
REVIEW

NLR-regulated pathways in cancer: opportunities and obstacles
for therapeutic interventions

Nidhi Sharma1
• Sushmita Jha1

Received: 20 August 2015 / Revised: 9 December 2015 / Accepted: 15 December 2015 / Published online: 26 December 2015

� Springer International Publishing 2015

Abstract NLRs (nucleotide-binding domain, leucine-rich

repeat containing receptors) are pattern recognition recep-

tors associated with immunity and inflammation in response

to endogenous and exogenous pathogen and damage asso-

ciated molecular patterns (PAMPs and DAMPs

respectively). Dysregulated NLR function is associated with

several diseases including cancers, metabolic diseases,

autoimmune disorders and autoinflammatory syndromes. In

the last decade, distinct cell and organ specific roles for

NLRs have been identified however; their roles in cancer

initiation, development and progression remain controver-

sial. This review summarizes the emerging role of NLRs in

cancer and their possible future as targets for cancer

therapeutics.

Keywords Innate immunity � ASC � Caspase �
Inflammasomes � Interleukins � Tumor microenvironment �
Therapeutics

Introduction

The association of chronic inflammation with cancer is

well established [1–4]. Epidemiological data suggest that

up to 15 % of human cancer incidence is associated with

inflammation [1]. Inflammation is accepted as one of the

hallmarks of cancer [5, 6]. Sustained chronic inflammation

gives rise to a tumor promoting microenvironment. The

tumor microenvironment comprises of stromal cells,

extracellular matrix and dense vasculature as depicted in

Fig. 1. Stromal cells consist of macrophages, mast cells,

natural killer cells, fibroblasts, endothelial cells and peri-

cytes. Cancer cells and stromal cells actively communicate

with one other by exchange of various soluble factors

including mitogenic growth factors, pro-angiogenic mole-

cules, pro-inflammatory mediators and tumor promoting

inflammation-induced factors [3, 7–13]. Cytokines pro-

duced by innate immune and stromal cells have been

shown to promote cancer initiation, development and

progression, as depicted in Fig. 1.

NLRs/NOD-like receptors–the multifunctional
sensors

NLRs (nucleotide-binding domain, leucine-rich repeat con-

taining receptors) are a newly discovered family of pattern

recognition receptors [14]. These germ-line encoded pattern

recognition receptors are immune regulatory proteins of

innate immunity as well as adaptive immunity [15]. NLRs

are evolutionarily conserved from plants to animals showing

high structural similarity with the R proteins [16]. NLRs

recognize pathogen-associated molecular patterns (PAMPs)

and damage-associated molecular patterns (DAMPs) as well

as irritants (Fig. 2).

In humans, the NLR family consists of 22 individual NLR

genes with a characteristic tripartite domain structure com-

prising of an N-terminal domain, a central domain and a

C-terminal domain [17]. The N-terminal domain may be; a

PYRIN domain (PYD), a caspase activation and recruitment

domain (CARD), an acidic transactivation or a baculoviral
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inhibitory repeats (BIR) domain. These domains are

responsible for the homotypic/heterotypic interactions with

downstream molecules in the signaling pathway. The central

domain consists of a nucleotide binding and oligomerization

domain (NBD) which initiates self-oligomerization and is

responsible for other regulatory functions. The C-terminal

domain represents a series of leucine rich repeats (LRRs)

which are responsible for ligand binding [18].

NLR family members are involved in multiple functions

of innate immune signaling, from acting as activators of the

inflammasome, nuclear factor-kB (NF-kB) and mitogen

activated protein kinase (MAPK), to acting as inhibitors of

inflammatory signaling, and trans-activators of MHC

expression [19]. Dysregulation in NLR activation leads to

various inflammatory diseases, metabolic disorders and

auto-inflammatory immune disorders [20]. In the past

decade there has been an exponential increase in research

linking inflammasome signaling to human diseases. NLRs

play dual pro- and anti-tumor roles in the initiation, pro-

gression and regression of cancer [21]. In this review we

discuss emerging research in the association of NLRs with

cancer and the prospective future implications in devel-

oping targeted cancer therapeutics (Table 2).

Inflammasome forming NLRs

NLRs upon activation form a multiprotein complex known

as the ‘‘inflammasome’’ (Table 1) [22]. The inflammasome

complex consists of an NLR protein, an adaptor protein:

the apoptosis- associated speck -like protein (ASC) and a

caspase [23]. ASC utilizes its caspase recruitment domain

(CARD) to recruit the inactive pro form of caspase-1 [24].

Inflammasome activation results in auto-proteolytic

Fig. 1 Cancer cells communicating with innate immune cells in the

tumor microenvironment. Cancer cells recruit macrophages, mast

cells, NK cells, fibroblast cells and endothelial cells to the tumor

microenvironment. Cancer cells also induce polarization of macro-

phages into tumor-associated macrophages (TAMs) by cytokines and

chemokines. Various pro-inflammatory mediators and mitogenic

growth factors secreted from the infiltrated immune cells promote

cancer cell growth, progression, extracellular matrix (ECM) remod-

eling and metastasis. Increased vasculature demand is supported by

the recruited endothelial cells
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cleavage of caspase-1 to form the mature active caspase-1

within the inflammasome complex (Fig. 2). Caspase-1 can

cleave and activate up to 70 different substrates including

pro-IL-1b and pro-IL-18 into active IL-1b and IL-18 [25].

IL-1b and IL-18 function as proinflammatory cytokines

and mediate activation of various signaling pathways

including NF-jB, JNK and p38 MAPK signaling pathways.

Activated immune cells release IL-1b and IL-18 giving rise

to an inflammatory microenvironment (Fig. 2). Inflamma-

some forming NLRs protect the host by modulating

cytokine production, damage repair and resolution of

inflammation.

NLRP3

NLRP3 is the most well studied NLR so far. The Nlrp3

gene encodes an N-terminal pyrin domain, a central NBD

domain and a C-terminal LRR. NLRP3 lacks a caspase

recruitment domain (CARD) and therefore, interacts with

ASC to recruit procaspase-1 (Table 1). The NLRP3

inflammasome comprises of NLRP3, the adaptor protein

ASC and procaspase-1. NLRP3 inflammasome activation

has been observed in response to a number of PAMPs,

DAMPs and irritants [22]. Mutation in human Nlrp3 is

associated with cold-induced auto-inflammatory syn-

dromes-FCAS (familial cold-induced auto-inflammatory

syndrome), MWS (Muckle-Wells syndrome), and NOMID/

CINCA (neonatal onset multisystem inflammatory disorder

or chronic infantile neurologic cutaneous and articular

syndrome) [26, 27]. Nlrp3 mutations and single-nucleotide

polymorphisms (SNPs) have been associated with many

inflammation-associated diseases [28]. Genetic alterations

in genes encoding NLRP3 and CARD8 lead to complex

inflammatory diseases such as; inflammatory bowel dis-

ease, cardiovascular disease, rheumatoid arthritis and type

1 diabetes [29, 30]. The role of NLRP3 inflammasome in

Fig. 2 Summary of NLR inflammasome complex formation. NLRs

are activated in response to specific PAMPs and DAMPs. For

example, NLRP3 inflammasome activation is a two-step process. The

first step includes a priming stimulus and the second stimulus leads to

NLRP3 activation. NLRP3 along with ASC and pro-caspase-1

forms an inflammasome complex resulting in the maturation and

release of pro-inflammatory cytokines, IL-1b and IL-18 into the

extracellular environment, recruitment of other immune cells and (in

some cases) pyroptosis. Similarly, other NLRs such as NLRP1 and

NLRC4 also form inflammasome complexes upon activation
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metabolic diseases is well established [31]. Caspase

recruitment domain-containing protein8 (CARD8; also

known as TUCAN/CARDINAL) is a negative regulator of

NLRP3 inflammasome activation [32]. While some studies

have also shown that CARD8 knockdown did not affect IL-

1b expression or IL-1b protein release, Ito et al. [33]

showed that CARD8 can interact with wildtype (WT)

NLRP3 and reduce IL-1b release, but not with CAPS

associated mutant NLRP3. NLRP3 inflammasomes can

also associate with caspase-8 to mediate IL-1b production

and apoptosis in caspase-1-deficient dendritic cells and

facilitate pyroptosis in wild-type dendritic cells [34].

Regulation of TH2 differentiation in CD4? T cells by

NLRP3 expression shows specific inflammasome-inde-

pendent role of NLRP3 mediated via STAT5 and IL-2

signaling pathway [35]. Further in vitro analyses have

confirmed specific involvement of NLRP3 in TH2 and

TH17 polarization and nuclear localization of NLRP3 in

TH2 cells.

NLRP3 and cancer

Very few studies have characterized the role of the NLRP3

inflammasome in cancer. Using a dextran sulfate sodium

(DSS)-induced colitis model of human ulcerative colitis

[36, 37], Allen et al. first demonstrated the hypersuscepti-

bility of Nlrp3 and Casp1 deficient mice to DSS-induced

colitis. This chemically induced colitis model shares

pathology similar to human ulcerative colitis. Defective

inflammasome activation leads to loss of epithelial integ-

rity, massive leukocyte infiltration and increased

chemokines expression in the Nlrp3-/- and Casp1-/-

mice, leading to high mortality rates [38]. These results

were supported by parallel findings that showed NLRP3

inflammasome activation as a negative regulator of

tumorigenesis during colitis-associated cancer [39], with

NLRP3 inflammasome dependent IL-18 production pro-

tecting against colorectal tumorigenesis. Nlrp3 deficient

mice are highly susceptible to colitis-associated colorectal

tumor formation and show severe inflammation, hyper-

plasia and tumor burden. Deregulated IL-18 expression is

followed by increased chemokine expression suggestive of

higher macrophage infiltration in the colon of Nlrp3 and

Casp1 deficient mice. Macrophages release various

tumorigenic factors in the tumor microenvironment, this is

reflected in the significantly higher expression of COX-2

mRNA in colon tissue of Nlrp3-/- and Casp1-/- mice

[40]. Hu et al. [41] showed no differences in tumor for-

mation between the Nlrp3-/- and WT mice. Further

experiments proved that increased tumorigenesis in

Casp1-/- mice was not mediated by Nlrp3. Moreover,

NLRP3 expression was primarily restricted to the

hematopoietic compartment. Surprisingly, study of DSS-T
a
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induced ulcerative colitis in Casp11-/- mice indicate

caspase-11-mediated non-canonical inflammasome activa-

tion, an additional pathway for production and release of

pro-inflammatory cytokines, IL-1b and IL-18 [42].

Casp11-/- mice exhibit enhanced susceptibility towards

DSS and impaired IL-18 production. Casp11-/- mice show

decreased intestinal epithelial cell proliferation and dis-

rupted epithelial cell barrier suggesting protective role of

caspase-11 in maintaining intestinal epithelial cell integ-

rity. During acute DSS-induced intestinal inflammation

Casp11-/- show a phenotype similar to that observed in

the Casp1/11-/- mice.

The NLRP3 inflammasome plays a regulatory role in the

pathology of melanomas, gastric cancer and hepatocellular

carcinoma; in addition NLRP3 inflammasome activation

also regulates adaptive immune response to cancer vacci-

nes (Table 2). The NLRP3 inflammasome is constitutively

expressed and activated in human melanoma cells [43].

Paracrine IL-1 signaling via secreted IL-1b enhances NF-

jB-dependent proIL-1b synthesis, thereby forming a pos-

itive IL-1 feedback loop in metastatic melanoma cells. In

case of gastric cancer, Mycoplasma hyorhinis promotes

tumor development via NLRP3 inflammasome activation,

accompanied with increase in cell migration and invasion

[44]. In this regard, NLRP3 activation was not cell type

restricted and there was increased IL-1b and IL-18 pro-

duction in M. hyorhinis infected human monocytic cells.

IL-1b but not IL-18 was found to be involved in gastric

cancer cell migration and invasion.

Hepatocellular carcinoma (HCC) is the third leading

cause of cancer deaths worldwide. The expression of

NLRP3 inflammasome components is down-regulated in

hepatic parenchymal cells in HCC. Complete loss of

NLRP3 inflammasome activation positively correlates with

a higher HCC pathological grade suggesting protective role

of NLRP3 against HCC cancer development and progres-

sion [45]. NLRP3 inflammasome is activated during

anticancer chemotherapy (oxaliplatin). Autophagic tumor

(EL4 or EG7 thymoma) cells release ATP sensed by the

P2X7 receptors of dendritic cells leading to NLRP3

inflammasome activation [46]. Antigen presenting den-

dritic cells prime CD8? T lymphocytes generating IFN-c-

dependent antitumor responses. Functional P2X7 receptor

dependent activation of NLRP3 inflammasome and IL-1b
secretion, are necessary for T cell priming. Notably, this

study conflicts with recent results that NLRP3 dampens

anti-tumor responses elicited by dendritic cells vaccination.

NLRP3 expression was found to be upregulated in tumor-

associated myeloid derived suppressor cells (MDSCs).

Nlrp3-/- mice had fewer MDSCs accumulating at the

tumor site and increased survival rate upon DC vaccination

[47]. Increased survival curves were obtained for both

metastatic melanoma (B16-F10) and lymphoma (EG7-T
a
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OVA) tumor cells. In vitro analysis showed that Nlrp3-/-

MDSCs are morphologically and functionally equivalent to

the wild type (WT) MDSCs. However, the WT dendritic

cells generated significant amount of IL-12. In summary,

NLRP3 expression in the presence of IL-12, dampens

antitumor immunity and reduces the efficacy of dendritic

cell vaccine by excessive infiltration of MDSCs to the

tumor site. Both groups focused on different immune cells

associated with adaptive immunity and therefore differ-

ences in findings may be attributed to difference in tumor

cell types, stimuli for NLRP3 inflammasome activation and

experimental protocols.

Several studies have implicated increased IL-1b secre-

tion in the tumor microenvironment promoting

inflammation, early angiogenic response, tumor induction

and progression [48, 49]. In a study utilizing U87, U251

and patient derived-glioblastoma multiforme cell lines, IL-

1 acted as a primary signal stimulating IL-1b expression

and NLRP3 inflammasome activation. IL-1 induced glioma

cells showed activated STAT3 expression, increased

angiogenesis and release of neurotoxic substances leading

to tumor progression [50]. IL-1b microenvironment sig-

nificantly increased migration and invasion in the human

glioma U87MG and U251MG cell lines [51]. These find-

ings need validation in mouse models and patient data;

however, they suggest possible novel strategies to increase

the anti-tumor activity of cancer drugs and vaccines by

strategic modulation of either inflammasome components

or their products, such as IL-1b and IL-18.

In summary, the contrasting role of NLRP3 in cancer,

hints at the complexity of function of the NLRP3 inflam-

masome, its multi-faceted functions and regulation of

inflammatory pathways across multiple stages of

carcinogenesis.

NLRC4

The Nlrc4 gene encodes an N-terminal CARD domain, a

central NACHT domain, and C-terminal leucine-rich

repeats containing protein (Table 1). Nlrc4 is predomi-

nantly expressed in hematopoietic tissues and cells [52].

Recently reported crystal structure of mouse NLRC4

revealed an autoinhibitory mechanism of NLRC4 wherein

the LRR sequesters mNLRC4 in a monomeric state.

Disruption in the ADP-mediated NBD-WHD (winged-

helix domain) or NBD-HD2/NBD-LRR interactions

resulted in constitutive activation of NLRC4 [53].The

LRR domain of NLRC4 interacts directly with the

chaperone heat-shock protein HSP90, and an ubiquitin

ligase-associated protein SGT1 to form an inhibited but

receptive oligomeric state. The interaction leads to LRR

deletion, resulting in NLRC4 activation [54]. Phospho-

rylation of NLRC4 at a single, evolutionarily conserved

residue, Ser 533, by PKCd kinase is required for NLRC4

inflammasome assembly formation [55]. NLRC4 inflam-

masome is activated in response to gram-negative

bacteria such as Salmonella typhimurium, Shigella flex-

neri, Legionella pneumophila and Pseudomonas

aeruginosa [56]. Activation in response to intracellular

bacteria is critical for caspase-1 mediated pyroptosis as

well as maturation and extracellular release of IL-1b and

IL-18 [57]. NLRC4 senses cytoplasmic flagellin and

bacterial type III secretion apparatus [58]. NLRC4

inflammasome activation in response to S.flexneri requires

bacterial type III secretion system and is independent of

flagellin [59]. Both NLRP3 and NLRC4 inflammasome

activation occur in response to S.typhimurium infection

[60]. Inflammasome activation in macrophages infected

with S.typhimurium causes recruitment of both NLRC4

and NLRP3 to the same inflammasome complex. ASC is

present in the outer ring structure while NLRs and cas-

pases remain internally localized. NLRP3, NLRC4,

caspase-1 and caspase-8 are present in the same ASC

speck for robust IL-1b production [61]. NLRC4 depen-

dent IL-1b production helps in discriminating pathogenic

bacteria from commensal bacteria. Therefore, NLRC4

provides protection against enteric pathogens in intestinal

epithelial cells [62].

NLRC4 and cancer

Azoxymethane (AOM)-dextran sodium sulfate (DSS) is a

model for inflammation induced colorectal cancer (CAC)

[36]. This model has been used for studying function of

inflammasomes in colitis and CAC. AOM (a potent car-

cinogen) and DSS (chronic colitis inducing agent) are

systemically administered to induce inflammation-associ-

ated colon tumorigenesis in mice. Allen et al. found that

Nlrc4-/- mice showed no significant difference in

tumorigenesis as compared to similarly treated wild type

(WT) mice. NLRP3 expression and function in

hematopoietic cells but not in intestinal epithelial or stro-

mal cells is responsible for protection against increased

tumorigenesis [38]. In contrast, Hu et al. showed that the

regulation of inflammation-induced tumorigenesis is

mediated by NLRC4 and caspase-1 [63]. No difference in

inflammation between WT and Casp1-/- mice was

observed during acute DSS-colitis. In the AOM-DSS

inflammation-induced colorectal cancer model, Casp1-/-

and Nlrc4-/- mice exhibited increased tumor load and

tumor number per mice. In addition, enhanced colon

epithelial and tumor cell proliferation was observed in the
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Casp1-/- mice. Caspase-1 and NLRC4 were relatively

highly expressed in both colonic epithelial cells and

CD45? hematopoietic cells in the colon. These results

conclude that an intrinsic epithelial cell effect exacerbates

tumorigenesis in the absence of Caspase-1 or NLRC4

activity. While results from both the groups are conflicting

and present contradictory findings, the differences may

have arisen from the experiment models, colon tissue and

protocols resulting in differences in susceptibility to

infection and epithelial integrity. The most significant

conclusion from these studies is the protective role of

NLRs against increased tumorigenesis in colitis and colitis-

associated cancer.

NAIP/BIRC1/NLRB1

NAIPs are a family of NLRs with seven paralogs in mice

(NAIP1–7) and one member in humans (hNAIP). The

human Naip gene encodes the Neuronal apoptosis and

inhibitor protein (NAIP) also termed as BIRC1 bac-

uloviral IAP repeat-containing protein. NAIP consists of 3

domains; an N-terminal BIR domain, a central NACHT

domain and a C-terminal LRR domain (Table 1). NAIP

lacks the RING zinc finger domain present in other bac-

ulovirus and human IAPs. In 1995, Roy et al. first

reported partial deletion of Naip gene in patients with

spinal muscular atrophy (SMA) [64]. Years later, deletion

in Naip gene was positively correlated with the clinical

severity of spinal muscular atrophy patients [65]. NAIP

protein is expressed in brain, placenta, kidney, spleen, and

heart tissues. NAIP expression is highest in the placenta

and lowest in the heart. NAIP expression is also found in

peripheral blood mononuclear cells while differentiating

into macrophages [66]. NAIP mediates suppression of

apoptosis and increased cell survival in the Chinese

hamster ovary (CHO) cell line after serum deprivation or

menadione induced oxidative injury [67]. Naip gene

expression inhibits caspase-3 and caspase-7 mediated

apoptotic pathways [68]. NAIP directly interacts via its

BIR3 domain with procaspase-9. Association of Naip with

procaspase-9 prevents the autoproteolysis of caspase-9 in

the apoptosome complex, putting a brake to caspase-9-

mediated cell death pathways [69]. Integrity of both NOD

(nucleotide-binding oligomerization domain) and BIR

domains of Naip gene are necessary for effective inhibi-

tion of procaspase-9 auto-proteolysis. NAIP also forms

NOD–NOD domain interactions with the APAF-1 and

BIR3 mediated interaction with procaspase-9 [70]. hNaip

(human NAIP) gene is involved in bacterial sensing and

inducing pyroptosis in human macrophages and epithelial

cells [71]. NLRC4 recognizes the T3SS needle protein

with the help of hNAIP and forms hNAIP-NLRC4

inflammasome complex [72].

In the brain, NAIP interaction with hippocalcin mediates

protection to neurons from calcium induced cell death via

caspase-3-dependent and -independent pathways [73].

Upregulation of Naip expression at 6 h post traumatic brain

injury inhibits apoptosis of neurons and oligodendrocytes.

While 24 h post-traumatic brain injury, NAIP and procas-

pase-3 expression is decreased and PARP1 (poly(ADP-

ribose) polymerase) cleavage increases, leading to

increased apoptosis [74]. NAIP plays critical role in gen-

erating innate immune inflammatory response via caspase-

1, 4, 5 activation [75].

NAIP and cancer

Cancer triggers molecular events that result in inhibition of

apoptotic pathways [76]. Many anti-apoptotic proteins are

overexpressed during cancer [77]. Upregulation of these

proteins results in increased tumor cell survival and tumor

progression. NAIP expression is significantly elevated in

malignantly transformed oral squamous cell carcinomas as

compared to the corresponding oral potentially malignant

disorders. In support of this data, Naip allele was found to

be methylated in normal oral mucosa tissues suggesting,

Naip expression could be one of the early events in car-

cinogenesis [78]. Naip is not expressed in normal breast

tissue but is expressed at high levels in breast cancer with

other unfavorable clinical features such as tumor stage and

size [79]. These results offer strong possibility of using

NAIP as a biomarker for early diagnosis of squamous cell

carcinomas, breast cancer and other malignancies. These

studies need to be replicated with large data sets. Mazrouei

et al. observed no significant change in NAIP expression in

lymphoma tissues and controls. NAIP expression is sig-

nificantly different in reactive lymphoid hyperplasia (RLH)

lymph nodes and normal lymph nodes indicating that Naip

function is not restricted to apoptosis regulation but is

actively involved in inflammatory responses as well [80].

Overexpression of IAP family members excluding NAIP

has been detected in prostate cancer [81]. Later, Chiu et al.

[82] observed increased NAIP expression in response to

androgen deprivation in prostate cancer. A link between

increased NF-kB DNA-binding activity and Naip expres-

sion was observed but the mechanism behind NF-kB

activation and increased Naip transcription remains

unclear. In well differentiated adenocarcinomas younger

patients exhibit higher NAIP expression in comparison to

elderly patients [83]. Expression was similar for both age-

groups in case of normal colonic mucosa. NAIP expression

was reported to be significantly more in normal tissues than

in well differentiated adenocarcinoma, however, the small

sample size and relatively broad age group demand further

exploration in this direction. Stronger NAIP expression has

been seen in esophageal cancer, though the results have not
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been statistically significant [84]. This may be related to

the number of tissue samples available for the study.

NLRP6

NLRP6 consists of an N-terminal PYRIN domain, a central

nucleotide-binding domain and C-terminal leucine-rich

repeat as shown in Table 1 [85]. Nlrp6 is highly expressed

in the intestine and helps in maintaining intestinal home-

ostasis by regulating gut microflora [86]. Nlrp6 deficient

mice are highly resistant to infection with the bacterial

pathogens Listeria monocytogenes, S.typhimurium and

Escherichia coli. NLRP6 acts as negative regulator of

canonical NF-jB and MAPK-dependent inflammatory

signaling. Increased release of canonical NF-jB and

MAPK-dependent cytokines and chemokines was found in

Nlrp6-/- mice. Both haematopoietic and non-

haematopoietic cells contribute to NLRP6-mediated inhi-

bition of bacterial clearance [87]. NLRP6 inflammasome

deficiency leads to altered colonic microbiota and

increased risk for colitis occurrence. NLRP6 is recruited to

the ‘‘specks’’ formed by ASC oligomerization present in

the cytoplasm, leading to procaspase-1 activation and

release of active IL-1b and IL-18. Decreased IL-18 levels

were present in colonic epithelial cells of Nlrp6 deficient

mice, along with characteristics of spontaneous intestinal

hyperplasia, inflammatory cell recruitment and exacerba-

tion of dextran sodium sulfate-induced colitis via induction

of CCL5 chemokine release. Bacterial components were

found to be responsible for transferrable colitis phenotype

in the Nlrp6 deficient mice [88] .

NLRP6 and cancer

The association of NLRP6 with colon cancer was estab-

lished in 2011, when Chen et al. observed that Nlrp6

deficient mice were more susceptible to DSS-induced

colitis and colitis associated colon tumorigenesis as com-

pared to wild type controls. Nlrp6 deficient mice were

unable to efficiently resolve inflammation and repair

damaged tissue, resulting in excessive epithelial tissue

proliferation and tumor induction. Nlrp6 function in

hematopoietic-derived cells is significantly important in

conferring protection against colitis-induced tumorigene-

sis. IL-18 serum levels are decreased in Nlrp6 deficient

mice both before and after DSS-treatment. Although, there

is an increase in other pro-inflammatory mediators (MIP2,

TNF-a, IL-6, IL-1b, IFN-!) in Nlrp6 deficient mice [89].

NLRP6 controls epithelial self-renewal and colorectal

carcinogenesis upon injury (DSS-induced colitis). There is

enhanced colitis-associated tumor growth in the Nlrp6

deficient mice. Lack of NLRP6 inflammasome renders

injury-induced mice prone to developing relapsing colitis.

Taken together, all these results provide evidence for the

protective role of NLRP6 in regulation and maintenance of

intestinal inflammation [90]. Recently, role of aberrant

inflammasome induced microbiota in colorectal cancer

development was investigated. In Asc-/- mice, there was

enhanced tendency for inflammation induced tumorigene-

sis, driven by their altered microflora. As expected,

microflora transferred from the Nlrp6-/- mice played

critical role in the enhanced susceptibility to inflammation-

induced tumorigenesis. Further experimental analysis

revealed enhanced tumorigenesis in co-housed WT mice

was driven by the microbiota, mediated by IL-18 and

CCL5. Colitogenic microflora-induced NLRP6 inflamma-

some promotes excessive epithelial cell proliferation via

IL-6 signaling in transmissible cancer [91]. These studies

reveal the critically important role of NLRP6 in main-

taining the gut microflora homeostasis (Table 2). Notably,

NLRP6 regulates specific host immune response towards

different microflora components.

NLRP1

NLRP1 was the first member of the NLR family to be

characterized with inflammasome assembly and caspase-1

activation [92]. NLRP1 is a sensor for muramyl dipeptide,

Toxoplasma gondii and Bacillus anthracis lethal toxin [93–

96]. NLRP1 consists of both Pyrin and CARD domains

along with the function to find domain (FIIND domain).

Unlike other NLRs, NLRP1 directly recruits procaspase-1

through its CARD domain. The auto-proteolytic processing

within the FIIND/ZU5-UPA domains is essential for

NLRP1 inflammasome activation [97]. The anti-apoptotic

proteins Bcl-2 or Bcl-XL and HHV8 are cellular and viral

regulators of NLRP1 that bind and suppress NLRP1 acti-

vation [98, 99]. NLRP1 functions include forming

inflammasome complex with ASC and caspase-1, binding

to the patched receptor via DRAL adaptor protein and

regulating caspase-9 mediated apoptosis by binding to

Apaf-1 [100, 101]. NLRP1 polymorphisms have been

associated with various pathologies like vitiligo, rheuma-

toid arthritis, Crohn’s disease, Alzheimer’s and melanoma

[43, 102, 103]. In vitro analyses show increased NLRP1-

mediated caspase-1-dependent pyroptosis in cortical neu-

rons in response to amyloid-b in models of Alzheimer’s

disease [104]. Nlrp1 and caspase-1 -deficient mice exhibit

significantly reduced neuronal pyroptosis and reversed

cognitive impairments. The neuronal NLRP1 inflamma-

some consists of caspase-1, caspase-11, NLRP1, ASC, the

inhibitor of apoptosis protein XIAP, and pannexin1 [105].

Therapeutic neutralization of ASC interferes with NLRP1

inflammasome signaling and significantly reduces caspase-

1 activation. Therefore, NLRP1 is an important part of

innate immunity in the brain reducing damage caused by
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post-traumatic brain inflammation. NLRP1 also acts as a

cellular sentinel to activate caspase-1 in response to

haematopoietic and infectious stress [106]. NLRP1a gen-

erates caspase-1-containing inflammasome in vivo,

independently of caspase-11 and ASC. The NLRP1

inflammasome formation drives IL-1b-dependent inflam-

matory disease, which is negatively regulated by IL-18.

NLRP1a-induced pyroptosis was observed in the

haematopoietic progenitor cells, leading to leucopenia and

anemia. Kovarova et al. have shown that NLRP1 inflam-

masome-induced pyroptosis, mediated by caspase-1 causes

acute lung injury and morbidity in mice [107].

NLRP1 and cancer

NLR polymorphisms have been investigated for associa-

tion with certain cancers. Nlrp1 allele was found to be

significantly more frequent in malignant mesothelioma

suggesting NLRP1 as a novel factor possibly involved in

the development of mesothelioma [108]. Williams et al.

have shown significant dysregulation of NLRP1, inflam-

masome forming NLR in inflammatory bowel disease and

colitis-associated cancer [109]. Nlrp1b-/- mice models of

experimental colitis were studied using DSS and AOM-

DSS-mediated inflammation induced tumorigenesis.

NLRP1 inflammasome attenuated gastrointestinal inflam-

mation and progression of colitis-induced tumorigenesis.

Enhanced tumorigenesis observed in the Nlrp1b-/- mice is

correlated with the attenuated levels of IL-1b and IL-18 in

the colon. The Nlrp1b-/- mice exhibited increased cell

death, epithelial barrier disruption and disease severity.

Bone marrow reconstitution experiments demonstrated

association of NLRP1 inflammasome with the non-he-

matopoietic cells to generate host immune response in case

of inflammatory bowel disease and cancer. The regulatory

role of NLRP1 in colon cancer is consistent with the view

that multiple NLR inflammasomes are involved in main-

taining disease pathology and intestinal homeostasis.

AIM2

AIM2 (absent in melanoma 2) was originally identified

while screening for tumor suppressor genes associated with

melanoma [110]. Aim2-an interferon-inducible gene also

known as PYHIN4, is an NLR-like gene encoding

cytosolic protein. The AIM2 protein consists of a N-ter-

minal pyrin domain, mediating homotypic interactions with

ASC and a C-terminal HIN-200 domain for DNA binding

[111]. AIM2 recognizes cytoplasmic DNA and forms

specific AIM2/ASC specks, suggesting a novel inflamma-

some platform inducing activation of ASC-mediated

apoptotic and pyroptotic cell death pathways [112–114].

The AIM2 pyrin domain drives filament formation and

dsDNA binding, the key signal transduction mechanism

responsible for the AIM2 inflammasome formation [115].

Upon activation, AIM2 triggers innate immunity and pro-

vides host defense against both bacterial and viral

pathogens, such as Francisella tularensis, Listeria mono-

cytogenes and Mycobacterium tuberculosis infection [116–

120]. Mitochondrial ROS production, the transcription

factor IRF1 and guanylate-binding proteins (GBPs) target

AIM2 inflammasome activation by Francisella tularensis

infection [121, 122]. Innate immune signaling in response

to Porphyromonas gingivalis-induced periodontitis, hema-

zoin and DNA during malaria involves activation of both

NLRP3 and AIM2 inflammasomes and release of IL-1b
and IL-18 cytokines and pyroptotic cell death [123, 124].

IFN-inducible IFI16 along with AIM2 acts as innate

immune sensor for cytosolic double-stranded DNA in

human fibroblasts [125]. Nuclear factor E2-related Factor-2

(Nrf2), a key transcription factor for cellular redox home-

ostasis regulation was found to be an essential mediator for

NLRP3 and AIM2 inflammasome signaling in Myd88-de-

pendent manner [126]. The crystal structure of AIM2 pyrin

domain reveals a death domain fold with a short a3 helix

that is buttressed by a highly conserved lysine residue at

the a2 helix, stabilizing the a3 helix for potential interac-

tion with partner domains. The structural characterization

of AIM2 has provided novel insights into the PYD-HIN

and PYD–PYD interactions important for AIM2 autoinhi-

bition and inflammasome assembly [127]. The

microtubule-associated protein EB1 links AIM2 inflam-

masome activation and non-classical secretion of IL-1b
induced by LC3-dependent autophagy [128].

Recently, the role of AIM2 inflammasome was explored in

the brain. AIM2 inflammasome mediated regulation was

observed during acute Staphylococcus aureus-induced central

nervous system (CNS) inflammation [129]. Distinct survival

patterns and susceptibility to infection observed in the

Aim2-/- mice, explains critical role of AIM2 in immune

regulation of CNS during bacterial infection. Significantly

reduced expression of IL-1b and other key inflammatory

mediators, including IL-6, CXCL1, CXCL10, and CCL2 in

the CNS of Aim2-/- and Asc-/- mice, implicates auto-

crine/paracrine actions of IL-1b in CNS inflammation. Both

AIM2 and NLRC4 inflammasomes contribute in acute brain

injury independently of NLRP [130]. In fact, theAim2-/- and

Nlrc4-/- mice show reduced injury and improved behavioral

outcomes. The study suggests novel role of inflammasomes in

brain injury, especially AIM2 and NLRC4 as key drivers for

sterile inflammation responses in the brain.

AIM2 and cancer

AIM2 plays a protective role against colorectal cancer

progression. The lack of AIM2 or its reduced expression
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was positively correlated with poor survival in colorectal

cancer patients [131]. AIM2 decreases the likelihood of

colorectal cancer development by tight regulation of

tumorigenic susceptibility and intestinal stem cell prolif-

eration independently of inflammasomes [132]. AIM2

interacts with and limits the activation of DNA-dependent

protein kinase (DNA-PK), a PI3 K-family member, to

reduce Akt phosphorylation for suppression of colon

tumorigenesis [133]. Therefore, AIM2 limits tumor burden

and cancer progression in an inflammasome-independent

fashion. The protective role of AIM2 has been identified in

breast and colon cancer. AIM2 suppresses breast cancer

cell growth in vitro (MCF-7 cell line) and tumor formation

in vivo. Subsequently, AIM2 also suppresses the viability

and tumorigenicity of breast cancer cells. In vivo experi-

ments show AIM2-mediated inhibition of breast cancer cell

proliferation by suppression of NF-jB transcriptional

activity and desensitizing TNF-a-mediated NF-jB activa-

tion [134]. Further, in vitro analysis observed restoration of

AIM2 induces G2/M arrest causing reduction in cell pro-

liferation and confers invasive phenotype in colon cancer

cells [135]. The constitutive levels of interferon-inducible

AIM2 mRNA and protein were significantly lowered in

prostate cancer cells as compared to the benign prostate

hyperplasia cells [136]. The microarray based gene

expression profiling of AIM2-responsive target genes

suggests novel role of interferon/AIM2/Interferon-stimu-

lated genes cascade in colorectal tumors. Several

interferon-stimulated genes including, TLR3 and CII-

TA (MHC Class II transactivator) were found to be

significantly upregulated. AIM2 activation resulted in

activation of both IFN-c independent and dependent

interferon stimulated genes. The authors conclude that the

recently identified role of AIM2 in inflammasome-medi-

ated cell death was not observed here in colorectal cancer

cells [137]. Gene expression profiling by Liu et al. [138]

presents both NLRP3 and AIM2 as potential biomarkers

for colorectal cancer and cancer progression. Extensive

analysis of multiple cancer datasets revealed significantly

decreased expression levels of NLRs—NLRP1, NLRP3,

NLRC3, NLRC4 and AIM2 in human colorectal cancer.

Together, these results link AIM2 with tumor suppression

activity, and keeping in mind the already recognized roles

of NLRs in tumorigenesis, AIM2 could also function as a

double-edged sword.

ASC/TMS1/PYCARD

ASC (apoptosis-associated speck-like protein containing

CARD) also known as TMS1 (target of methylation-in-

duced silencing1) is an adaptor molecule that mediates

inflammatory and apoptotic signaling. ASC contains the

Pyrin/PAAD death domain in addition to the CARD

protein–protein interaction domain (Table 1) [139]. Asc

gene is predominantly expressed in monocytes and muco-

sal epithelial cells. The functions of ASC include;

regulation of procaspase-1 activation, maturation of the

cytokines-IL-1b and IL-18 and activation of NF-kB [140].

Members of NLR family including NLRP1, NLRP3 and

NLRC4, and the adaptor protein, ASC are critical com-

ponents of the inflammasome that results in procaspase-1

activation [23]. Later, inflammasome mediated cell death

activity was linked with caspase-8 [57].Co-expression of

NLRC4 with ASC induces NF-kB activation and apoptosis

mediated by IkB kinase (IKK) and caspase-8, respectively

[141]. ASC is central to several death pathways including

p53–Bax mitochondrial apoptosis pathway, NF-kB and

caspase-8-dependent apoptosis [142]. ASC directs NF-kB

activation by regulating receptor interacting protein-2

(RIP2) caspase-1 interactions [143]. AIM2 and NLRP3

inflammasomes recruit and activate caspase-8 and -1 via

ASC leading to both apoptotic and pyroptotic cell death

[114]. Though, in vitro studies suggest an axis between

ASC/NLRC4/NF-jB activation, these findings require

confirmation in vivo.

ASC and cancer

Asc gene is overexpressed in several tumors, triggering

apoptosis and formation of ASC specks from its intra-nu-

clear localization to punctate cytosolic structures. Recent

studies have proved methylation-associated silencing of

Asc across many cancer types [144]. However, the epige-

netic mechanisms underlying regulation of Asc silencing or

overexpression remains unknown. The aberrant methyla-

tion of Asc and gene silencing was first reported in human

breast cancer cells. Asc is inactivated in almost 40 % of the

breast cancers [145]. Supporting evidence came from a

study reporting Asc methylation in colorectal cancer tissues

and cell lines lacking ASC protein expression [146]. Later

on, aberrant methylation was also well correlated with loss

of ASC expression in ovarian cancer. Methylation-medi-

ated Asc silencing in tumor cells provides an extended

survival and escape to apoptosis. In addition to methyla-

tion, histone deacetylation is also responsible for Asc gene

silencing in ovarian cancer [147]. Machida et al. found

hypermethylation of Asc as a marker for late lung cancer

cells and in sputum could predict prognosis in patients

resected for early-stage disease [148]. Though the ASC

protein levels were reduced in all lung cancer types, the

hypermethylation particularly correlated with late tumor

stages being present in 60 % of late-stage tumors. Methy-

lation of Asc gene promoter is both a frequent and early

event in prostate cancer carcinogenesis and is associated

with the aggressive prostate cancer [149]. Recent study of

Asc methylation in glioblastoma shows reduced or absent
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expression of ASC in human glioblastoma cell lines and

loss in expression was associated with aberrant methylation

of CpG Island in the promoter of the Asc gene. Further

analysis showed inverse correlation between the degree of

methylation and level of ASC expression [150]. Another

research group found hypermethylation of Asc gene pro-

moter in 57.1 % of long term survival glioblastoma,

distinguishing it from the classic GBM having 16 % of the

cases with hypermethylation [151]. Zhang et al. observed

epigenetic inactivation of Asc in hepatocellular carcinoma

cells. Here, Asc inactivation is regulated by promoter

hypermethylation associated gene silencing, accompanied

with histone H3 Lysine 9 (H3K9) hypoacetylation and

trimethylation modifications in a coordinated way [152].

The dual role of ASC in human melanoma tumorigenesis

was identified by Liu et al. ASC expression in metastatic

melanoma was found to be down-regulated as compared to

primary melanoma [153]. As expected, silencing of Asc in

metastatic melanoma resulted in reduced cell viability and

suppressed tumorigenesis. Asc knockdown resulted in

inhibition of caspase-1 activation and IL-1b secretion in

both primary and metastatic melanoma. It also resulted in

activation/suppression of phosphorylated IkB kinase (IKK)

a/b expression and NF-kB activity in metastatic/primary

melanoma. Asc was also found to be highly expressed in

mouse models of medulloblastoma. Asc deficiency pro-

foundly reduced proliferation and extended survival rate.

ASC plays the role of tumor promoter in medulloblastoma

[154]. Interestingly, ASC has always been identified as a

tumor suppressor in specific cancer models. These results

reveal complex role played by ASC in regulating cell

proliferation. Based on these findings, ASC represents a

potential modulator of inflammatory responses that may

help in coordinating the activity of NLRs and cytokine

activating caspases in mammalian cells. DNA hyperme-

thylated gene promoter sequences have always been

extremely promising cancer markers. Certainly, they can

be used for early diagnosis or prognosis depending on the

change in gene expression during tumor induction and

progression.

Non-inflammasome forming NLRs

Non-inflammasome forming NLRs, such as NLRX1,

NLRP12, NLRC3, NOD1 and NOD2 form a significantly

important subgroup of the NLR family that can both pos-

itively and negatively regulate inflammation. These NLRs

do not form an inflammatory complex upon activation but

regulate inflammation associated pathways by other

mechanisms [155]. Non-inflammasome forming NLRs

modulate NF-kB and other major inflammation regulatory

pathways, which are crucial in chronic inflammation and

inflammation-induced tumorigenesis [156]. NLRs modu-

late these pathways through interaction with a specific

upstream/downstream molecule belonging to that pathway.

Their known functions reveal the fact that dysregulation in

NF-kB and other inflammation associated signaling path-

ways by these NLRs are very important and play critical

role in tumor induction and progression (Table 2).

NLRP12

NLRP12 also known as Monarch-I and PYPAF7, belongs

to the non-inflammasome forming subgroup of NLRs

[157]. It is one of the first NLR proteins to be studied. It has

a tripartite domain structure, with an N-terminal PYRIN

domain, a central nucleotide binding site domain, and a

C-terminal domain composed of at least 12 leucine-rich

repeat motifs as shown in Table 1 [158]. In humans, Nlr-

p12 is expressed in peripheral blood leukocytes, including

granulocytes, eosinophils, monocytes, and dendritic cells

(DCs) [159]. Recent in vitro research studies have shown

NLRP12 negatively regulates inflammation by attenuating

both canonical (via interaction with IRAK1) and non-

canonical (via interaction with TRAF3 and NF-kB induc-

ing kinase (NIK)) NF-kB pathway [160–162]. NLRP12

also down-regulates MAPK pathway by inhibiting ERK

signaling [163]. S. typhimurium induces NLRP12-mediated

dampening of host immune defenses to persist and survive

inside the host. During salmonellosis, NLRP12 inhibits

NF-jB and ERK activation by suppressing phosphoryla-

tion of IjBa and ERK, preventing efficient clearance of

bacterial burden [164].

NLRP12 and cancer

Zaki et al. first observed that Nlrp12 deficient mice are

hyper-susceptible to DSS-induced colitis and have

increased colitis-associated colorectal tumorigenesis.

NLRP12 plays a critical role in dampening the inflamma-

tory response in myeloid cells and during DSS-induced

colitis. The expression of pro-inflammatory cytokines (IL-

1b, IL-6, TNF-a, IL-17, IL-15 and chemokines (G-CSF,

eotaxin, KC, IP-10, MIP-1a, MIP-1b, MIP2) were signifi-

cantly higher in the colon of Nlrp12-/- mice, leading to

hyperplasia and increased tumorigenesis. Therefore, Nlr-

p12 deficiency leads to increased and prolonged

inflammatory responses in colon tissue. Significantly

higher activation levels of MAPK, NF-jB, STAT and AKT

were observed, accompanied with massive infiltration of

macrophages and increased proliferation of epithelial cells

particularly in the hyperplastic colon regions of the AOM/

DSS treated Nlrp12-/- colon tissue [165]. Collectively,

these results suggest NLRP12 signaling in the hematopoi-

etic cells is critical for protection against colitis and CAC.
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Allen et al. confirmed increased susceptibility of Nlr-

p12-/- mice towards inflammation-driven colon

tumorigenesis. The ex vivo contribution of NLRP12 is

reflected in terms of enhanced non-canonical NF-kB sig-

naling and MAPK activation, observed in the myeloid

dendritic cells isolated from the Nlrp12-/- mice. NLRP12

functionally interacts with TRAF3, which in turn directly

interacts with NIK, inducing NIK degradation. The

pathogenesis of Nlrp12-/- mice was found to be derived

from both the hematopoietic and non-hematopoietic com-

partments. Further experimental analysis, suggested an

early role for NLRP12 in the AOM ? DSS model through

both hematopoietic and non-hematopoietic compartments.

Coincidental with the polyp formation, the effect of

NLRP12 was derived primarily from the non-hematopoi-

etic compartment [163]. In summary, the study indicates

how NLRP12 attenuates the development of experimental

colitis and suppresses colitis-associated cancer. These

studies strongly suggest that functions of NLRP12 might be

cell/tissue-specific for specific stage of inflammation/tu-

morigenesis. Both ex vivo and in vivo studies have proved

a critical role played by NLRP12 in regulation of major

signaling pathways associated with inflammation and

inflammation-associated tumorigenesis.

NLRX1

NLRX1 is the first non-cytoplasmic NLR protein discov-

ered. NLRX1 is localized in mitochondria however; the

exact localization within mitochondria remains to be

characterized [166, 167]. Its structure constitutes a highly

conserved nucleotide-binding domain (NBD) and leucine-

rich repeats (LRR) as seen in Table 1. Nlrx1 expression is

highest in mitochondria-rich tissues such as muscle and

heart. Major functions of Nlrx1 includes negative regula-

tion of anti-viral inflammatory response via MAVS-RIG1

signaling pathway or TLR-induced NF-kB signaling by

targeting TRAF6 and IKK signaling pathway [168, 169].

NLRX1 inhibits NF-kB activation by inhibition of IKKa
and IKKb phosphorylation. These results show specific

knockdown of Nlrx1 resulted in increased gene expression

of cytokines; TNF-a and IL-6 and chemokines; CCL2 and

CXCL10 in response to LPS treatment [169]. NLRX1 also

exerts positive control of NF-kB and JNK signaling path-

way for active production of reactive oxygen species

(ROS) in response to TNF-a, poly (I:C) and pathogens

[170]. NLRX1 binds to the ssRNA, dsRNA, poly (I:C) but

not with DNA [171]. A study by Soares et al. [172] dis-

covered that NLRX1 is not involved in inhibition of

MAVS-dependent anti-viral signaling. NLRX1 interacts

with a mitochondrial matrix protein, UQCRC2 to induce

ROS production but exact association between the two is

yet to be shown. NLRX1 also forms complex with

mitochondrial Tu translation elongation factor protein,

TUFM, that dually regulates IFN-! production and pro-

motes autophagy during viral infection [173]. Recently,

crystal structure of NLRX1 C-terminal was elucidated,

describing association of LRR and neighboring helical

domains to form a hexameric platform which promotes the

interaction/binding of NLRX1 with its target proteins. It’s

only recently that researchers have started exploring

NLRX1, therefore, its major regulatory functions, RNA

recognition by NLRX1 and NLRX1 –RNA interaction

mechanism are still under investigation.

NLRX1 and cancer

NLRX1 plays an important role in regulating the balance

between intrinsic and extrinsic apoptosis in cancer cells.

NLRX1 positively regulates apoptosis in response to

intrinsic apoptosis signals and that may be this is why

Nlrx1 expression is down regulated in cancer cells. Nl-

rx1-/- mice develop fewer tumors than wild type mice in

the AOM-induced colorectal cancer murine model. Nlrx1

deficiency reduced cancer progression in this cancer model.

In contrast, in a AOM/DSS treated colitis-associated cancer

model, Nlrx1-/- mice developed a more severe pathology,

showing increased sensitivity to DSS colitis. NLRX1 pro-

tects against DSS-induced damage and AOM/DSS-

triggered colorectal cancer. This differential role of

NLRX1 might be consequence of an exacerbated rate of

apoptotic cell death in response to DSS treatment followed

by increased epithelial proliferation as part of repair of

damaged tissue [174]. Recent data indicates NLRX1

attenuates tumorigenesis through the negative regulation of

AKT and NF-jB signaling [168]. NLRX1 sensitizes cells

to TNF-a induced cell death by activating caspase-8.

In vitro studies suggest that NLRX1 expression suppresses

clonogenic ability, anchorage-independent growth and

migration of cancer cells. Interestingly, NLRX1 may also

contribute to the metabolic switch toward glycolysis in

these tumor cells. Study extended to in vivo models has

shown suppression of tumorigenicity in nude mice by

NLRX1 [175]. Given the current understanding of NLRX1

and its role in innate immune responses, NLRX1 might

serve as a promising target for manipulating immune

response in inflammation-associated diseases and cancer

pathology.

NOD1 and NOD2

NOD1 and NOD2 (nucleotide-binding oligomerization

domain-containing protein 1 and 2, also known as NLRC1

and NLRC2, respectively) were the first NLRs to be

characterized. The NOD-proteins are amongst the most

prominent members of the NLR (NOD-LRR) family of
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proteins that contain nucleotide-binding NACHT domains,

receptor-like LRR domains and CARD domains. NOD1

contains a single amino-terminal caspase recruitment

domain (CARD), and NOD2 contains tandem N-terminal

CARD domains that mediate interactions with the CARD

domains of receptor-interacting protein 2 (RIP2) [176].

While Nod1 is ubiquitously expressed, Nod2 is expressed

more in hematopoietic cells [177]. Several E3 ubiquitin

ligases have been suggested to be involved in the activation

of NOD1 and NOD2 signaling, including cellular inhibitor

of apoptosis protein 1 (CIAP1), CIAP2, and TRAF6 [178].

Interestingly, both NOD1 and NOD2 can be recruited to

the plasma membrane during infection and ligand recog-

nition. NOD2 promotes the membrane recruitment of

RICK, a serine-threonine kinase involved in NF-jB acti-

vation downstream of NOD2 [179]. Ubiquitin is also able

to bind to the caspase recruitment domains of NOD1 and

NOD2, competing with RIP2 for binding and reducing

activation. Furthermore, polyubiquitylated RIP2 is a sub-

strate for the deubiquitylating enzyme, A20, which

negatively regulates NOD2 signaling.

Nod1 and Nod2 recognize muropeptides derived from

cell walls of Gram-positive and Gram-negative bacteria,

such as Listeria monocytogenes and Shigella flexneri. Nod1

and Nod2 are important for microbial recognition and host

defense after TLR stimulation [180]. NOD1 mediates

selective recognition of bacteria through detection of iE-

DAP-containing peptidoglycan [181]. NOD1-dependent

responses play a critical role in host resistance against

Trypanosoma cruzi, Pseudomonas aeruginosa, and Heli-

cobacter pylori infections [182–184]. NOD1 also

participates in the induction of a noninfectious pancreatitis

via its response to commensal organisms [185]. NOD1 and

NOD2 proteins contribute to the maintenance of mucosal

homeostasis and the induction of mucosal inflammation

[186]. Nod2 acts as an intracellular receptor for sensing of

muramyl dipeptide [187]. Card8 negatively regulates

Nod2-mediated signaling, displaying a novel molecular

switch involved in the endogenous regulation of Nod2-

dependent inflammatory processes [188]. The molecular

chaperone protein, HSP70 binds to and stabilizes NOD2

mutants, providing an effective therapy for Crohn’s disease

[189].

NOD1 and NOD2 in cancer

The activation of NOD1 and NOD2 triggers recruitment of

the adaptor proteins RICK and CARD9, resulting in K63-

linked ubiquitylation and activation of NF-jB and the

MAP kinase signaling cascades [190]. Critical role of

NOD1 signaling in maintaining intestinal epithelial barrier

permeability and balancing inflammatory responses has

been shown using AOM/DSS-induced colon-associated

tumorigenesis [191]. NOD1, RIP2 and Caspase12 have

been described as potentially novel biomarkers for oral

squamous cell carcinoma development and progression

[192].

The role of NOD2 is being studied extensively in colitis

and colorectal tumorigenesis because of its well-recog-

nized genetic association with inflammatory bowel disease.

Nod2 mutations and polymorphisms have been linked with

increased to colorectal cancer [193]. In addition to its well-

characterized role in NF-jB and MAPK activation, NOD2

is also involved in the regulation of autophagy, which plays

a crucial role in intestinal homeostasis and tumorigenesis.

Nod2 deficiency-induced dysbiosis, gives rise to a rever-

sible transmissible colitis and colitis-associated

carcinogenesis in mice. Results show that Nod2/Rip2

deficiency confers a maternally transmissible colitis risk on

immunocompetent host [194]. Additionally, fecal dysbiosis

in Nod2-deficient mice also sensitized the colonic mucosa

to DSS-induced chemical injury. Researchers have shown

that the NOD2 3020insC mutation may be a genetic pre-

disposing factor for breast, lung cancer and colorectal

cancer [195]. Nod1/Nlrc1 and Nod2/Nlrc2 gene polymor-

phisms have been identified in cancer etiology. Several

Nod1/Nod2 polymorphisms may be associated with altered

risk of gastric, colorectal, breast, ovarian, prostate, testic-

ular, lung, skin cancer and various other cancers [196].

Current cancer therapeutics

Cancer cells overcome the host innate immune surveillance

system to promote tumorigenesis and constitute a tumor-

promoting microenvironment. The inflammatory tumor

microenvironment plays major role in cancer development

and progression as depicted in Fig. 1. The microenvironment

consists of increased expression of pro-inflammatory

cytokines, chemokines and other major inflammatory

molecules facilitating interaction between normal and can-

cer cells. Given the major role played by cytokines during

chronic inflammation, tumor induction and tumor develop-

ment, cytokines became a common target of therapeutics for

auto-inflammatory diseases. IL-1 dysregulation has been

reported in several auto-inflammatory diseases [197].

Therefore, IL-1 signaling pathway inhibitors are being used

for effective treatment of cold induced periodic syndromes

including NOMID, MWS, and FCAS syndromes associated

with various Nlrp3 mutations. The first such IL-1 inhibitor

was anakinra followed by rilonacept and canakinumab

[198]. The direct blockade of important immunoregulators

like IL-1b compromises the host immune response to

infectious agents or damage-associated molecules and limits

the anticancer immune response elicited by immunogenic

cell death inducers. Apart from IL-1b, IL-18 signaling can
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also be blocked by neutralizing antibodies or recombinant

IL-18BP (Interleukin-18 binding protein). The inhibition of

inflammasomes or therapeutic neutralization of their prod-

ucts would exert profound effects on carcinogenesis and

tumor progression [199].

Over the years, multiple therapeutic strategies have been

utilized for targeting cancer cells. Recently, liposomes

packaged siRNA targeting the Pkn3 gene (protein kinase

N3) for lung metastasis inhibition has been approved for

evaluation in a human clinical trial [200]. siRNAs are

potent activators of innate immunity but do have some

major off-target effects on gene expression, antibody

response against delivery vehicle and immune-toxicities

due to excessive cytokine release. Re-expressing tumor-

suppressive miRNAs holds great promise for cancer ther-

apy. It is well accepted that aberrant miRNA expression is

linked to cancer, hence delivering tumor–suppressive

miRNAs and silencing oncogenic miRNAs has been suc-

cessful in various mouse models [11]. Reprogrammed

viruses have also been utilized as oncolytic vectors for

developing virus based therapeutics for cancer. Currently,

DNA viruses in clinical trials include adenovirus (AD),

herpes simplex virus 1 (HSV1) and vaccinia virus. The

selection of HSV to treat glioblastoma utilizing this

approach gives great hope [201]. The only engineered

oncolytic RNA virus undergoing clinical trials is the

measles virus. Oncolytic viruses hold great potential as

self-amplifying cancer therapeutics and can be applied in

combination with radiation and chemotherapy. Desirable

protease targets (for example-matrix metalloproteinases)

for oncolytic viruses are either expressed preferentially or

at high levels by cancer cells. In fact, Ad H101 is the first

reprogrammed virus to be approved as a cancer drug and

has been administered to hundreds of patients with head

and neck carcinoma in China [202]. Today, peptide-vac-

cination targeting the epidermal growth factor receptor

(EGFR) mutation III (vIII) is one of the most prominent

examples of immunotherapy for glioblastoma [203].

Treatment of glioblastoma patients with cediranib, pan-

VEGF receptor tyrosine kinase inhibitor resulted in

increased tumor perfusion, and improved survival rate

because of the vascular normalization [204].

Fig. 3 Possible therapeutic targets. NLR dependent pathways may present opportunities as novel therapeutics targets for transformation of the

tumor-promoting microenvironment into an anti-tumor microenvironment
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The pivotal role of IKKb/NF-jB signaling path-

way in inhibition of programmed cell death and

constitutive expression in various malignan-

cies, strongly suggest the use of IKKb and/or NF-

jB inhibitors for cancer treatment. Currently available

drugs are non-specific Ikkb or NF-kB inhibitors inclusive

of anti-inflammatory agents, NSAIDs, cyclopen-

tenone prostaglandins, proteasome inhibitors, and gluco-

corticoids. IKKb/NF-jB inhibitors block NF-

jB activation in infiltrating inflamma-

tory cells, which are an important source of tu-

mor growth and survival factors [205]. Targeting

specific NF-kB-regulated ligands for regulating particular

gene expression makes this a promising approach for

cancer therapy.

The critical role played by NLRs in major inflammatory

pathways associated with cancer has provided a new direction

to cancer therapeutics [21]. Recently, the crystal structures for

NLR domains such as pyrin, CARD, NBD have been eluci-

dated. The focus is on developing drugs that directly interact

with the NLR domains for selective activation or inhibition of

a NLR. Distinct NLR ligands may be used as vaccine adju-

vants for enhancement of innate immune response.

Depending on the particular cancer and its stage, inflamma-

some activation or inhibition can be utilized as cancer

therapeutics. The emerging role of inflammasomes in host

innate immune responses suggests inflammasome compo-

nents as direct drug targets for cancer. Opsona Therapeutics

recently published that the cytokine release inhibitory drug 3

(CRID3, also known as CP-456,773) targets ASC oligomer-

ization during NLRP3 and AIM2 inflammasome activation

(Coll and O’Neill, 2011) [206]. Anticancer chemotherapeu-

tics are particularly efficient when they succeed in killing

tumor cells through immunogenic cell death, and thereby

converting dying cells into therapeutic vaccines [207]. Earlier,

immunomodulators such as thalidomide (anti-inflammatory

and anti-angiogenic) were used that may exert inhibitory

effects on the NLPR3 inflammasome but also have strong

teratogenic activity. The anti-inflammatory activity of

thalidomide is mediated via caspase-1 in mice. Thalidomide

has been approved for the treatment of inflammatory skin

diseases and cancer [206]. NLRs present promising option for

novel therapeutics targets for transformation of the tumor-

promoting microenvironment into an anti-tumor microenvi-

ronment (Fig. 3).

Future directions

Inflammasomes display contrasting roles across multiple

stages of tumorigenesis. Even though NLRs play important

roles in innate immunity and inflammation, information

related to NLR-ligand interactions, inflammasome

activation and NLR-associated intracellular and extracel-

lular signaling pathways remain largely unknown. Further

insights into the upstream and downstream signaling

molecules participating in NLR-associated signaling are

needed. Hence, it is important to unravel the molecular

mechanisms responsible for activation of anti-tumor or

tumor-promoting inflammasome-associated pathways.

Keeping in view, the future prospects of NLRs, inflam-

masomes and their products as cancer biomarkers some

questions remain unanswered.

• While the association of NLRs and major inflammatory

pathways with cancer has opened up a new field of

cancer therapeutics, the regulatory mechanisms of NLR

dependent signaling pathways remain unclear. These

regulatory molecules might serve as valuable biomark-

ers as well as highly specific drug targets to modulate

an NLR associated pathway.

• The molecular mechanism behind NLRs affecting the

activation/inhibition of other NLRs remains largely

unknown.

• The regulatory molecules anchoring ligands towards

the cytoplasmic NLRs and the feedback loops respon-

sible for balanced activation of the NLR inflammatory

pathways need further investigation.
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