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Gated entry into the ciliary compartment
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Abstract Cilia and flagella play important roles in cell

motility and cell signaling. These functions require that the

cilium establishes and maintains a unique lipid and protein

composition. Recent work indicates that a specialized

region at the base of the cilium, the transition zone, serves

as both a barrier to entry and a gate for passage of select

components. For at least some cytosolic proteins, the bar-

rier and gate functions are provided by a ciliary pore

complex (CPC) that shares molecular and mechanistic

properties with nuclear gating. Specifically, nucleoporins

of the CPC limit the diffusional entry of cytosolic proteins

in a size-dependent manner and enable the active transport

of large molecules and complexes via targeting signals,

importins, and the small G protein Ran. For membrane

proteins, the septin protein SEPT2 is part of the barrier to

entry whereas the gating function is carried out and/or

regulated by proteins associated with ciliary diseases (cil-

iopathies) such as nephronophthisis, Meckel–Gruber

syndrome and Joubert syndrome. Here, we discuss the

evidence behind these models of ciliary gating as well as

the similarities to and differences from nuclear gating.
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Introduction

Eukaryotic cilia and flagella have many important func-

tions. While motile cilia on epithelial cells generate

external fluid flow and sperm flagella drive cell motility,

non-motile cilia termed primary cilia are found on the

surface of almost all mammalian cells and function as

cellular antennae (reviewed in [1, 2]). The basic structure

of eukaryotic cilia and flagella (hereafter both called cilia)

is conserved across species and cell types. The micro-

tubule-based skeletal structure, the axoneme, is comprised

of an outer ring of 9 doublet microtubules (Fig. 1). Motile

cilia usually also contain a central pair of singlet micro-

tubules (the ‘‘9 ? 2’’ pattern), while most non-motile cilia

lack this central pair (the ‘‘9 ? 0’’ pattern). Beyond its

structural role, the axoneme serves as the track for an

intraflagellar transport (IFT) system driven by kinesin

(anterograde) and dynein (retrograde) motors (reviewed in

[3, 4]). The 9 doublet microtubules arise from the 9 triplet

microtubules of the mother centriole which is attached to

the periciliary membrane via the largely uncharacterized

transition fibers (reviewed in [5]).

The ciliary membrane is contiguous with the plasma

membrane but has a unique protein and lipid composition;

likewise, the composition of soluble proteins in the cilium

is also unique (reviewed in [6–8]). Thus, gating mecha-

nisms must exist to ensure that the proper proteins enter the

ciliary compartment. Furthermore, the gating must be

regulated as some ciliary proteins change their localization

in response to extracellular cues; for example, in hedgehog

signaling, entry and exit of the transmembrane proteins

Patched, Smoothened and GPR161 is controlled by the

hedgehog ligand (reviewed in [9]). Mislocalization of cil-

iary components, including both structural and signaling

components, results in defects in ciliary motility and/or
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signaling pathways and consequentially is associated with

a myriad of cilium-related diseases called ciliopathies

(reviewed in [10, 11]).

Although IFT is known to be responsible for transport of

proteins within the ciliary compartment, it is largely

unknown how ciliary proteins are selected for and gain

entrance to the organelle. Ciliary entry takes place at a

region at the base of the cilium termed the transition zone

which can be defined structurally by the presence of elec-

tron-dense Y-shaped structures that span the space between

the doublet microtubules and the ciliary membrane (Fig. 1,

reviewed in [12–14]). The transition zone can also be

defined molecularly, as many proteins whose mutations are

associated with ciliopathies localize to this region of the

cilium. A large body of work supports the idea that cil-

iopathy-associated gene products at the transition zone

regulate the gated entry of ciliary proteins (reviewed in

[15–17]). Gated entry of ciliary proteins has also been

suggested to utilize, at least in part, the same molecules and

mechanisms as gated entry into the nuclear compartment

(reviewed in [18]). Specifically, it has been hypothesized

that nucleoporins (NUPs), the building blocks of the

nuclear pore complex (NPC), form a ciliary pore complex

(CPC) at the transition zone that is responsible for the gated

entry of cytosolic proteins. Here, we discuss recent work in

uncovering the mechanisms of ciliary gating as well as the

similarities to and differences from nuclear gating.

Diffusional entry of cytosolic proteins

Unlike organelles such as mitochondria or the endoplasmic

reticulum, the ciliary compartment is not isolated from the

cytoplasm by a membrane barrier and yet the diffusional

entry of soluble molecules is restricted at the base of the

cilium (Fig. 2). In cultured mammalian cells, a size-de-

pendent permeability barrier at the base of the primary

cilium was shown to regulate the entry of soluble mole-

cules [19–21]. Two studies found that restricted entry

occurs for proteins in the 40–70 kDa range [19, 20],

whereas a third study found that even larger proteins could

enter, albeit with reduced kinetics [21]. Differences

between these studies in the size cutoff of the barrier are

likely due to different experimental methods as well as the

fact that diffusional entry is likely governed by factors in

addition to protein size, such as protein shape and surface

charge distribution. Mathematical modeling of the kinetics

of diffusional entry suggests that the ciliary barrier func-

tions as a molecular sieve [21]. This is reminiscent of

restricted entry into the nuclear compartment where NPCs

act as sieve-like barriers, freely permeable to small mole-

cules less than *50 kDa and able to selectively import or

export larger molecules in an energy-dependent manner

(Fig. 2 and reviewed in [22]).

Fig. 1 General structure of the primary cilium. The mother centriole

contains nine triplet microtubules (MT) and is anchored to the

periciliary membrane by transition fibers. Nine doublet microtubules

protrude from the triplet microtubules and form the axoneme. The

proximal end of the cilium is termed the transition zone and is the site

for gated entry into the ciliary compartment. Here, Y-shaped

structures (the Y-links) connect the doublet microtubules to the

ciliary membrane. At the distal end of the cilium in some cells and

species, the doublet microtubules convert to singlet microtubules

Fig. 2 Gated entry of cytosolic molecules into the ciliary and nuclear

compartments. Entry of cytosolic molecules is characterized by a

size-exclusion barrier (left) and active transport across the barrier

(right). The size-exclusion barrier limits the diffusional entry of

soluble molecules larger than *50 kDa. Large molecules gain entry

via the active transport process in which importins bind to nuclear or

ciliary proteins and mediate their transport across the barriers. The

directionality of transport is specified by a RanGTP–RanGDP

gradient across the ciliary-cytoplasmic and nuclear-cytoplasmic

barriers
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Diffusional entry into the ciliary compartment has also

been investigated in photoreceptor cells. Again, a size-de-

pendent distribution of proteins was found, with GFP

multimers present in the outer segment (distal cilium) at

lower abundance than single GFP molecules [23, 24]. GFP

multimers are able to freely cross the diffusion barrier in

mammalian cells [18] and their differential distribution in

the outer segment can be explained by steric volume

exclusion in which the membranous discs in the outer

segment impose spatial restrictions on larger soluble

molecules [24]. It may thus be that different types of cilia

use different physical mechanisms to restrict localization of

soluble proteins in the compartment.

Gated entry of cytosolic proteins

Ciliary formation and function require the import of a

number of large multimeric cytosolic protein complexes

including IFT particles and radial spoke proteins (RSPs)

[25, 26]. Thus, mechanisms must exist to facilitate the

transport of large soluble proteins across the permeability

barrier in a selective manner. Recent work has uncovered a

pathway that functions in the gated entry of at least several

ciliary proteins [27, 28]. This pathway is again reminiscent

of nuclear gating in which active transport of large proteins

across the NPC utilizes nuclear localization sequences

(NLS) that are recognized by transport receptors (im-

portins, also called karyopherins) and shuttled across the

NPC where the small G protein Ran in its GTP-bound form

(RanGTP) promotes release of the transported proteins

inside the nuclear compartment (Fig. 2). Thus, active

maintenance of a Ran gradient across the nuclear envelope

(RanGTP in the nucleoplasm and RanGDP in the cyto-

plasm) drives the directionality of transport (reviewed in

[29, 30]).

For ciliary gating, a ciliary localization sequence (CLS)

that is homologous to an NLS was identified for an IFT

component, the kinesin-2 motor KIF17 [27], and a

peripheral membrane protein, retinitis pigmentosa 2 (RP2)

[28]. Both of these CLS motifs are recognized by importin-

b2 (transportin-1) for transport across the ciliary barrier.

Furthermore, the directionality of transport is driven by a

RanGTP/GDP gradient as the ciliary compartment is

enriched with RanGTP [27, 31] (Fig. 2). Disrupting the

ciliary-cytoplasmic RanGTP/GDP gradient by increasing

the cytosolic levels of RanGTP blocks ciliary import of

KIF17 [27, 31]. These lines of evidence support the idea

that active transport systems across the NPC and CPC

utilize similar mechanisms.

It is not clear whether other cytosolic proteins contain a

CLS-like sequence that confers ciliary localization and/or

whether they gain entry by ‘‘piggy-backing’’ on KIF17 and

associated IFT particles. It is important to note that not all

sequences that look like a potential NLS (several lysine

and/or arginine residues) function as NLS or CLS motifs.

Indeed, KIF17 contains two highly similar basic patches

but only one functions as a CLS [27]. In addition to further

defining CLS and ciliary entry mechanisms, it will be

interesting to determine whether ciliary export of cytosolic

molecules functions in a manner similar to nuclear export.

Two recent pieces of data suggest this may be the case.

First, deletion of several predicted nuclear export sequen-

ces (NES) or treatment of cells with the exportin-1 (CRM1)

inhibitor leptomycin B resulted in increased ciliary local-

ization of the Hedgehog transcription factor Gli2 [32].

Second, phosphorylation of an NES in the N-terminus of

huntington was shown to regulate ciliary-cytoplasmic and

nuclear-cytoplasmic localization [33].

Thus, both nuclei and cilia utilize a barrier that restricts

the diffusional entry of small cytosolic molecules and a

gate that facilitates the entry of select larger molecules. It is

still unclear how CLS and NLS signals are distinguished to

target proteins to different organelles. One possibility is

that cilium-specific targeting factors function in concert

with the CLS. For example, truncated forms of KIF17 that

contain the CLS but lack the kinesin motor domain localize

to the nucleus [27]. Alternatively, similar yet distinct NLS

and CLS signals may be present in the same molecule and

regulate nuclear and ciliary localization, respectively, as

shown for the Gli2 transcription factor [32].

Nucleoporins as components of the ciliary pore
complex (CPC)

That the nuclear and ciliary barriers to cytosolic protein

entry display similar physical properties (size-exclusion

barrier and selective gate) suggests that there could be

molecular similarities between the barriers. Indeed, a

number of nucleoporins (NUPs), the proteins that form the

barrier in the NPC, have been localized to the base of the

cilium either by overexpression of fluorescently tagged

proteins or immunostaining of endogenous proteins in

mammalian cells [20]. That NUPs localize outside of the

NPC and have functions beyond nuclear-cytoplasmic

transport is not surprising as NUPs have been suggested to

regulate gene expression and cell differentiation during

interphase as well as centrosome integrity and spindle

formation during mitosis (discussed further in [34–37]).

However, another study failed to identify NUPs at the base

of primary cilia [19], perhaps due to experimental differ-

ences. And although NUPs, importins, exportins and Ran

are found in some ciliary proteomes, NUPs were not

identified in the proteome of transition zone structures

isolated from Chlamydomonas [38]. While negative results
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do not exclude the possibility that NUPs are present at the

base of the cilium, these findings may reflect variations in

the composition of the CPC or suggest the presence of

NUP-independent gating mechanisms at the transition

zone.

The molecular similarities between NPC and CPC bar-

riers include NUPs that contain up to 50 tandem sequences

rich in phenylalanine and glycine residues (FG-repeats).

FG-NUPs form a hydrogel-based barrier for nuclear-cyto-

plasmic transport and likely perform the same function in

ciliary-cytoplasmic transport. A notable difference between

the NPC and CPC barriers is the absence of transmembrane

and nuclear basket NUPs at the base of the cilium in cul-

tured cells [20]. It may thus be that the scaffold NUPs

utilize unique interactions for anchoring at the base of the

cilium (discussed further below). As the NUP composition

of NPCs varies across species and even between tissues and

during development in an animal, presumably endowing

different NPCs with distinct functions (reviewed in [30, 39,

40]), it will not be surprising to find a unique NUP com-

position for the CPC.

A functional role for NUPs in regulating entry into the

ciliary compartment was first suggested by the fact that

global inhibition of NUP function blocked the import of

new KIF17 kinesin-2 motors into the ciliary compartment

[20]. To specifically test the role of a central FG-NUP in

ciliary gating, an inducible homodimerization system was

used to rapidly and specifically lock NUP62 in an unpro-

ductive conformation [41]. As expected, forced

dimerization of NUP62 decreased the selective entry of an

NLS-containing protein into nuclei and the kinesin-2 motor

KIF17 into primary cilia. Further work showed that forced

dimerization of NUP62 also decreased the ciliary entry of a

variety of cytosolic proteins of varying sizes and functions,

specifically the hedgehog transcription factor Gli2, the

centrosomal component Tsga14 (CEP41), a potential

transcription factor Gtl3, and the IFT-B component IFT88

[41]. Although this is reminiscent of the known role of

central FG-NUPs in regulating the transport of select

nuclear proteins across the NPC barrier [42–44], further

work is needed to determine the mechanism of NUP-de-

pendent ciliary import as homodimerization may cause a

steric rather than mechanistic block to protein import.

Further work is also needed to determine whether and

how the entry of axonemal proteins is gated. Blocking

NUP62 function did not cause ciliary disassembly [41],

suggesting that tubulins and other axonemal components

may utilize a non-CPC mechanism to gain entry. However,

homodimerization of NUP62 did not completely block the

CPC [41] so the block to axonemal protein entry may not

have been sufficient to cause axoneme instability. In

addition, it is possible that tubulins can enter freely by

diffusion as the Stokes radius of a tubulin heterodimer

(4.3 nm [45]) is within the range of proteins that can access

the ciliary compartment [19, 21]. How the entry of larger

axonemal proteins (e.g., radial spoke proteins, dynein

arms) is gated has not been explored.

Taken together, the evidence to date suggests that active

transport of at least some cytosolic proteins into both the

ciliary and nuclear compartments utilizes NLS/CLS motifs,

importins, a RanGTP/GDP gradient, and FG-NUPs of a

pore complex (Figs. 2, 3). Defects in CPC structure and

function may cause ciliopathies as copy number variations

in the scaffold nucleoporin NUP188 have been linked to

heterotaxy [46].

Gated entry of membrane proteins

What mechanisms regulate the membrane protein compo-

sition of the ciliary compartment? Here, we find an

important difference with how proteins access the nuclear

and ciliary compartments. For inner nuclear membrane

(INM) proteins, their entry involves lateral diffusion along

the NPC membrane and selective retention by nucleo-

plasmic proteins (the diffusion–retention model, reviewed

in [47–49]). Admission of INM proteins does not require

central pore NUPs but is dependent on scaffold and

transmembrane NUPs [50, 51] that presumably form a

peripheral channel within the NPC [52, 53] (Fig. 3). Pas-

sage of INM proteins through this channel is sensitive to

the size of their cytoplasmic domains [50, 54–58].

For the ciliary compartment, diffusion–retention appears

unlikely to be the primary mechanism that regulates

membrane protein composition for two reasons. First,

imaging analysis in live cells shows that membrane pro-

teins are highly mobile within the ciliary membrane [59–

62]. Second, a septin-containing barrier restricts the dif-

fusional passage of proteins between the plasma and ciliary

membranes [59, 60]. Septins are known to form a diffusion

barrier in budding yeast [63, 64] and presumably form a

diffusion barrier around the proximal region of the flagellar

membrane in mammalian sperm [65, 66]. Septin 2 (SEPT2)

localizes to periciliary membrane in mammalian cells and a

partial loss of SEPT2 function enabled the movement of

membrane proteins between the plasma and ciliary mem-

branes [59, 60, 67]. However, the role of septins at the

ciliary base remains unclear [67] and it is possible that the

effects of SEPT2 knockdown on protein mobility are due to

indirect effects on the formation of barrier structures at the

ciliary base.

The membrane protein composition of the ciliary com-

partment appears instead to be regulated by a gating

mechanism at the transition zone. Gated entry of mem-

brane proteins does not require components of the central

122 D. Takao, K. J. Verhey

123



channel of the CPC as forced dimerization of NUP62 did

not affect the selective transport of membrane proteins into

or out of the ciliary compartment, including the peripheral

membrane protein retinitis pigmentosa 2 (RP2) and the

transmembrane proteins Smoothened, Patched and

GPR161 [41]. Rather, gated entry of membrane proteins

requires a complex of ciliopathy-associated proteins that

localize to the transition zone. Based on genetic and bio-

chemical analysis, the transition zone proteins have been

classified into two functional modules, the nephronoph-

thisis (NPHP) and Meckel–Gruber syndrome/Joubert

syndrome (MKS/JBTS) modules (reviewed in [12–14]).

Components of the NPHP module contain lipid-binding

and structural (e.g., coiled-coil) domains and have been

implicated in regulating entry of both membrane and

cytosolic proteins [68–71]. The MKS/JBTS module

includes lipid-binding and transmembrane proteins and

disruption of this module results in defects in ciliary

membrane protein composition [59, 69–74], suggesting

that this module functions to regulate the entry and exit of

membrane proteins. Thus, the MKS/JBTS module may

form a peripheral channel in the ciliary pore that regulates

the entry of membrane proteins and is distinct from the

NUP-containing central channel (Fig. 3).

Several other molecules and mechanisms have been

suggested to regulate the membrane protein composition of

cilia. First, gated entry of membrane proteins likely

requires ciliary targeting sequences. Indeed, such signals

have been identified in the cytoplasmic domains of several

ciliary membrane proteins (reviewed in [7, 16, 75])

although it remains possible that these targeting sequences

are primarily required for dynein-dependent transport of

Golgi-derived vesicles to the ciliary base [69, 76, 77].

Second, retention in the plasma membrane can prevent the

lateral diffusion of membrane proteins to the ciliary

membrane [78]. Third, entry across the barrier is also

regulated by SUMOylation [79, 80], phosphoinositide

composition [81, 82], the Bardet–Biedl syndrome complex

(BBSome), Tubby-like proteins (TULPs), and small

GTPases of the Rab and Arf families (reviewed in [4, 16]).

Indeed, defining the functions of septins, NPHP proteins,

MKS/JBTS proteins, the BBSome, TULPS, and small

GTPases in regulating the trafficking of proteins into the

ciliary compartment remains an outstanding issue for the

field.

Taken together, it appears that the passage of cytosolic

and membrane proteins is gated in different ways for both

the ciliary and nuclear compartments. Both organelles

appear to utilize a NUP-containing pore as a barrier and

gate for cytosolic protein entry (Fig. 3). Whereas nuclei

utilize a diffusion–retention mechanism to regulate mem-

brane protein composition, cilia appear to use septins as a

barrier and transition zone proteins as a gate to regulate

membrane protein passage (Fig. 3).

Fig. 3 Models for nuclear and ciliary gating. Both nuclear and ciliary

pores contain a central channel for the gated entry of cytosolic

proteins with central pore NUPs (e.g., the FG-NUP NUP62) providing

this sieve-like barrier. Gated entry of membrane proteins utilizes

peripheral channels of the NPC for nuclear gating, while transition

zone (TZ) proteins may form a peripheral channel for gated entry of

ciliary membrane proteins. Both nuclear and ciliary pores contain

scaffold NUPs (e.g., NUP93, NUP35). For the NPC, the scaffold is

anchored by transmembrane (TM) NUPs whereas in the CPC, the

scaffold may be anchored by transition zone proteins. TM transmem-

brane NUP, TZ transition zone protein, MT microtubule
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Structure of the ciliary gates

One of the most pressing questions in the field is the overall

structural organization of the ciliary gate. The identifica-

tion of NUP, septin, NPHP, and MKS/JBTS modules has

provided important information on the molecules at the

gate but the localization and organization of these mole-

cules remain largely unclear. As scaffold and central pore

NUPs are common between the NPC and CPC, it is

tempting to think of these NUPs forming an NPC-like

structure at the base of the cilium. However, the organi-

zation of these NUPs may differ between these locales.

Variation in composition has already been noted across

NPCs: central NUPs are shared across NPCs of human cell

types, whereas there is significant variation in composition

for peripheral NUPs [83]. Furthermore, the transmembrane

NUPs are not strongly conserved across species [84–86].

There thus appear to be different ways in which scaffold

NUPs can interact with their surrounding environment.

In the NPC, the scaffold NUPs are anchored in the

nuclear envelope via protein–protein interactions with

transmembrane NUPs (e.g., [87–89] and references

therein). For the CPC, the NUPs may be anchored at the

base of the cilium via interactions with transition zone

proteins (Figs. 3, 4). One attractive possibility is that the

NPHP module proteins localize to the Y-links and anchor

the NUPs of the central channel. Several lines of evidence

support this possibility. First, the CEP290 gene product in

Chlamydomonas (homolog of NPHP6) localizes to the

Y-links by immunoelectron microscopy and loss of

CEP290 function results in defects in microtubule–mem-

brane connections at the transition zone [70]. Second, pull-

down of the transition zone proteins NPHP4 and NPHP5

identified several scaffold NUPs present in the protein

complexes by mass spectrometry [90]. Third, recent cryo-

electron tomography of the terminal plate region at the

base of Tetrahymena cilia revealed the presence of 9 pores

at the base of the cilium, with each pore located peripheral

to a doublet microtubule and between the stems of the

Y-links (Fig. 4a, [91]). These pores have a diameter com-

parable to that of the NPC (*50 nm [92]) and were

suggested to be the conduits for passage of cytosolic IFT

particles (*38 nm [91]). Thus, the Tetrahymena pores

could be the CPCs, although no direct evidence has been

reported. Furthermore, pores have not been observed at the

ciliary base in other species.

Conclusions and future directions

Gating mechanisms that determine the protein complement

of the cilium are fundamental for ciliary and thus cellular

function. Evidence to date suggests a model whereby a

NUP-containing central channel (the CPC) functions, like

the NPC, as a sieve-like barrier and gate for the passage of

cytosolic molecules and an NPHP- and MKS/JBTS-con-

taining peripheral channel functions to regulate the passage

of membrane proteins to and from the adjacent plasma

membrane (Fig. 4). Further studies are required to verify

that these are distinct gates/pathways and to delineate the

mechanisms of each pathway. For example, do cytosolic

proteins other than KIF17 contain a CLS or do they piggy-

back on kinesins and IFT particles for entry through the

NUP-containing CPC? Is the entry of core axonemal

components, such as tubulin, axonemal dynein and radial

spoke proteins, gated and if so, how? How is the entry and

exit of membrane proteins regulated, particularly in

response to ligand such as Hedgehog?

Although many proteins that localize to the base of the

primary cilium have been identified, their specific roles in

Fig. 4 Possible structural relationship between the ciliary pore and

the transition zone. a Electron cryotomography reveals nine pores

(outer channels) in isolated basal bodies from Tetrahymena. Each

outer channel is located adjacent to a doublet microtubule (MT) and

may be a pore for the entry of ciliary components. Reprinted from

Ounjai et al. [91], with permission from Elsevier. b Schematic

drawings of the putative arrangement of the CPC and Y-link

structures. The CPCs are comprised of scaffold and central NUPs

and form a barrier for entry of cytosolic proteins, whereas the Y-links

are comprised of NPHP, MKS, and JBTS proteins and form a barrier

for entry of membrane proteins. NPHP nephronophthisis, MKS

Meckel–Gruber syndrome, JBTS Joubert syndrome, MT microtubule
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the structure and/or function of the ciliary gate are largely

unknown. For example, do FG-containing NUPs of the

CPC function as they do in the NPC? Although forced

dimerization of NUP62 blocked active transport of

cytosolic proteins into the ciliary compartment [41], the

mechanism of inhibition is unclear. The structural organi-

zation of the ciliary gate is a particularly pressing problem.

Where exactly are the gates located and is there actually a

NUP-containing pore like that of the NPC? What are the

protein components of the Y-links and are these structural

hubs for organizing both the membrane gate at the transi-

tion zone and the cytosolic gate at the CPC? When during

ciliary assembly are the NUP, NPHP, MKS/JBTS compo-

nents assembled and when is gating function established?

High-resolution imaging methods including electron

microscopy and super-resolution microscopy will likely be

critical for answering these questions.
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