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Abstract Tissue regeneration during wound healing or

cancer growth and progression depends on the establish-

ment of a cellular microenvironment. Mesenchymal stem

cells (MSC) are part of this cellular microenvironment,

where they functionally modulate cell homing, angiogen-

esis, and immune modulation. MSC recruitment involves

detachment of these cells from their niche, and finally MSC

migration into their preferred niches; the wounded area, the

tumor bed, and the BM, just to name a few. During this

recruitment phase, focal proteolysis disrupts the extracel-

lular matrix (ECM) architecture, breaks cell–matrix

interactions with receptors, and integrins, and causes the

release of bioactive fragments from ECM molecules. MSC

produce a broad array of proteases, promoting remodeling

of the surrounding ECM through proteolytic mechanisms.

The fibrinolytic system, with its main player plasmin, plays

a crucial role in cell migration, growth factor bioavail-

ability, and the regulation of other protease systems during

inflammation, tissue regeneration, and cancer. Key com-

ponents of the fibrinolytic cascade, including the urokinase

plasminogen activator receptor (uPAR) and plasminogen

activator inhibitor-1 (PAI-1), are expressed in MSC. This

review will introduce general functional properties of the

fibrinolytic system, which go beyond its known function of

fibrin clot dissolution (fibrinolysis). We will focus on the

role of the fibrinolytic system for MSC biology, summa-

rizing our current understanding of the role of the

fibrinolytic system for MSC recruitment and the functional

consequences for tissue regeneration and cancer. Aspects

of MSC origin, maintenance, and the mechanisms by

which these cells contribute to altered protease activity in

the microenvironment under normal and pathological

conditions will also be discussed.
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Abbreviations

MSC Mesenchymal stem cells

ECM Extracellular matrix

BM Bone marrow

IL Interleukin

VEGF-A Vascular endothelial growth factor-A (VEGF-

A)

MMP Matrix metalloproteinase

uPAR Urokinase-type plasminogen activator receptor

PAI-1 Plasminogen activator inhibitor-1

uPA Urokinase-type plasminogen activator

CD Cluster of differentiation

FGF-2 Fibroblast growth factor-2
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TGF-b Transforming growth factor-b
tPA Tissue-type plasminogen activator

HSC Hematopoietic stem cell

MCP-1 Monocyte chemoattractant protein-1

suPAR Soluble uPAR

PA Plasminogen activator

HIF-1a Hypoxia inducible factor a
HGF Hepatocyte growth factor

CRC Colorectal cancer

HER 2 Human epidermal growth factor receptor 2

Introduction

During development, wound healing, normal organ home-

ostasis, or cancer progression, dynamic remodeling of the

extracellular matrix (ECM) is necessary for cell migra-

tion. ECM remodeling is primarily accomplished by

controlling the expression or activities of ECM enzymes like

matrix metalloproteinases (MMPs), and the serine protease

plasmin [1]. Although the plasminogen system is best known

for its fibrinolytic activity, namely clot dissolution after

thrombosis, recent evidence suggests that plasmin plays a

crucial role in modulating cell migration and proliferation.

Mesenchymal stem cells (MSC) have been identified as

candidates for cell-based therapies in regenerative medi-

cine and as vehicles for delivering therapeutic agents to

areas of injury and tumors. However, the signals required

for homing and recruitment of stem cells to these sites are

not well understood. The two major fibrinolytic factors

urokinase plasminogen activator (uPA; also known as

urokinase) and uPA receptor (uPAR) are up-regulated in

the tumor niche of various tissue origins, where they are

associated with invasive and chemo-resistant cancer phe-

notypes. The activation of uPA and uPAR in brain, lung,

prostate, and breast cancers augments MSC tropism. This

chemo-attraction of MSC to cancer cells correlates with

uPAR expression levels in tumor cells, which may be

important for the development of optimal stem cell-based

anti-cancer therapies [2]. Therefore, MSC have been sug-

gested as the perfect candidate for cellular drug delivery

and novel cancer treatment strategies. Similarly, activation

of the fibrinolytic system was observed during stress-in-

duced hematopoiesis caused by chemotherapy or

irradiation [3, 4] or by administration of growth factors [5,

6] or during inflammation.

The niche encompasses all of the elements immediately

surrounding normal or malignant stem cells when they are

in their naı̈ve state, including the non-stem cells that might

be in direct contact with them, as well as the ECM and

soluble molecules. All of these factors act together to

maintain stem cells in their undifferentiated state. MSC are

one of the cellular components of the hematopoietic niche

within the bone marrow (BM), but can also be found in

other niches like the cancer niche, the site of a growing

tumor. BM-derived MSC can also be found in peripheral

locations where they interact with perivascular cells and

can respond appropriately following tissue injury or during

cancer progression. The hematopoietic niche, harboring

hematopoietic stem cells (HSC), is one of the most studied

niches. A complex interplay of cytokines, chemokines,

proteases, and adhesion molecules ensures cell anchorage

and the potential of cells, like stem cells, to respond to

external stimuli allowing for a well-balanced cellular

response within the microenvironment/niche.

MSC display robust reparative properties through their

ability to limit apoptosis, enhance angiogenesis, and direct

positive tissue remodeling. In this review, we will discuss

various aspects of the fibrinolytic system for cell migration

of both myeloid cells and MSC and the implications for

normal cell homeostasis and diseased tissues.

MSC origin and functional properties

MSC are adult stem cells and were first described in human

tissues by Friedenstein nearly 50 years ago [7–9]. Stromal

cells fulfilling MSC characteristics can be isolated from

almost every type of connective tissue [10]. Human MSC

have been isolated from BM [11], adipose tissues [12],

cord blood [13], amniotic fluid [14], and umbilical cord

tissues [15]. BM-MSC are thought to be derived from the

BM stromal compartment [16]. MSC have mainly been

characterized after isolation from the BM, where they

make up about 0.001–0.01 % of the BM cells. To date, the

colony-forming unit—fibroblast assay has been considered

as one of the gold standards for determining the incidence

of clonogenic BM-MSC and quantifying functional MSC

in vitro (Fig. 1).

The International Society for Cellular Therapy defines the

minimal criteria for all human MSC populations as follows.

Human MSC (a) remain plastic adherent under standard

culture conditions; (b) express CD105, CD73, andCD90, and

lack expression of CD45, CD34, CD14 or CD11b, CD79a or

CD19, and HLA-DR; and (c) differentiate into osteoblasts,

adipocytes, and chondrocytes in vitro [17, 18] (Fig. 1).

Mouse MSC lack the expression of the hematopoietic

leukocyte marker CD45 and the erythroid lineage marker

Ter119, but showpositivity for platelet-derived growth factor

receptor a and stem cell antigen 1 [19].

BM-MSC secrete the following cytokines at sufficient

high levels (Fig. 1): interleukin (IL)-6, interleukin-8, tissue

inhibitor of metalloproteinase 2, monocyte chemoattractant

protein-1 (MCP-1), vascular endothelial growth factor-A

(VEGF-A) and osteoprotegerin [20]. Other studies have

demonstrated that MSC secrete the following cytokines:
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macrophage-, granulocyte–macrophage-, granulocyte-col-

ony-stimulating factor, IL-11, IL-7, thrombopoietin, kit

ligand (also known as stem cell actor), FMS-like tyrosine

kinase 3 ligand, hepatocyte growth factor (HGF), stromal-

derived factor-1 (also known as C-X-C motif chemokine

12), transforming growth factor-b (TGF-b, insulin-like

growth factor-1, certain platelet-derived growth factors,

and fibroblast growth factor-2 (also known as FGF-2) [20].

MSC are currently widely used in clinical trials for cell

therapy and regenerative medicine applications, with

around 300 registered clinical trails of MSC-based therapy

on ClinicalTrails.gov. Whether MSC are used in basic

research or in translational studies, MSC should be

expanded to meet the required cell amounts for clinical use.

The in vitro expansion of MSC can be achieved using the

following growth factors: platelet-derived growth factor-A,

platelet-derived growth factor-BB, FGF-2, epidermal

growth factor, TGF-b3, VEGF-A, and bone morphogenic

protein-3. MSC possess self-renewal ability and show

multilineage differentiation into not only mesoderm lin-

eages, such as chondrocytes, osteocytes and adipocytes, but

also ectodermic cells and endodermic cells [21].

The route of administration is an important factor

determining the fate of MSC for treatment. The favorite

route of administration in human is intravenous, as it

allows the administration of large amounts of MSC. MSC

are short-lived and do not migrate beyond the lungs after

intravenous infusion [22–25], most likely due to their size

(between 15 and 19 lm in diameter) [26]. Administration

of MSC via alternative routes leads to detainment of MSC

in other filtering organs. For instance, MSC administered

via the portal vein are found in the liver [27], while MSC

administered in tissues like muscle, spine, and fat pads

remain present locally up to several weeks [28].

The fibrinolytic system: from ECM protein

degradation to MMP activation

Activators and their receptors of the fibrinolytic system

The fibrinolytic system has been implicated in embryoge-

nesis, wound healing and angiogenesis, and in a variety of

pathological conditions such as infection, tumor growth,

and metastasis [29–31]. The molecule at the center of the
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Fig. 1 Characterization of MSC. MSC are multipotent cells that are

characterized by their fibroblastic shape (see in the center cultured

murine MSC), their ability to differentiate into mesenchymal

lineages, i.e., osteoblasts, chondrocytes and adipocytes, their expres-

sion of species-specific surface antigen marker sets, their ability to

secrete chemokines or growth factors (e.g., CXCR5, MCP-1, TGF-b,
hepatic growth factors, and interleukin (IL)-6/-10), and their

involvement in diseases like inflammatory diseases, ischemia, tissue

lesions, and cancer
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fibrinolytic cascade is the serine protease plasmin (Fig. 2).

Plasminogen, the inactive precursor of plasmin, is pro-

duced by the liver and circulates at relative concentrations

of around 2 lM, making it an abundant zymogen in plasma

and interstitial fluids, where its concentration can be

increased upon inflammation or injury through exudation

from the vascular system [32]. Plasmin is generated

through the activation of plasminogen by tissue-type

plasminogen activator (tPA), uPA, or kallikrein (Fig. 2).

Although tPA and uPA catalyze the same reaction, tPA and

uPA have traditionally been regarded as conveying dif-

ferent signals: tPA is thought to activate plasminogen

during fibrinolysis, whereas uPA activates cell-associated

plasminogen during cell migration or in tissues experi-

encing persistent tissue remodeling, such as wounds or the

tumor microenvironment [33].

Since the major components of the uPA/plasmin sys-

tems are secreted proteins, activation of plasminogen by

uPA can occur extracellularly, albeit in close proximity to

the uPA-expressing endothelial or cancer cell. uPAR is

associated with the external surface of the plasma mem-

brane by a glycosyl phosphatidylinositol anchor [34] and

localizes uPA and pro-uPA to the cell surface. uPA is

synthesized as a single-chain protein with little intrinsic

activity. Single-chain uPA (pro-uPA) can bind to uPAR

(CD87) and will be converted into the two-chain active

uPA by plasmin. Activated uPA cleaves the zymogen

plasminogen, generating plasmin, which reciprocally

cleaves and activates pro-uPA [35–39]. Alternatively,

kallikreins 2, 4 and 12 can activate single-chain uPA.

uPAR is expressed by monocytes, macrophages, neu-

trophils, vascular endothelial, smooth muscle, epithelial

cells, and MSC [40].

Inhibitors of the fibrinolytic system

The activity of the fibrinolytic system is regulated by

plasmin inhibitors such as a2-antiplasmin and a2-
macroglobulin, and PA inhibitors (PAIs) such as PA inhi-

bitor type 1 (PAI-1, also known as serpin E1) and PAI-2.

The principal PAIs are PAI-1 [41], PAI type 2 (PAI-2), also

known as placental-type PAI [42], and PAI type 3, which is

identical to protein C inhibitor [43, 44]. PAI-1 is produced

by endothelial cells, megakaryocytes, smooth muscle cells,

fibroblasts, monocytes/macrophages, adipocytes, endome-

trium, peritoneum, liver cells, mesothelial cells, cardiac

myocytes, and—as discussed later in more detail—in MSC

[45, 46]. PAI-1 is mainly stored in platelets, but it also can

be deposited on the subendothelial matrix. PAI-1 in the

blood stream is present in an active form or, more fre-

quently, complexed with either tPA or vitronectin (a

relatively thermo-stable glycoprotein, which is able to

stabilize and convert PAI-1 into an active form) [47].

uPAR-bound uPA is active and susceptible to inhibition by

PAI-1 and PAI-2.

Plasmin as an upstream regulator of MMPs

Plasmin can degrade additional components of the ECM

through its ability to convert pro-MMPs to active MMPs,

including MMP-1, MMP-2, MMP-3, and MMP-9 [3, 48,

49] (Fig. 2). Therefore, plasmin has been suggested as an

important upstream regulator of extracellular proteolysis

[29]. Thus, once activated, MMP-2, -3, -7, -9, and -12 can

initiate a negative feedback signal by degrading plas-

minogen [50, 51]. Degradation of plasmin-suppressing

serpin proteinase inhibitors (e.g., a2-antiplasmin [52]) by,

e.g., MMP-3, which promotes the conversion of pro-

MMPs, is an example of how both proteolytic systems

control each other.

Fibrinolytic factors involvement

during hematopoietic cell regeneration

Stem cell fate is regulated by a combination of intrinsic and

extrinsic mechanisms. Intrinsic mechanisms include

specific transcription factors expressed by cells. Extrinsic

mechanisms are signals provided by the local microenvi-

ronment (niche), including growth factors, the ECM [53],

and protease activation in the niche (‘‘proteolytic niche’’).

One of the best-studied niches within the body is the HSC

niche within the BM, where HSC can differentiate and

proliferate in response to hematopoietic stress (e.g.,

myelosuppression or ionizing irradiation), thereby ensuring

a well-regulated supply of mature and immature

hematopoietic cells within the circulation and prompt

adjustment of blood cell levels within normal ranges [4].

The HSC niche includes perivascular MSC, macrophages,

sinusoidal endothelial cells, sympathetic nerve fibers, and

osteoblasts [54]. These niche cells harbor dormant and self-

renewing HSC closely associated with nestin-expressing

MSC [55]. Nestin? MSC are present in the vicinity of the

endosteum and tightly associated with adrenergic nerve

fibers of the sympathetic nervous system that regulate the

circadian oscillations in circulating HSC [56, 57].

The recovery of tissues and organs from irradiation

therapy or chemotherapy is dependent on stromal cells and

resident HSC, which repopulate the BM cavity and give

rise to differentiated, functional blood cells. HSC, and their

progeny, BM stromal cells, and the related vasculature/

stromal cells can be damaged by myelosuppressive stress

[58, 59]. Therefore, it is necessary that both the

hematopoietic and the stromal compartment recover after

myelosuppression. The presence of fibrinolytic factors

within the BM after myelosuppression in vivo suggests that

localized proteolysis occurs during hematopoietic
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reconstitution. BM cell recovery occurred after treatment

with the myelosuppressive drug 5-fluorouracil in plas-

minogen wild type, but not plasminogen deficient mice [3],

suggesting a necessity for fibrinolytic factor activation

during hematopoietic regeneration. We delineated a

mechanism whereby myelosuppression activates the

proteolytic cascade involving the successive activation of

plasminogen and MMP-9 that ultimately leads to the

release of the hematopoietic cytokine kit ligand that

accelerates hematopoietic recovery [3]. The importance of

the activation of the fibrinolytic system was also shown in

mice after total body irradiation [60]. Genetic disruption of
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Proteolytic niche/ ECM remodeling
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BM to injured tissues
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PI3K
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Fig. 2 MSC generate a local proteolytic niche that alters the cellular

and chemical composition of the niche. MSC are part of the stromal

microenvironment. Urokinase-type plasminogen activator receptor

(uPAR)-expressing MSC can bind the inactive zymogen pro-uPA

(pro-urokinase-type plasminogen activator) and convert it in its active

form uPA, which in turn causes pericellular proteolysis at the cell

surface by converting plasminogen to plasmin. Tissue-type plasmino-

gen activator (tPA) or kallikrein can convert plasminogen into

plasmin in circulation. uPA can be inhibited by, e.g., plasminogen

activator inhibitor type 1 (PAI-1) and a2-antiplasmin. Generated

plasmin can activate proteases like MMPs, modulate growth factors

or bioactive fragments of ECM molecules, thereby regulating the

recruitment of inflammatory cells or MSC. Plasmin can break down

cell–matrix interactions with receptors, such as integrins, and control

cell adhesion through a delicate balance between uPA/PAI-1/fibrin/

uPAR. Plasmin and PAI-1 promote cellular motility by regulating the

interaction between uPAR and vitronectin: PAI-1, which has a higher

affinity to vitronectin can compete for uPAR binding to vitronectin.

Complexes of full-length uPAR and its ligands interact with a and b
integrin co-receptors for intracellular signal transduction with signal-

ing pathways that are involved in cell proliferation/main-

tenance/survival (RAS-ERK 1/2, Akt-PI3 K), cell differentiation

(RhoA-ROCK), and cell apoptosis (FAK-JNK/p38)
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the PAI-1 gene or pharmacological inhibition of PAI-1

activity improved myeloablation-related mortality and

promoted rapid hematopoietic recovery after HSC trans-

plantation. These studies set forth the idea that activation of

the fibrinolytic system can regulate cytokine and growth

factor bioavailability necessary for tissue regeneration.

Role of the fibrinolytic system for cell migration

Cell migration of inflammatory cells requires the coor-

dinated activation of integrins, coagulation/fibrinolysis,

and endocytosis. uPA–uPAR-mediated plasminogen acti-

vation facilitates cell migration by enhancing pericellular

proteolysis [36]. uPAR lacks transmembrane and intra-

cellular domains, so it requires co-receptors like integrins

or vitronectin to control migration. The binding of uPA

to uPAR promotes cell adhesion by increasing the

affinity of uPAR for both vitronectin and integrins [61–

63] (Fig. 2). PAI-1 can detach cells by disrupting uPAR–

vitronectin and integrin–vitronectin interactions and it

does so by binding to the uPA present in uPA–uPAR–

integrin complexes on the cell surface [64, 65]. It has

been proposed that the endocytic clearance of the com-

plexes of integrins, uPA, uPAR, and PAI-1 can lead to

the disengagement of integrins from the ECM and cell

detachment [66], a process necessary for cancer metas-

tasis. The idea that PAI-1 is a deadhesive factor toward a

variety of cells growing on different ECM could explain

why high PAI-1 levels can be detected in patients with

human metastatic disease and are often associated with a

poor prognosis.

Colocalization of uPAR with integrins, like a4b1, at the
leading edge of migrating cells focuses uPA activity in the

direction of movement [67]. Similarly, the Mac-1 integrin

(also called M2 or CD11b/18) and plasmin activation have

been shown to augment macrophage accumulation in the

peritoneal cavity [68–70].

uPAR consists of three disulfide-bonded domains (D1,

D2, and D3). Domains D1 and D3 represent a composite

binding site for uPA. Cleavage in the D1–D2 linker by uPA

[71], plasmin, and MMPs [72] creates a soluble D1 frag-

ment and a D2–D3 fragment that can be membrane

associated or shed [72]. Soluble uPAR (suPAR) is released

from cell membrane-bound uPAR [71]. It can be found in

blood, urine, and pleural fluid. suPAR has been implicated

as a biomarker for inflammatory and immune diseases. The

peptide sequence Ser-Arg-Ser-Arg-Tyr, near the N termi-

nus of the D2–D3 fragment, interacts with the G protein-

coupled receptor formyl peptide receptor-like 1, inducing

cell migration [73]. The cleaved form of suPAR binds and

activates fMet-Leu-Phe receptors and regulates the activity

of MCP-1, Chemokine (C–C motif) ligand 5 and C-X-C

chemokine receptor type 4. Soluble D2–D3 is a

chemoattractant for formyl peptide receptor-like 1-ex-

pressing monocytes and basophils [74]. Plasmin cleaves

uPAR on HSC, causing HSC release into circulation [75].

suPAR is up-regulated during granulocyte colony-stimu-

lating factor-induced HSC mobilization in humans in vitro

and in vivo [76, 77].

Whereas HSC mobilization is a well-established fact

due to their appearance in the circulation, the notion of

MSC mobilization is still debated. MSC could not be

detected in the blood of healthy individuals [78]. In con-

trast, under conditions of severe organ injury (e.g., a

trauma patient with multiple bone fractures or hip frac-

tures) MSC could be found in circulation. No circulating

MSC were detected in the blood of patients with end-stage

kidney failure, end-stage liver failure, or during rejection

episode after heart transplantation [79]. MSC as BM niche

cells express uPAR [80]. A role for uPAR in MSC mobi-

lization, similar to HSC mobilization, was proposed. MSC

mobilization after granulocyte colony-stimulating factor

administration did not occur in uPAR-/- mice [80]. These

studies suggest an important role of the fibrinolytic system

in cell migration.

The glycosylphosphatidylinositol-anchored uPAR regu-

lates cell migration, adhesion, proliferation, and

differentiation through activation of an intracellular signal-

ing network (Fig. 2): the prosurvival phosphatidylinositol-

4,5-bisphosphate 3-kinase/Akt and ERK1/2 signaling, and

focal adhesion kinase (FAK) pathways [81–83]. uPAR also

associates with endocytic receptor 180, a constitutively

recycling collagen receptor of the mannose receptor family

[84]. This interaction leads to activation ofRhoGTPases Rac

and Cdc42, which regulate filamentous actin assembly and

directional migration, driving chemotaxis up a gradient of

catalytically inactive uPA [85].

Plasmin controls chemokine/cytokine expression

The ECM anchors soluble growth factors, increasing the

local concentration of agonists to which target populations

in the niche are exposed [4, 86–88]. MMPs and plasmin

regulate the repertoire of available extracellular growth

factors by enzymatic activation, inactivation, or degrada-

tion e.g., the conversion of the latent form of TGF-b or

platelet-derived growth factor C [3, 89–91].

Plasmin has been called an inflammatory molecule [92].

We found that plasmin is activated during acute graft

versus host disease, a disease occurring after allogeneic cell

transplantation, and that inhibition of plasmin prevented

the disease by reducing the chemokine–cytokine-driven

myeloid cell influx and cytokine storm. Plasmin induced

macrophage infiltration by enhancing MCP-1 signaling

through the release of a MCP-1 fragment with improved

chemoattractive ability for macrophages [93, 94].
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CD11b?F4/80? macrophage recruitment into the growing

tumor was dependent on plasmin and MMP activation in a

murine model of lymphoma [95].

Besides macrophage infiltration, various reports showed

the importance of plasmin for neutrophil recruitment.

Plasmin enhanced Gr-1? neutrophil-driven neoangiogene-

sis during recovery from hindlimb ischemia [46], whereby

these cells provided the ischemic tissue with FGF-2 and

VEGF-A. Enterocyte-derived CXC receptor type 5 can

attract CXCR2? neutrophils into the gut tissues [96].

Plasmin, by altering MMP2 and MMP9 activity, can pro-

cess CXCL5 and can promote neutrophil recruitment in

models of peritonitis [97] and inflammatory bowel disease

[88]. Even hormones can be controlled by plasmin, e.g.,

decreased serum testosterone levels in plasminogen defi-

cient mice were found as a consequence of impaired

secretion of the pituitary luteinizing hormone under steady-

state conditions [98].

Fibrinolytic factors modify MSC adhesion

and survival during wound healing

It was shown that kallikrein-mediated plasmin enhanced

wound healing in mice [99]. The importance of plasmin for

wound healing was further demonstrated in Plg-/- mice,

which showed severely retarded wound healing [100]. In

humans, loss of plasmin similarly leads to abnormal wound

healing. Patients with advanced diabetes mellitus show

impaired wound healing, which is accompanied by ele-

vated circulating PAI-1 levels [101]. Mimicking the

situation in human disease, diabetic mice showed high

circulating PAI-1 levels. Plasminogen treatment improved

the healing of acute burn wounds and chronic diabetic

wounds in these mice [102, 103].

A disrupted blood flow can bring tissue regeneration and

wound healing processes to a deadlock [104]. MSC are

recruited into wounds [105, 106] where they can accelerate

wound healing [107]. Mouse and human MSC under

steady-state conditions express uPA, uPAR, and PAI-1

[108–110]. Interestingly, uPAR and PAI-1 are hypoxia

inducible factor a (HIF-1a) targets [111]. In MSC, HIF-1a
activation in MSC mediates the upregulation of FGF-2 and

HGF, whereas HIF-2a upregulates VEGF-A [112]. All

these factors can promote wound healing. In addition, HGF

enhances the recruitment of MSC into wounded tissue

[113]. Ischemia and hypoxia are major causes of wound

repair dysregulation. Even though the natural habitats of

MSC are tissues with low oxygen level, e.g., the BM or

adipose tissues, in vivo survival of transplanted MSC limits

their overall effectiveness and affects their clinical usage

[114]. Transplanted cells often die under unfavorable niche

conditions as found in wound, scar, or hypoxic tissue [115–

117]. During the early phase of the wound healing process,

plasminogen bound to inflammatory cells is transported to

the wound area, where high plasminogen levels can be

detected [118, 119]. Neuss et al. reported that cultured

human uPAR-expressing MSC show fibrinolytic activity

[120]. During wound healing, migrating cells increase the

expression of PAs. The balance between uPA (proadhe-

sive) and PAI-1 (nonadhesive) regulates MSC adhesion to

vitrogen and matrigel matrices [109]. PAI-1, which has a

higher affinity to vitronectin can compete for uPAR bind-

ing with vitronectin [121] thereby determining an adhesive

or nonadhesive effect [109, 122, 123]. It was reported that

complex formation between PAI-1 and PAs results in loss

of PAI-1 affinity for vitronectin and restores cell migration.

These studies indicate that fibrinolytic factors secreted by

MSC affect MSC survival and adhesion under hypoxic

conditions (Fig. 2).

Fibrinolytic factors accelerate MSC recruitment

into the tumor microenvironment

Promigratory conditioning of the tumor-associated tissue

increases the invasion and dissemination of tumor cells,

and the motility and activity of stromal cells (fibroblasts,

macrophages and MSC). The promigratory tumor niche/

microenvironment is dominated by proteases. Proteases

support pericellular proteolysis and process extracellular

chemokines and growth factors released by tumor or acti-

vated stromal cells that induce the transition from tissue-

anchored to mobile cells.

Studies have shown that differential gene expression of

chemokine receptors and adhesion molecules in MSC [124]

induces MSC to migrate toward a specific tumor

microenvironment. uPAR, which is consistently expressed

by MSC, is a poor prognostic factor under various patho-

logical conditions, including inflammation or cancer [36].

The activation of uPA and uPAR in malignant solid tumors

(brain, lung, prostate, and breast) promotes the recruitment

of MSC to the tumor site [125–127]. uPA and uPAR are

involved in chemotaxis and cell guidance. Improved tumor

tropic properties of MSC were reported after overexpres-

sion of uPA in cord blood-MSC [128]. uPAR down-

regulation inhibits human MSC migration [80]. In addition,

uPAR down- or upregulation results in inhibition or stim-

ulation of MSC differentiation into vascular smooth muscle

cells, correspondingly.

uPA and uPAR are up-regulated in tumors of various

origins, where they play critical roles in the development of

invasive and chemo-resistant cancer phenotypes. Colon

cancer cell/MSC interactions seem to regulate colon cancer

progression [129]. BM-MSC were shown to stimulate

invasion, survival, and tumorigenesis of colorectal cancer

(CRC) cells through the release of soluble neuregulin 1,

thereby activating the human epidermal growth factor
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receptor 2/3 (HER2/3)-dependent PI3K/AKT signaling

cascade in CRC cells. Similarly, tumor-associated mes-

enchymal cells in CRC demonstrated high transmembrane

neuregulin 1 expression. High neuregulin 1 expression was

associated with advanced cancer stage and invasion depth

in human cancer tissues and decreased 5-year progression-

free patient survival [129]. A strong correlation has been

found between HER2, uPAR expression, and breast cancer

progression [130]. Further studies will be necessary to

understand the role of MSC in this context.

Sier et al. demonstrated a tenfold increase in PAI-1 and

a two- to threefold increase in PAI-2 between normal

colonic epithelium and colonic adenocarcinoma [131]. It

was reported that MSC-secreted PAI-1 enhances the

migration of colon cancer cells [126]. This might be due to

the fact that uPAR and PAI-1 have vitronectin binding sites

and thus PAI-1, which has a higher affinity to vitronectin,

could compete for uPAR binding to vitronectin [121]

enhancing cell detachment, and migration. uPA–uPAR

knockdown in PC3 prostate cancer cells inhibited tumor-

specific migration of uPA-overexpressing MSC [2].

These data indicate that fibrinolytic factors or its

receptors recruit MSC within the tumor microenvironment,

which ultimately alters tumor growth.

Conclusions

The timely removal of blood clots and fibrin deposits is

achieved by the fibrinolytic system, an enzymatic process

that regulates the activation of plasminogen into plas-

min. What has now come to light is that the fibrinolytic

system, with plasmin as its main player, is not solely

designed to eliminate fibrin. The fibrinolytic system can

modify the cellular recruitment of inflammatory cells or

MSC and alter the proteolytic activity in areas of wound

healing and regenerative processes of mesodermal tissues

such as bone, cartilage, and muscle, but also during

cancer progression. MSC are in clinical use for the

treatment of various diseases including ischemia, wound

healing, and myocardial infarction, and have drawn

attention because they can promote heart tissue recovery

from massive myocardial infarction and improve symp-

toms in individuals with type 1 diabetes. Recent studies

indicate that MSC are equipped with various proteases,

including enzymes of the fibrinolytic system, e.g., PAI-1

and uPAR. Functionally, it seems that fibrinolytic factors

ensure the ability of MSC to navigate through or adhere to

the ECM of ‘‘regenerative’’ or ‘tumor’’ microenviron-

ments. Fibrinolytic factors released from MSC set a

proteolytic environment due to consecutive activation of

other proteases like MMPs, which enable the release of

local cytokines and chemokines. The receptor for uPA,

uPAR, also represents an interesting cancer treatment

target. MSC seem to be able to redirect the microenvi-

ronmental program and influence the outcome of the

‘‘tissue healing program’’. Genetic lesions or certain dis-

ease conditions, like diabetes mellitus, that alter the

function of MSC and the intrinsic fibrinolytic capacity of

MSC may impinge on the ability of the body to mount a

proper regenerative or immunological response.

These findings highlight the complexity of proteolytic

interactions in the microenvironment, and show how

microenvironmental cells like MSC impact tissue regen-

eration or cancer growth.
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