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Abstract The forkhead box O (FOXO) transcription

factors are considered as tumor suppressors that limit cell

proliferation and induce apoptosis. FOXO gene alterations

have been described in a limited number of human cancers,

such as rhabdomyosarcoma, leukemia and lymphoma. In

addition, FOXO proteins are inactivated by major onco-

genic signals such as the phosphatidylinositol-3 kinase

pathway and MAP kinases. Their expression is also

repressed by micro-RNAs in multiple cancer types. FOXOs

are mediators of the tumor response to various therapies.

However, paradoxical roles of FOXOs in cancer progres-

sion were recently described. FOXOs contribute to the

maintenance of leukemia-initiating cells in acute and

chronic myeloid leukemia. These factors may also promote

invasion and metastasis of subsets of colon and breast

cancers. Resistance to treatment was also ascribed to

FOXO activation in multiple cases, including targeted

therapies. In this review, we discuss the complex role of

FOXOs in cancer development and response to therapy.
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Introduction

The forkhead box (FOX) family of proteins consists of 19

sub-families of transcription factors that share a highly

conserved DNA-binding domain of approximately 110

amino acids, the forkhead box domain (also known as the

winged-helix domain). Within this family, the O subgroup

contains four members: FOXO1 (FKHR), FOXO3

(FKHRL1), FOXO4 (AFX) and FOXO6 [1]. The first three

are ubiquitously expressed, at different levels depending on

the tissue [2, 3]. On the contrary, FOXO6 is expressed only

in the central nervous system [4]. To determine whether

they play distinct or redundant functions, knock-out (KO)

mice were produced for the different FOXO family mem-

bers. Foxo1-/- embryo die because of incomplete vascular

development; Foxo3-/- female mice are infertile due to

abnormal ovarian follicle development; whereas Foxo4-/-

mice do not present any obvious abnormalities [5]. These

phenotype differences may be related to functional differ-

ences between FOXO isoforms as well as distinct patterns

of expression.

The expression and activity of FOXO factors are

strongly controlled by post-translational modifications such

as phosphorylation, acetylation, methylation and ubiquiti-

nation (reviewed in [6]). A major mechanism of regulation

of FOXOs consists of phosphorylation by AKT (also called

Protein Kinase B, PKB) on three residues (T32, S253 and

S315 of FOXO3) following growth factor stimulation [7],

leading to FOXO inactivation. Indeed, these phosphoryla-

tions allow the binding of 14-3-3 proteins to FOXOs and

their export from the nucleus to the cytoplasm (reviewed in

[8]). The sequestration of FOXOs in the cytoplasm main-

tains them in an inactive state, which can be rapidly

reversed. In addition, following their nuclear exclusion,

FOXOs can also be ubiquitinated and degraded by
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proteasomes. The mechanisms that direct FOXOs to

degradation rather than sequestration might be related to

the intensity of the signal that triggers nuclear export [6].

Unlike FOXO1, 3 and 4, FOXO6 is phosphorylated by

AKT on two residues only, which inactivates FOXO6

without inducing its export from the nucleus to the cytosol

[4]. Because FOXO6 has a restricted pattern of expression

and is regulated differently than the three other isoforms,

we will use the general denomination ‘‘FOXOs’’ to refer to

FOXO1, 3 and 4.

In addition to AKT, other kinases have been described

as negative regulators of FOXOs, such as SGK (serum and

glucocorticoid-regulated kinase), CK1 (casein kinase 1),

DYRK1A (dual-specificity tyrosine-phosphorylation-regu-

lated kinase 1A) and, more recently, ERK (extracellular

signal-regulated kinase) and IKK (IjB kinase) (reviewed in

[8]). In contrast, FOXOs can be activated by JNK (c-Jun

N-terminal kinase), MST1 (Mammalian Ste20-like kinase)

and AMPK (AMP-activated protein kinase). Under oxida-

tive stress conditions, MST1 and JNK phosphorylate

FOXOs, in particular FOXO4, and induce its translocation

from the cytoplasm to the nucleus. Likewise, in response to

nutrient stress, AMPK also phosphorylates and activates

FOXOs to induce the expression of genes involved in

energy metabolism and stress resistance [9]. In addition to

the regulation of FOXOs by post-translational modifica-

tions, our laboratory showed that the PI3K-AKT pathway

also represses the expression of these factors at the mRNA

level [10].

FOXOs control diverse cellular functions, such as cell

growth, survival, metabolism and anti-oxidant state, by

regulating the expression of many genes (for a compre-

hensive list of FOXO targets, see [11]). Because of their

anti-proliferative and pro-apoptotic functions, FOXO fac-

tors have been considered as tumor suppressors. Indeed,

their expression and activity are altered in many cancers.

However, recent studies have described new and unex-

pected functions of FOXOs in the resistance to cancer

treatment and in the promotion of cancer, suggesting a

complex role of FOXO factors in this disease. This will be

the topic of the present review.

FOXOs as tumor suppressors

FOXO factors are often considered as tumor suppressors.

This makes sense given their cellular functions as cell cycle

and apoptosis regulators. This is also supported by the

phenotype of FOXO knock-out mice. Foxo1?/- Foxo3-/-

Foxo4-/- germline mutant mice as well as compound

mutant mice with four or five deleted FOXO alleles present

a modest tumor phenotype that emerges very late in life

[12]. The conditional deletion of all Foxo1/3/4 alleles in

adult tissues leads to the appearance of lymphoblastic

thymic lymphomas and hemangiomas. The restricted tumor

spectrum in triple FOXO KO mice (particularly the

absence of carcinoma) was surprising and contrasted with

the devastating results of PI3K signaling deregulation. The

authors suggested that other arms of the PI3K-AKT sig-

naling, such as mTOR, may play more crucial roles in

epithelia tumorigenesis [12]. Nevertheless, this should not

overshadow the importance of FOXOs in other cell

lineages.

In mice, the tumor suppressor activity of FOXOs is

visible only after inactivation of four to six alleles. This is

unlikely to occur frequently in human tumors, perhaps

explaining the rarity of genetic alterations inactivating

FOXO loci in human cancers. However, as discussed

below, cancer cells use a more efficient way of inactivating

FOXOs at the protein and mRNA levels via different

oncogenic signaling pathways and micro-RNAs.

An oncogenic signaling network controls FOXO

activity

Some major signaling pathways, such as those involving

PI3K, Ras or IKK, have been linked to FOXOs in the

context of cancer (Fig. 1).

The PI3K-AKT pathway

As already mentioned above, FOXOs are targeted and

inactivated by the PI3K-AKT pathway [7]. Yet, this sig-

naling pathway is often constitutively active in cancers due

to gain-of-function mutations in genes encoding tyrosine

kinases, RAS or PI3K itself, or due to loss-of-function

mutations of PTEN, for instance (reviewed in [13]). In

these cancers, FOXOs are expected to be in the inactive

cytosolic phosphorylated state, thus promoting cell survival

and proliferation. This was indeed demonstrated in a

number of studies. For instance, transformation of pre-B

lymphocytes with BCR-ABL requires the PI3K-AKT

pathway and, in particular, the suppression of FOXO3-in-

duced apoptosis [14]. Likewise, the expression of FLT3-

ITD, a mutant receptor that is commonly found in acute

myeloid leukemia, leads to the activation of the PI3K-AKT

pathway with subsequent FOXO3 phosphorylation and

inactivation in transfected Ba/F3 cells. By doing so, FLT3-

ITD represses FOXO3-induced expression of p27KIP1

(CDKN1B) and Bim (BCL2L11) and maintains cell pro-

liferation and survival [15]. The PI3K pathway is also often

deregulated and activated in thyroid, cervical and breast

cancers. In breast cancer cell lines, the targeted depletion

of PI3K using small-interfering RNA (siRNA) reactivates

FOXO1, 3 and 4, which induce a cell cycle arrest and

apoptosis [16]. The same anti-proliferative and pro-
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apoptotic effects were observed when FOXO1 was reacti-

vated in cervical cancer cell lines treated with LY294002, a

PI3K inhibitor [17]. PI3K inhibition also activates FOXOs

and restores p27KIP1 expression in a mouse model of lung

cancer [18]. Other drugs that inhibit this pathway restore

FOXO activity. For instance, in thyroid cancer cells, a

chemopreventive non-steroidal anti-inflammatory drug,

sulindac sulfide, blocks the PI3K-AKT pathway and leads

to the activation of FOXO3, which increases the expression

of Bim, GADD45A and p27KIP1 to promote cell cycle

arrest and apoptosis [19]. The expression of FOXO1 is

often reduced in Hodgkin lymphomas compared to B

lymphocytes, which normally express it at a high level. The

repression of FOXO1 in these cells can be attributed to

diverse mechanisms including constitutive activation of

AKT and ERK. In these cells, the reintroduction of FOXO1

was also shown to reduce cell proliferation and increase

apoptosis [20].

The Ras-MEK-ERK pathway

ERK can also phosphorylate FOXO3 on three serine resi-

dues (S294, S344 and S425), which are distinct from AKT

substrates, allowing its interaction with the E3-ubiquitin

ligase MDM2 [21]. FOXO3 is polyubiquitinated by MDM2

and subsequently degraded by proteasomes. In human

breast cancer tissues, a reverse correlation between MDM2

and FOXO3 expression was observed and a higher tumor

grade was associated with MDM2-positive and FOXO3-

negative cancer tissues, highlighting the pathological rel-

evance of this relationship [21]. In glioblastoma, both ERK

and AKT were shown to control FOXO3 [22]. FOXO3

degradation could thus partially account for ERK-mediated

tumorigenesis.

The IKK pathway

First described for its role in innate immune response and

inflammation, the IKK-NF-jB pathway now emerges as an

important signaling pathway in cancer development.

FOXO3 is a direct target of IKKa and b, which phospho-

rylate residue S644 and induce its nuclear exclusion and

degradation by proteasomes [23]. In AML, FOXO3 is often

localized in the cytoplasm as a result of its phosphorylation

by constitutively active IKK, rather than AKT. By doing

so, IKK stimulates cell survival and proliferation and

Fig. 1 FOXO phosphorylation downstream oncogenic signaling

pathways. Schematic representation of the major signaling pathways

related to cancer and their link with FOXOs. Three kinases, AKT,

ERK and IKK, can phosphorylate FOXOs leading to their inactivation

and degradation. These regulations have been demonstrated in several

cancer types, as indicated. The phosphorylation site positions

correspond to human FOXOs. FOXO1 phosphorylation by ERK has

also been suggested [99]. AA amino acids
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favors tumorigenesis [24]. IKKe, another member of the

IKK family, is also able to phosphorylate FOXO3 on

residue S644, thereby blocking apoptosis. In human lung

cancer, the phosphorylation of FOXO3 on S644 is corre-

lated to IKKe expression [25]. These data suggest that the

regulation of FOXO3 by different members of the IKK

family could be a key mechanism driving tumorigenesis.

FOXO regulation by micro-RNAs in cancer

Several micro-RNAs (miRs), including miR-96, miR-182

and miR-183, have been identified as regulators of FOXO

expression in different cancer types (Table 1). Overex-

pressed miR-96 was reported to promote tumor cell

proliferation by targeting FOXO3 in breast cancer and

FOXO1 in transitional cell carcinoma (a type of bladder

cancer) [26, 27]. In melanoma cells, miR-182 is up-regu-

lated and targets FOXO3 and MITF, enhancing

invasiveness [28]. Furthermore, in the breast cancer cell

line MCF7, miR-27a acts together with miR-96 and miR-

182 to target FOXO1 and promote tumoral cell growth

[29]; while in classical Hodgkin lymphoma, FOXO1 is

frequently down-regulated, in part via the combined action

of miR-96, miR-182 and miR-183 [20]. In endometrial

cancer, FOXO1 is also down-regulated by micro-RNAs,

including miR-96, miR-182 and miR-183, which play a

role in cancer cell proliferation and survival [30]. FOXO1

is also down-regulated by miR-370 in prostate cancer [31],

by miR-135b in osteosarcoma cells [32], by miR-1269 in

hepatocellular carcinoma [33] and by miR-411 in lung

cancer [34]. Based on cell line studies, these miRs were

shown to favor cancer cell proliferation and survival.

FOXO anti-tumoral functions

Hundreds of studies have linked the tumor suppressor

activity of FOXOs to the regulation of genes involved in

cell cycle arrest (e.g., p27KIP1, CDKN1A/p21) and cell

death (e.g., FasL, Trail, Bim). These two functions have

been extensively reviewed and, by consequence, will not

be further detailed [1, 35]. In addition, FOXO factors play

important anti-tumoral activities by interfering with

senescence induced by an oncogene, angiogenesis, resis-

tance to oxidative stress and the control of cell invasion

(Fig. 2). These functions will be detailed below. Finally,

whether other physiological roles of FOXOs are relevant to

cancer development remains to be investigated. FOXOs

may alter cancer cell metabolism, for instance.

Table 1 Micro-RNAs targeting FOXOs in cancer

Cancer Micro-RNA FOXO Function of the interaction References

Breast miR-27a FOXO1 Favors cell proliferation and viability [29]

miR-96

miR-182

Endometrium miR-9 FOXO1 Induces deregulated cell cycle control and impaired apoptotic

response in endometrial cancer cells

[30]

miR-27

miR-96

miR-153

miR-182

miR-183

miR-186

Melanoma miR-182 FOXO3 Promotes migration and survival of melanoma cells [28]

Breast miR-96 FOXO3 Mediates breast cancer cell proliferation [26]

Hodgkin lymphoma miR-96 FOXO1 Involved in autonomous growth and survival of cHL cells [20]

miR-182

miR-183

Prostate miR-370 FOXO1 Favors proliferation of human prostate cancer cells [31]

Bladder miR-96 FOXO1 Regulates FOXO1-mediated apoptosis [27]

Osteosarcoma miR-135b FOXO1 Promotes proliferation and invasion of osteosarcoma cells [32]

Hepatocellular carcinoma miR-1269 FOXO1 Promotes cell proliferation [33]

Lung cancer miR-411 FOXO1 Promotes cell growth [34]
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FOXOs control invasiveness

The role of FOXOs in the control of cell migration and

invasion was investigated in different cellular models. In

prostate cancer, AEG1 (astrocyte-elevated gene-1, metad-

herin or MTDH) is often over-expressed and plays a role in

cell invasion. AEG1 knock-down reduces cell viability and

invasiveness and increases FOXO3 expression and its

nuclear localization. The pro-invasive effect of AEG1

could partially be caused by FOXO3 repression [36].

FOXO3 expression is also decreased in invasive urothelial

cancer and is correlated with patient survival. In urothelial

cancer cells, FOXO3 downregulation increased the

expression of Twist1 and cell motility [37]. In prostate

cancer, FOXO4 down-regulation by the PI3K-AKT path-

way correlates with metastasis. FOXO4 limits prostate

cancer cell migration and invasion in vitro, at least in part

by antagonizing the transcription factor RUNX2 [38].

Similarly, FOXO1 has also been shown to negatively

regulate RUNX2 transcriptional activity and RUNX2-me-

diated migration and invasion of prostate cancer cells [39].

FOXOs in oncogene-induced senescence

Oncogene-induced senescence protects organisms from

tumor formation by limiting the development of benign

lesions. In an attempt to clarify the mechanisms involved in

this process, Courtois-Cox et al. showed that aberrant

activation of Ras triggers senescence through a negative

feedback loop that suppresses Ras and PI3K signaling,

leading to activation of FOXO1 and 3 [40]. Remarkably,

expression of an activated FOXO mutant was enough to

induce senescence of human fibroblasts. The oncogene

BRAFV600E can also promote senescence through a MEK-

ROS-JNK pathway. Indeed, BRAFV600E signaling through

MEK induces increased ROS levels and JNK activation.

FOXO4 is then activated via its phosphorylation by JNK

leading to FOXO4-induced CDKN1A/p21 expression and

senescence [41]. These studies have expanded the role of

FOXOs as tumor suppressors capable of promoting

senescence in response to an oncogene.

FOXOs regulate angiogenesis

Angiogenesis is a physiological process through which new

capillaries grow from pre-existing blood vessels and which

is required for tumor growth. The mechanism of angio-

genesis involves stimulation of endothelial cells by

angiogenic factors (e.g., VEGF) to promote their prolifer-

ation, migration and the formation of tubes [42]. FOXOs

have been involved in this process as both pro- and anti-

angiogenic factors. Their role in tumoral angiogenesis is

not clearly defined yet.

Major evidence for FOXO1 pro-angiogenic function

stems from embryonic development studies. Indeed, Fox-

o1-/- mice die at E11.5 due to severely impaired vascular

development of embryos and yolk sacs. The analysis of

endothelial cells isolated from these Foxo1-/- embryos

showed an abnormal morphological response to angiogenic

stimuli such as VEGF-A [43]. In accordance with these

data, in adult endothelial cells, some VEGF-regulated pro-

angiogenic genes, such as the vascular cell adhesion

Fig. 2 FOXO functions in

cancer. FOXOs are involved in

diverse physiological processes,

such as cell cycle arrest,

apoptosis, and oncogene-

induced senescence, which

prevent tumor development and

contribute to cancer cell killing

by various drugs (green). By

contrast, FOXOs also play pro-

tumoral roles, in the resistance

to certain treatments, for

instance (red). Ambiguous

functions of FOXOs have been

described in angiogenesis,

oxidative stress resistance,

differentiation, cancer stem cell

maintenance and the control of

cell invasion and metastasis

(orange). Key target genes are

indicated in smaller letters.

Repressed genes are crossed
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molecule-1 (VCAM-1), are expressed via FOXO [44]. By

contrast, FOXO1 is inactivated by angiopoietin-1, another

key angiogenic factor. In endothelial cells, FOXOs induce

the expression of genes involved in blood vessel destabi-

lization and remodeling (e.g. angiopoietin-2) and apoptosis

(TRAIL and BCL-6) [45]. In addition, in a murine model

of hind limb ischemia, Foxo3-/- mice exhibit increased

capillary density and limb perfusion 14 days after the

induction of ischemia compared to wild-type mice, which

suggests that FOXO3 regulates postnatal vessel formation

and maturation in vivo [46].

In line with these effects, the role of FOXOs was

investigated in tumor angiogenesis. The analysis of 272

tissue samples from gastric cancer patients showed that

FOXO1 is constitutively phosphorylated and inactivated in

85 % of tumor cells. FOXO1 phosphorylation correlates

with a higher expression of the angiogenic regulators

VEGF and HIF-1a and with larger microvessel areas,

which is an accepted measure of neoangiogenesis in can-

cer. This suggests that the inactivation of FOXO1 in gastric

tumors is part of a mechanism to promote angiogenesis, but

further in vivo experiments need to be performed to con-

firm these relationships [47]. Finally, as previously

mentioned, triple Foxo1/3/4 conditional knock-out mice

develop hemangiomas, suggesting that these factors are

tumor suppressors for endothelial cells [12].

FOXOs in oxidative stress responses

It is now well known that FOXO factors are involved in the

response to oxidative stress by promoting cellular detoxi-

fication via the induction of superoxide dismutase (SOD2)

and catalase expression. By protecting cells from excessive

ROS accumulation, FOXOs may prevent cancer develop-

ment. This is well illustrated by studies in hematopoietic

stem cells, in which FOXOs are essential to maintain ROS

homeostasis. In Foxo3-/- mice, the accumulation of ROS

leads to a myeloproliferative syndrome. This is mediated

by ROS-enhanced cytokine signaling and could be pre-

vented by addition of antioxidant such as N-acetylcysteine

[48, 49].

Several reports have linked FOXOs to autophagy. In

particular, FOXO1 was shown to promote autophagy in

response to oxidative stress, which may contribute to its

tumor suppressor activity [50]. Interestingly, the induction

of autophagy is independent from FOXO transcriptional

activity.

FOXO crosstalk with p53

Different studies reported that FOXO3 interacts with the

tumor suppressor p53 at different levels. Indeed, they can

physically interact [51], FOXO3 can stabilize p53 [52] or

activate it indirectly via the up-regulation of p19ARF

(CDKN2A), an upstream regulator of p53 [53]. Further-

more, in fibroblasts, p53 binds on a site in the second intron

of FOXO3 to induce its expression during DNA damage. In

these cells, FOXO3 is dispensable for p53-mediated cell

cycle arrest, possibly because of compensation by other

factors or other FOXO isoforms. Nevertheless, FOXO3 is

required, at least in part, for p53-induced apoptosis.

Moreover, FOXO3 loss does not increase the rate of tumor

development in p53-deficient mice but influences the tumor

spectrum since tumors that do not frequently appear in

p53-/- mice (adenocarcinomas and angiolipomas) arise

when both p53 and FOXO3 are deleted [54].

FOXO mutations in cancer

Somatic alterations in FOXO genes, including chromoso-

mal translocations and somatic point mutations, have been

described in a limited number of tumor cases.

FOXO fusion proteins act as oncogenes

FOXO1 was first identified in alveolar rhabdomyosarcoma

(ARMS) as a forkhead domain gene fused to PAX3 as a

result of a t(2;13) translocation. The gene was named

forkhead in rhabdomyosarcoma (FKHR) and only later

FOXO1 [55]. A fusion between PAX7 and FOXO1 was

also described [t(1;13) translocation] [56]. These two

fusion proteins contain an intact PAX DNA-binding

domain (DBD, corresponding to the paired box and

homeodomain) fused to the truncated forkhead box domain

and the transactivation domain of FOXO1 [55, 56] (Fig. 3).

Different models have been used to identify the oncogenic

mechanism of cell transformation by the PAX3-FOXO1

fusion protein. Using shRNA targeting PAX3-FOXO1, it

was shown that this fusion protein is essential for prolif-

eration and transformation of the ARMS cells that express

it. However, even though the fusion protein contributes to

oncogenesis, it is not a robust oncogene and a high

expression level is required to promote tumorigenesis [57].

In addition, different studies performed on transduced

cells, transgenic or knock-in mice indicate that PAX3-

FOXO1 alone is not sufficient to induce tumors and that

additional genetic lesions are required [58, 59]. For

instance, conditional knock-in Pax3-Foxo1 mice do not

develop tumors unless they also harbor conditional inacti-

vation of the p53 or CDKN2A pathway. The disruption of

these two pathways had already been implicated in human

ARMS and seems to cooperate with FOXO fusion proteins

to induce tumorigenesis [60, 61].

Due to the presence of an intact PAX DBD, these

chimeric proteins transactivate genes from PAX-binding
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sites, but their transcriptional activity is more potent

compared to wild-type PAX3 or PAX7 proteins [62]. The

enhanced activity of the fusion proteins could explain

tumorigenesis, at least in part, through altered transcrip-

tion of target genes. For example, N-Myc, which is up-

regulated by PAX3-FOXO1, cooperates with the fusion

protein to transform cells [57, 59]. The anti-apoptotic

factor BCL-XL, which is also up-regulated by PAX3-

FOXO1, seems to be important for ARMS cell survival

[58, 61]. However, many of the identified genes still need

to be validated. The loss of one FOXO1 allele due to the

chromosomal translocation was also expected to con-

tribute to tumorigenesis. However, FOXO1 haplo-

insufficiency does not accelerate tumor development in

mice with PAX3-FOXO1 expressed in terminally differ-

entiating muscle cells [61].

FOXO4 and FOXO3 were next identified in fusion

proteins with MLL (mixed lineage leukemia, encoded by

the KMT2A gene) in acute leukemia [t(X;11) and t(6;11)

translocations, respectively]. Similar to the PAX3/7-

FOXO1 fusion proteins, MLL-FOXO3/4 proteins contain

the C-terminal part of FOXO with its transactivation

domain [63, 64] (Fig. 3). MLL translocations are often

associated with acute myeloid leukemia (AML) and acute

lymphoblastic leukemia (ALL). Many other partners of

MLL in fusion proteins have been identified. It was

suggested that truncated MLL contributes to leukemo-

genesis regardless of the fusion partner as illustrated with

mice expressing the MLL-LacZ fusion protein, which

develop hematological tumors. Nevertheless, the partner

could either provide a transactivation domain to MLL or

stabilize the truncated MLL protein [65]. In the case of

fusions involving FOXO, the conserved transactivation

domain seems to be critical for the oncogenic potential of

these MLL fusions in myeloid progenitors [66, 67]

(Fig. 3). Interestingly, it was also shown that MLL-

FOXO4 antagonizes the transcriptional activity of

endogenous FOXO3 and represses its ability to induce

apoptosis [66].

Recently, a novel t(X;19) translocation involving

FOXO4 was identified in Ewing-like sarcoma, leading to

the formation of a CIC-FOXO4 fusion protein [68, 69].

Fig. 3 FOXO genomic alterations and mutations. The PAX3/7-

FOXO1 fusion protein occurs following a breakpoint at the chromo-

somal region corresponding to the C-terminal part of PAX3/7 and the

forkhead box domain of FOXO1. This generates a fusion protein that

contains the PAX DNA-binding domain (corresponding to the paired

box and homeodomain), the truncated forkhead box domain and the

FOXO1 transactivation domain. The MLL-FOXO3/4 fusion protein

corresponds to the DNA-binding domain and DNA methyltransferase

domain of MLL fused to the truncated forkhead box domain of

FOXO3 or 4 and the transactivation domain. Point mutations have

been identified in FOXO1 in non-Hodgkin B-lymphomas
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FOXO1 point mutations

As mentioned above, FOXO1 is frequently down-regulated

and considered as a tumor suppressor in Hodgkin lym-

phomas. In B-cell non-Hodgkin lymphoma cases, recurrent

somatic mutations were identified in FOXO1, especially in

the start codon and at T24 [70]. The prevalence of FOXO1

mutations was the highest (close to 10 %) in diffuse large

B-cell lymphoma. Half of the mutations are located in the

N-terminal region (M1, R19, R21 and T24) and disrupt the

consensus phosphorylation site of AKT (RXRXXT) or

switch the initiation codon to a methionine located after

T24, thus preventing FOXO1 phosphorylation at that site

(Fig. 3). This affects FOXO1 interaction with 14-3-3 pro-

teins and its nuclear export [71]. Mutations were also found

in the DNA-binding domain of FOXO1 but were not further

characterized. Patients with tumors that present a FOXO1

mutation have a significantly lower overall survival com-

pared with patients that have wild-type FOXO1. However,

the functional impact of these FOXO1 mutations is not

clear. One could speculate that blocking FOXO1 phospho-

rylation by AKT at T24 may disrupt its tumor suppressor

activity while keeping functions that are beneficial to tumor

cells. Mutated FOXO1 may also block the remaining wild-

type FOXOs in a dominant negative manner.

FOXOs as pro-tumoral factors

A number of recent reports have challenged the tumor

suppressor role of FOXOs in leukemia, colon cancer and

breast cancer, introducing a more complex picture.

FOXOs in cancer stem-like cells

As mentioned above, FOXO phosphorylation in leukemia

cells was initially shown to favor their proliferation and

survival. However, in line with the essential role of FOXOs

in hematopoietic stem cells, several studies pointed to a

positive role of FOXOs in the maintenance of leukemia-

initiating cells (LICs), which are characterized by their

ability to self-renew, to reinitiate leukemia and to resist to

therapy. In chronic myelogenous leukemia (CML), the

oncogenic fusion kinase BCR-ABL constitutively activates

the PI3K-AKT pathway, which phosphorylates FOXOs in

the bulk of leukemic cells. By blocking BCR-ABL, tyrosine

kinase inhibitors (TKI) such as imatinib induce a cell growth

arrest and apoptosis, at least in part by reactivating FOXOs

[72]. This therapy induces long term remission in CML but

does not efficiently eliminate LICs, which drive CML

recurrence. Naka and colleagues showed that, despite BCR-

ABL activation, FOXO3 remains active in the nucleus of

LICs and plays an essential role in leukemia maintenance

[73]. Paradoxically, FOXO3 deletion actually induced LIC

apoptosis. FOXO3 activation in these cells was ascribed to

AKT inhibition by TGFb signaling. Accordingly, FOXO3

depletion or TGFb receptor inhibition increased imatinib

efficacy in a mouse model. A follow-up study identified

BCL-6 as a FOXO target gene that represses p53, enhances

self-renewal of CML LICs and plays an important role in

their survival [74]. Altogether, these reports demonstrate the

existence of a TGFb-FOXO3-BCL6 pathway that promotes

leukemia persistence.

A similar role of FOXOs in leukemia-initiating cells was

described in acute myeloid leukemia. In a murine model of

AML induced by the MLL-AF9 fusion gene, LICs feature

low AKT phosphorylation and active FOXO [75]. In these

cells, depletion of FOXOs or enforced AKT activation

induces leukemic cell maturation and increased cell death.

This was also observed in human AML cell lines. In human

AML primary samples, FOXO nuclear localization was

highly variable. By analyzing the transcriptome of a large

AML cohort, a subgroup of patients with AML could be

clustered using a specific FOXO target gene signature,

indicating that FOXOs may play a role in a significant

proportion of AML cases [75]. In this respect, Santamaria

et al. had previously observed an inverse correlation

between the level of FOXO3 expression and the overall

survival of patients with AML [76].

In conclusion, whereas compound deletion of Foxo1, 3

and 4 in mice induces a myeloproliferative disorder,

FOXOs also play an essential role in the self-renewal of

leukemia-initiating cells (Fig. 4). Following these studies,

a key question is whether FOXOs may play similar roles in

other types of cancer initiating cells. In this respect,

opposite results were reported in glioblastoma, colon can-

cer and breast cancer. Indeed, FOXO3 was shown to induce

the differentiation of glioblastoma stem-like cells upon

treatment with a combination of inhibitors targeting PI3K,

mTOR and MEK [22]. In breast cancer stem-like cells,

FOXO3 activation by inhibitors of PI3K or AKT1 leads to

apoptosis and loss of the stem cell phenotype, defined as

the ability to form mammospheres in vitro and tumors in

mice [77, 78]. FOXO inhibition by AKT in these models

also promotes resistance to chemotherapy [78]. Con-

versely, FOXO3 activation by an AKT inhibitor in colon

cancer stem-like cells induces apoptosis [79].

FOXOs in cell invasion and metastasis

As mentioned above, several studies have demonstrated

that active FOXO3 induces apoptosis in colon cancer cells

[79, 80]. However, concomitant activation of b-catenin and

FOXO3 was shown to prevent cell death and induce

metastasis of xenografts in mice [80]. Similarly, b-catenin
also confers resistance to PI3K and AKT inhibitors, which
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activate FOXOs [81]. In human colon carcinoma, high

nuclear levels of FOXO3 and b-catenin correlate with

metastatic stage and shorter survival. In the presence of b-
catenin, FOXO3 acts as a metastasis inducer rather than a

tumor suppressor. This model could potentially explain

other pro-tumoral activities of FOXO.

FOXOs have also been involved in the promotion of

breast tumor cell invasion. In breast cancer cells, the role of

FOXO3 in cell migration and invasion has been linked to

the estrogen receptor a (ERa) status. Indeed, in ERa?

cells, FOXO3 cooperates with 17b-estradiol to reduce cell

invasiveness, while in ERa- cells, FOXO3 tends to

increase it [82]. During cancer progression, the tumor mass

increases and causes serum deprivation leading to FOXO

import to the nucleus and activation. Surprisingly, in this

context, it was reported that FOXO3 induces the expression

of the matrix metalloproteinases-9 and -13 (MMP-9 and

MMP-13) to promote migration and cellular invasiveness

[83]. Similarly, in human breast cancer cells, FOXO1

induces the transcription of MMP-1 and, by doing so,

enhances the cellular invasive potential. This regulation

could involve the phosphatase CDC25A and CDK2. In this

context, in a murine model, CDC25A promotes metastasis

of breast cancer cells [84].

In conclusion, these studies point to a paradoxical role

of FOXOs in breast, colon and myeloid cancers, in which

FOXOs are capable of inducing cell death, but may also

promote cancer progession.

FOXOs and cancer therapy

FOXO factors are well-established mediators of cancer cell

death induced by chemotherapeutic agents. However,

several studies showed that they can also be involved in

drug resistance. Consequently, FOXO factors may play a

paradoxical role in cancer therapy, as summarized in

Table 2.

FOXOs and drug response

In breast cancer cells treated with 5-fluorouracil, an anti-

cancer agent used in therapy, there is an accumulation of

HuR (human antigen R, also called ELAV-like RNA-

binding protein 1), an RNA-binding protein which binds to

and stabilizes FOXO1 mRNA to promote apoptosis [85].

Paclitaxel, which is also used for the treatment of breast

cancer, was shown to stimulate apoptosis via FOXO3-in-

duced Bim expression [86]. Similarly, as described above,

FOXOs mediate the apoptotic effect of imatinib in BCR-

ABL leukemia cells via Bim induction [87]. Other well-

known anti-cancer drugs (e.g. Trastuzumab, Lapatinib and

Tamoxifen) also activate FOXOs to mediate apoptosis in

cancer cells (for a comprehensive review, see [88]).

ONC201/TIC10 is a dual inhibitor of AKT and ERK that

targets chemotherapy-resistant colorectal cancer stem cells

via induction of TRAIL expression by FOXO3 [79]. These

different studies highlight the importance of FOXO

expression and activation in the apoptotic response to

treatment (Table 2).

Other compounds, such as resveratrol, sulforaphane and

a-tocopheryl succinate, have also demonstrated anti-cancer

activities involving FOXO-mediated apoptosis [89–91].

FOXOs and drug resistance

FOXO1 increases the expression of the multidrug resis-

tance protein 1 (MDR1, also called ABCB1) in

adriamycin-resistant breast cancer cells [92]. Another study

performed in K562 leukemia cells resistant to doxorubicin

Fig. 4 FOXOs in leukemia. FOXOs are inactivated by AKT and IKK

in CML and AML, respectively (left). Tyrosine kinase inhibitors, such

as imatinib and nilotinib, reactivate FOXOs in CML to promote

apoptosis and cell cycle arrest. In some acute leukemia cases, FOXO3

and FOXO4 are found in fusion protein with MLL (middle panel).

FOXOs also play a pro-tumoral role by promoting the self-renewal of

LICs (right)
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confirmed the regulation of MDR1 expression by FOXO3

in response to doxorubicin [93].

A second mechanism of resistance involves the activa-

tion of feedback loops by FOXOs, promoting resistance. In

K562 cells that are resistant to doxorubicin, FOXO3

enhances p110a expression, increasing PI3K activity and

promoting resistance to the drug [94]. In HER2 positive

tumor cell lines in which the PI3K-AKT pathway is hyper-

activated, treatment with an AKT inhibitor increases

FOXO activity, as expected. But FOXOs, and in particular

FOXO3, then induce the expression of several tyrosine

kinase receptors (HER3, IGF-1R and Insulin receptor). In

line with these observations, in a xenograft model, inhibi-

tors of AKT and tyrosine kinase receptors act

synergistically to reduce tumor growth [95]. Again, in renal

cell carcinoma, the inhibition of the PI3K-AKT pathway

increases FOXO activity, which induces the expression of

Rictor, a member of the mTORC2 complex, leading to

AKT phosphorylation and activation, and subsequently to

drug resistance. In a xenograft model, FOXO1 and 3

knockdown potentiates the effect of PI3K and AKT inhi-

bitors for renal tumor suppression [96]. In line with these

reports, we already mentioned that FOXO3 fails to induce

apoptosis of colon cancer cells if b-catenin is over-acti-

vated, which confers resistance to PI3K and AKT

inhibitors [80]. This could be overcome by WNT pathway

inhibitors [81].

In addition, some anti-cancer drugs exert their cytotoxic

effects by promoting oxidative stress in cancer cells [97].

Since FOXOs can induce the expression of antioxidant

enzymes, this can counterbalance the effects of anti-cancer

agents by protecting cancer cells from their cytotoxic

effects. For instance, paclitaxel increases the level of H2O2

in sensitive-ovarian cancer cells and, by doing so, induces

apoptosis. However, paclitaxel-resistant ovarian cancer

cells strongly express FOXO1, which protects them from

oxidative stress-induced apoptosis by regulating the

expression of SOD2 [98] (Table 2).

Most results were obtained using cell lines or murine

models. They give interesting indications regarding the role

of FOXOs in drug response and drug resistance and rein-

force the notion that FOXO functions in cancer are

ambiguous. However, future studies need to be performed

with primary tumor cells to validate these mechanisms.

Conclusion

Although the tumor suppressor role of FOXO factors is

supported by ample experimental evidence, this has not yet

been confirmed by cancer genetics. So far only rare alter-

ations involving FOXO genes have been identified in

tumors compared to classical tumor suppressors, and most

of these alterations confer a gain rather than a loss of

function. On the one hand, FOXO anti-tumoral function is

supported by the well-established anti-proliferative activity

of these factors, which are inhibited by major oncogenic

pathways in numerous tumor models. On the other hand,

FOXO factors have been involved in resistance to anti-

cancer drugs, maintenance of leukemia-initiating cells and

colon cancer metastasis. The balance between anti- and

pro-tumoral activities of FOXOs may rely on interactions

with other pathways, such as WNT/b-catenin or TGFb.
These paradoxical effects of FOXO have been unraveled

Table 2 Regulation of drug response by FOXOs

Cancer Drug Drug response or resistance FOXO effect References

Breast Adriamycin Resistance MDR1 expression [92]

Breast 5-Fluorouracil Response FOXO1 stabilization apoptosis [85]

Breast Paclitaxel Response Bim expression apoptosis [78, 86]

Breast, HER2? Lapatinib Resistance Epigenetic up-regulation of MYC [100]

HER2? cells AKT inhibitor Resistance RTK expression [95]

CML BCR-ABL? Imatinib Response Bim expression apoptosis [87]

CML blast crisis Nilotinib Response Erythroid differentiation [101]

K562 cells Doxorubicin Resistance MDR1 expression [93]

K562 cells Doxorubicin Resistance p110a expression [94]

Ovary Paclitaxel Resistance MnSOD expression [98]

Renal cell carcinoma PI3K and AKT inhibitors Resistance Rictor expression [96]

Colorectal cancer stem-like cells ONC201/TIC10 Response TRAIL expression [79]

Colon cancer PI3K and AKT inhibitors Resistance In the presence of high nuclear b-catenin [80, 81]

Diffuse large B-cell lymphomas SYK and AKT inhibitors Response Apoptosis and metabolic effects [102]

Many anti-cancer drugs induce FOXO activation to promote cell cycle arrest and apoptosis. In some cases, in response to anti-cancer agents or

inhibitors, FOXO induces the expression of genes that favor cell survival and proliferation and thereby plays a role in drug resistance
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using advanced cancer mouse models, which can recapit-

ulate most aspects of cancer initiation and progression.

Correlating mouse results with human cancer samples is

also essential to clarify the roles of FOXOs. Understanding

the functions of FOXO in cancer is of critical importance

to improve the treatments that are currently being devel-

oped to block the PI3K pathway. Altogether, these data

highlight the complexity of FOXO functions in cancer and

suggest that FOXOs may be elusive direct targets for

cancer therapy.
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