı̈ve allogeneic

human T cells. In this model, a nonconventional population

of double positive CD4?CD8? T cells was induced in MM-

bearing mice. These myeloma-induced alloreactive T cells

produced IFN-c and perforin and may mediate GvM

responses. Nonetheless, because allogeneic SCT is asso-

ciated with a high transplant-related mortality in the setting

of myeloma, its place as a therapeutic strategy in this set-

ting remains investigational [167].

Immunomodulatory drugs and proteasome

inhibitors

Thalidomide is a glutamic acid derivative proved to be

highly effective for the treatment of advanced MM patients

[168]. The anti-angiogenic properties of thalidomide [169]

together with its direct effect on MM cells [170] and its

potent anti-inflammatory capacities [171] contribute to its

anti-myeloma activity. Structural analogs of thalidomide

have been selected based on their ability to inhibit TNF-a
production. Among them, a class of compounds was found

to significantly inhibit pro-inflammatory cytokine produc-

tion by lipopolysaccharide (LPS)-stimulated PBMCs while

increasing T cell responses to anti-CD3 stimulation [171].

These thalidomide analogs with unique immune regulatory

properties are called immunomodulary drugs (IMiDs).

Besides their direct anti-tumor effect [170], the real feature

of IMiDs is their ability to promote host immunity while

abrogating the protection conferred by the BM microen-

vironment [172]. Lenalidomide (Revlimid, CC-5013) and

pomalidomide (Actimid, CC-4047) are the two most

studied IMiDs. Both of them increase the cytotoxic activity

of T cells [173, 174] and NK cells [175] against MM cells.

In addition, lenalidomide further potentiates IFN-c pro-

duction by anti-CD3/anti-CD28 stimulated CD8 T cells

from MM patients [174] and NK cells cultured for several

days in the presence of lenalidomide produce higher levels

of TNF-a and IFN-c when stimulated with MM cell lines

[176]. The lenalidomide-mediated up-regulation of TRAIL

expression on NK cells could partially explain the

enhanced cytotoxicity [176]. By contrast, pomalidomide-

mediated enhancement of NK cell activity requires the

presence of other cell populations [177]. IMiDs were found

to stimulate IL-2 production by T cells and thereby
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indirectly trigger NK cell functions [178]. Furthermore, the

ability of lenalidomide to boost NKT cell responses [155,

179] raises the possibility of its combination with NKT cell

targeting approaches. Finally, lenalidomide may be par-

ticularly active in patients who have relapsed following

allogeneic SCT [180–182]. These data are consistent with

the immune stimulatory capacities of lenalidomide that

likely boost endogenous GvM effects. In fact, an increase

in activated T and NK cells has been observed in the blood

of lenalidomide treated patients [182]. Surprisingly, two

studies reported increased circulating Tregs during

lenalidomide treatment of allogeneic SCT patients [180,

182]. However, these observations were made on very

small cohorts comprising less than ten patients. Further

studies should not only confirm the effect of IMiDs on

immune cell frequencies/activation in the blood but also

investigate how these new agents modulate immune

responses in the BM of transplanted or non-transplanted

MM patients.

The ubiquitin–proteasome pathway carries out protein

turnover and its disruption induces the apoptosis of some

cancer cells, including MM cells [183]. Bortezomib (Vel-

cade), a proteasome inhibitor, has proven efficacy in MM

[184]. In addition to sensitizing tumor cells to apotosis,

bortezomib modulates host immune responses [185].

In vitro incubation of MM cells with bortezomib decreases

their expression of MHC class I molecules while aug-

menting the display of activating NK cell receptor ligands

[110, 186]. Such changes may facilitate NK cell recogni-

tion and killing of MM cells. Moreover, bortezomib

induces immunogenic cell death of MM cells, thereby

facilitating the DC-mediated elicitation of anti-myeloma T

cell responses [187]. However, several reports indicated an

immunosuppressive effect of bortezomib. Lymphopenia

has been observed in about 10 % of bortezomib-treated

patients [184] and is consistent with the in vitro toxicity of

this drug toward lymphocytes [188]. Additional in vitro

studies established the ability of bortezomib to inhibit DC

[189] and NK cell [190] functions. Of note, bortezomib has

been used at high concentrations in most experiments

supporting an immunosuppressive effect [185]. Such

effects may not occur in vivo, where immune cell exposure

to this drug may be lower. Notably, bortezomib augments

the anti-tumor effect of autologous NK cell infusions in

mice [191]. Besides, the T and NK cell activating receptor

DNAM-1 was found necessary for the therapeutic efficacy

Fig. 1 The MM BM microenvironment. Myeloma microenvironment

include bone marrow stromal cells (BMSCs), bone forming (os-

teoblasts) and resorbing (osteoclasts) cells, the vasculature and

immune cells. Reciprocal interactions between BMSCs and MM

cells involve cell-to-cell contacts and soluble factors. BMSCs are the

main source of IL-6, which is also produced by osteoclasts, tumor

associated macrophages (TAMs) or MM cells. IL-6 promotes

myeloma cell proliferation, survival and drug resistance. In addition,

BMSCs and TAMs secrete vascular endothelial growth factor

(VEGF) and thereby favor angiogenesis. Direct and indirect

interactions involving MM cells, osteoblasts and osteoclasts imbal-

ance the bone remodeling process and result in bone lysis. Myeloid

derived suppressor cells (MDSCs) or regulatory T cells (Tregs)

secrete immunosuppressive factors contributing to MM escape from

the immune system. Dendritic cells (DCs) prime CD4 and CD8 T

cells. Depending on their polarization, CD4 T cells either promote or

inhibit tumor growth. IFN-c secretion by T cells and NK cells may

limit MM progression. Furthermore, CD8 T cells and NK cells

directly kill tumor cells by releasing cytotoxic granules containing

perforin (pfp) and granzymes (Grz)
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of bortezomib in MM-bearing mice [105]. Interestingly,

early bortezomib treatment following allogeneic SCT

protects mice from acute GvHD [192]. However, caution

should be taken when combining bortezomib with allo-

geneic SCT because two subsequent studies in mice

established that delayed bortezomib treatment post-transfer

exacerbates GvHD-dependent mortality [193, 194]. While

the mechanisms behind these observations remain unclear,

bortezomib may differently regulate the distinct phases of

GvHD.

Other proteasome inhibitors have generated interest for

the treatment of MM. Carfilzomib is a second-generation

proteasome inhibitor that demonstrated anti-myeloma

efficacy in clinical studies [195].

Immunotherapy in MM

NK cell-based therapies

Several therapeutic agents exert their anti-MM efficacy at

least in part through the recovery or the augmentation of

NK cell responses [28]. As previously mentioned, new

drugs such as thalidomide, IMiDs and proteasome inhibi-

tors potentiate NK cell-mediated killing of MM cells.

Furthermore, compared with T and B cells, NK cells

reconstitute early following autologous SCT and may

contribute to the success of this therapy [196]. NK cells are

also important mediators of the GvM effects after T cell

depleted allogeneic SCT, especially in the case of KIR-

ligand incompatibility i.e. when donor NK cells do not

express inhibitory KIRs recognizing host MHC class I

molecules. Reduced relapse rates have been observed in

MM patients receiving KIR-ligand mismatched allogeneic

transplants [197]; and infusion of KIR-ligand mismatched

NK cells followed by autologous SCT achieved 50 % of

near complete remission in advanced MM patients [198].

Furthermore, IPH2101 (1-7F9), an anti-inhibitory KIR

antibody could restore NK cell responses in relapsed/re-

fractory MM patients [199]. Phase I clinical trials indicate

that IPH2101 is well tolerated when given as a single agent

or in combination with lenalidomide, but its efficacy

against MM has yet to be proven [199, 200]. Alternatively,

reprogramming NK cells with chimeric antigen receptors

(CARs) specific for MM antigen could increase their

reactivity toward myeloma cells. Myeloma cells express

high levels of CD138 and a pre-clinical study demonstrated

the ability of CD138-specific CAR NK cells to markedly

delay MM growth and prolong survival in a xenograft

model [201]. Finally, monoclonal antibody (mAb) therapy

targeting myeloma cells have demonstrated clinical effi-

cacy when combined with bortezomib or lenamidomide

[202]. CD16 on NK cells binds to the constant region of Ig

and certainly plays a key role in mAb therapies by trig-

gering antibody-dependent cellular cytotoxicity (ADCC) of

Fig. 2 MM therapies modulate the immune microenvironment.

Thalidomide, IMiDs, Bortezomib and monoclonal antibodies (mAbs)

directly regulate tumor cell proliferation and survival. In addition,

mAbs induce tumor cell death by triggering NK cell-mediated and

tumor associated macrophage (TAM)-mediated antibody dependent

cellular cytotoxicity (ADCC). Besides, thalidomide inhibits angiogen-

esis and both thalidomide and IMiDs decrease the production of pro-

inflammatory cytokines by TAMs. IMiDs also promote the anti-MM

activity of T cells, NK cells and NKT cells. The impact of bortezomib

on anti-myeloma immune responses is unclear. Bortezomib may favor

NK cell and dendritic cell (DC) functions by increasing the immuno-

genicity of MM cells; however toxic effects of bortezomib toward NK

cells, DCs and T cells have also been described. Immune checkpoint

inhibitors target the immune system to induce potent anti-tumor

responses
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mAb-coated tumor cells. Among the different mAbs tested,

daratumumab targets CD38, an ectoenzyme commonly

used as a marker of myeloma cells. Daratumumab

administered as a single agent has demonstrated anti-

myeloma activity in clinical trials [203]. Elotuzumab is

another successful mAb [204]. Elotuzumab recognizes CS1

(SLAMF7), a glycoprotein universally expressed on MM

cells. Elotuzumab activity appears to be dependent on NK

cell-mediated ADCC [205]. Interestingly, NK cells express

low levels of CS1. The binding of elotuzumab to CS1

directly promotes NK cell activity and thus contributes to

enhanced anti-tumor effects [206].

Immune checkpoint blockade

Immune checkpoints such as programmed-death 1 (PD-1)

and cytotoxic T-lymphocyte associated protein 4 (CTLA-

4) down-regulate T cell responses and thereby maintain

self-tolerance. The use of mAbs to disrupt the receptor-

ligand interactions involved in these pathways has shown

remarkable results in melanoma [207]. Immune check-

point modulation also holds promise for the treatment of

hematological malignancies [208]. The high levels of PD-

1 observed on NK and T cells from MM patients together

with the expression of PD-1 ligand (PD-L1) on MM cells

[209, 210] strongly encouraged the investigation of PD-1

blockade in MM patients. Yet, a phase 1 clinical trial

using anti-PD1 mAb nivolumab in MM patients yielded

disappointing initial results, with no objective responses

[208]. Noteworthy, disease remained stable in 18 of 27

patients, indicating that PD-1 blockade might still have an

effect in MM and could be efficient in combination with

other therapeutics. In vitro studies suggested that PD-1

blockade by pidilizumab (CT-011) would synergically

combine with lenalidomide [210] or with a DC/Myeloma

fusion vaccine [209]. Consequently, a phase 2 clinical trial

is currently ongoing to assess the efficacy of a DC/tumor

vaccine in conjunction with pidilizumab following autol-

ogous SCT (NCT011067287) [164]. Additionally, a

preclinical study indicated that blocking PD-L1 together

with other immune checkpoints (CTLA-4, LAG-3 or TIM-

3) promotes the survival of MM-bearing mice following

low dose total body irradiation [211]. Investigation of

immune checkpoint inhibitors is currently booming and

should eventually lead to the advent of efficient combi-

nations strategies in MM.

An alternative to immune checkpoint blockade is the use

of agonist mAbs directed again co-stimulatory molecules.

Approaches using anti-CD137 mAbs has been shown to

elicit potent T and NK cell-mediated responses in murine

MM models [105, 212]. Clinical trials are presently

ongoing to evaluate the safety and beneficial effects of two

agonist anti-CD137 mAbs in cancer patients [213].

Other therapies

Additional strategies able to promote the immune-mediated

elimination of myeloma cells include DC-based therapies

and vaccines as well as T cell infusions [164]. Vaccination

can be directed against a specific tumor antigen such as the

idiotype protein but can also use full tumor lysates, apop-

totic bodies or fusion between DCs and MM cells [214].

This second option allows the development of T cell

responses directed toward the whole spectrum of tumor

antigens and thus prevents a possible escape caused by the

down-regulation of a single targeted antigen. DC-based

therapies aim to foster the expansion of tumor-specific

lymphocytes in vivo; an alternative strategy is the infusion

of ex vivo expanded T cells. Similarly to NK cells, T cells

can be engineered to express CARs, thereby allowing the

specific targeting of myeloma cells [215].

Concluding remarks

Early studies established the role of the BM microenvi-

ronment in MM pathology but the immune component of

this microenvironment has not received full attention until

recently. MM appears to represent a good disease model of

the cancer editing process [216] where a premalignant

equilibrium phase (MGUS) and an escape phase (active

MM) can be observed. Several lines of evidence indicate

that changes in immune responses may drive MGUS to

MM progression [117, 119, 136]. Therapeutic options such

as autologous SCT, thalidomide, IMiDs and proteasome

inhibitors have the ability to restore and enhance anti-

myeloma immune responses, properties that have likely

contributed to their clinical success. Still, MM remains

largely incurable and most patients succumb to relapsed

disease. Research is currently ongoing to design new

therapeutic strategies able to eradicate residual disease and

to prevent relapse. In this regard, harnessing the immune

system is an appealing solution and new approaches such

as NK cell-based therapies or immune checkpoint modu-

lation hold great promises for MM patients.
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