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Abstract Nonsense-mediated mRNA decay (NMD) is a

translation-dependent,multistep process that degrades irregular

or faulty messenger RNAs (mRNAs). NMD mainly targets

mRNAs with a truncated open reading frame (ORF) due to

premature termination codons (PTCs). In addition, NMD also

regulates the expression of different types of endogenous

mRNA substrates. A multitude of factors are involved in the

tight regulation of the NMD mechanism. In this review, we

focus on the molecular mechanism of mammalian NMD.

Based on the published data, we discuss the involvement of

translation termination in NMD initiation. Furthermore, we

provide a detailed overview of the core NMD machinery, as

well as several peripheral NMD factors, and discuss their

function. Finally,wepresent anoverviewofdiseases associated

with NMD factor mutations and summarize the current state of

treatment for genetic disorders caused by nonsense mutations.

Keywords NMD � Quality control � UPF1 �
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Introduction

Gene expression in eukaryotes is a compartmentalized process

consisting of several different, yet connected steps. The

importance of gene expression for living cells and organisms is

exemplified by the existence of diverse molecular mechanisms

that detect errors and thereby ensure the accuracy of gene

expression. A well-known quality control process, referred to

as nonsense-mediated mRNA decay (NMD) or alternatively

mRNA surveillance, limits the expression of mRNAs with

premature termination codons (PTCs) and other aberrant ter-

mination events. NMD prevents the biosynthesis of

C-terminally truncated proteins fromPTC-containingmRNAs,

which may exert dominant-negative activities and interfere

with the normal function of full-length proteins present in the

cell (Fig. 1). NMD recognizes not only PTC-containing tran-

scripts, which could result for example from frameshift or

nonsense mutations, but also regulates the expression of many

physiological mRNAs, the so-called endogenous NMD sub-

strates. Hence, NMD represents a molecular quality control

mechanism, but in addition also plays an important role during

post-transcriptional gene expression.

In this review,weaim toprovidea comprehensiveoverview

about the factors involved in NMD and their characteristics

and molecular functions. We also describe NMD-activating

features of different types ofNMDsubstrates.Furthermore,we

present a model of the NMDmechanism, which explains how

the interplay of different factors helps to recognize different

classes of mRNAs. Finally, we discuss the function of NMD

factors during normal embryonic development and howNMD

influences the phenotypes of human disorders. This review

focuses on mammalian NMD but we provide information

about essential aspects of NMD in different organisms.

Terminating the message: steps in normal
translation termination

The expression of protein coding genes is essential for

cellular functionality, with the final step being cytoplasmic

translation of mature mRNA transcripts into proteins by the
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ribosome. Translation termination plays a pivotal role in

the lifespan of an mRNA, because the position of the ter-

mination codon and efficiency of the termination process

determines mRNA stability [1–5]. The termination process

begins when a stop codon (UAA, UAG, or UGA) enters the

A-site of a translating ribosome, causing it to stall. Two

important factors involved in the ensuing steps of transla-

tion termination are the class I release factor 1 (in humans

eRF1) and the class II release factor 3 (in humans eRF3).

Using RNA interference, it was shown that human eRF3 is

directly involved in translation termination, albeit in a cell-

type specific manner and is required for eRF1 stability in

the cell [6, 7]. Of the two human eRF3 isoforms (eRF3a

and eRF3b), eRF3a has been shown in HEK 293 cells to act

as the main factor in translation termination [7–9]. A ter-

mination codon within the ribosomal A-site is decoded by

eRF1, which is known to bind the ribosomal A-site and

mimic a tRNA [10, 11]. Instead of promoting peptidyl

transfer like a regular tRNA, eRF1 mediates via its GGQ

motif the hydrolysis of the synthesized polypeptide chain,

which is still attached to the ribosomal P-site [12, 13]. The

role of the GTPase eRF3 is to enhance the activity of its

interaction partner eRF1 [14]. Indeed, it has been shown in

yeast that GTP hydrolysis by eRF3 stimulates the release of

the polypeptide chain via eRF1 [15]. Although eRF3 is able

to bind GTP, its weak inherent GTPase activity is stimu-

lated by a quaternary complex consisting of eRF1, eRF3,

GTP, and the ribosome [16, 17].

Upon peptide release mediated by eRF1, the mRNA-

bound ribosome needs to be removed to free up space for

any approaching, upstream ribosomes and any subsequent

termination events. This dissociation of the 80S complex is

executed by the ATP-binding cassette subunit family E

member 1 (ABCE1) ATPase and involves ATP hydrolysis.

The exact mechanism by which ABCE1 mediates ribosome

recycling is not yet fully understood; however, several

steps of this process have already been illuminated. It is

known, for example, that eRF1 and ABCE1 interact with

each other and that this interaction is required for efficient

ribosome splitting [18]. Furthermore, ABCE1 is known to

interact with the ribosome and this interaction is mediated

by a FeS cluster domain of ABCE1 [19, 20]. This multistep

process of translation termination ensures efficient ribo-

some recycling with continuous rounds of translation and

increases mRNA survivability in general.

Several other factors besides the aforementioned ones

are involved in translation termination. One such promi-

nent factor in human cells is cytoplasmic poly(A)-binding

protein 1 (PABPC1), which binds to the 30 poly(A) tail of
an mRNA. PABPC1 consists of four RNA recognition

motifs (RRMs) in the N-terminal region of the protein [21,

22]. The first two RRMs are responsible for PABPC1-

binding to the poly(A) tail [23]. The C-terminal region of

PABPC1 contains the so-called MLLE (pronounced

Mademoiselle) domain, which mediates the interaction

with eRF3a [24, 25]. Two PAM2 motifs in the N terminus

of eRF3a interact directly with the MLLE domain of

PABPC1 and this interaction is known to stimulate

polypeptide release as well as the consequent ribosome

recycling [26–28]. PABPC1 interacts via its second RRM

with eukaryotic initiation factor 4G (eIF4G), which is

another important binding partner [29, 30]. eIF4G is part of

a larger, multisubunit complex termed the eIF4F complex

consisting of eIF4E, eIF4G, and eIF4A. This eIF4F com-

plex is bound to the cap of mRNAs in the cytoplasm via its

eIF4E subunit [31]. The interaction between PABPC1 and

eIF4G is believed to give rise to a looped mRNA termed

the closed loop. The closed loop model predicts a close

proximity between a 30 terminating ribosome and the 50 end
of the mRNA, which is believed to play a role in facili-

tating ribosome recycling as well as translation initiation

[32–34].

PTC carrying transcripts activate NMD

NMD as a quality control mechanism targets aberrant

mRNAs harboring a PTC at approximately 50 to 55

nucleotides upstream of the final exon–exon junction of a

transcript. PTCs downstream of this border fail to initiate

efficient degradation of a transcript via NMD [35–38]. It is

of interest to note that not all mRNAs fully adhere to this

50 to 55 nucleotide rule. For example the T-cell receptor b
(TCR-b) transcript represents one well known exception

[39]. These findings suggest that intron position and

Fig. 1 Function of nonsense-mediated mRNA decay. Top A normal

transcript consists of a 50 cap, followed by a 50 UTR, the ORF, a 30

UTR, and a poly(A) tail. The ORF of a transcript with a normal

termination codon is translated into a full length protein. Bottom A

transcript carrying a premature termination codon (PTC) will host a

shortened ORF as well as an elongated 30 UTR. Instead of

continuously translating the transcript into a truncated protein with

possible deleterious function in the cell, the PTC-containing transcript

will be degraded via NMD
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nuclear splicing are important determinants for whether

NMD is activated or not. This is emphasized by the fact

that PTC-containing, but intronless transcripts are immune

to degradation via NMD [40–42]. It was later found that a

multisubunit protein complex termed exon junction com-

plex (EJC) is deposited 20 to 24 nucleotides upstream of an

exon–exon junction during splicing and remains bound to

the mRNA until it is displaced during translation in the

cytoplasm [43–46]. Although ribosomal transit is likely

sufficient to remove EJCs located within the ORF, the

protein PYM acts as an additional specific EJC disassembly

factor [47]. It has been shown that PYM interacts with the

heterodimer MAGOH/Y14, part of the EJC core, via its

N-terminal region, thereby causing the disassembly of the

EJC from the mRNA [47]. The EJC core complex is

composed of four proteins: the heterodimer MAGOH/Y14,

Barentzs (BTZ, MLN51 or CASC3), and the DEAD box

protein eukaryotic initiation factor 4A-3 (eIF4A3). This

core is deposited onto the RNA in the nucleus and stays

attached during export to the cytoplasm, as well as in the

cytoplasm by inhibition of the ATPase activity of eIF4A3

[48, 49]. The crystal structure of the EJC core complex

revealed that the heterodimer Y14/MAGOH stabilizes the

closed conformation of eIF4A3, effectively locking the

EJC to the mRNA [50]. BTZ has been shown to interact

with eIF4A3 by wrapping around the protein as well as

interacting with MAGOH [49]. The EJC serves as a

binding platform for NMD factors, thereby providing a

direct molecular link between splicing and NMD [51, 52].

The role of the EJC in NMD has further been elucidated by

tethering and RNA interference assays. The mRNA levels

of a b-globin reporter construct were reduced when artifi-

cially tethering Y14 to the reporter [53]. At the same time,

the significance of the EJC for NMD was shown by the

knockdown of Y14, which impaired the degradation of a

PTC-containing b-globin reporter construct [53].

NMD substrates lacking an EJC

Despite the fact that EJCs have been shown to activate

NMD, further evidence also suggests that NMD can be

activated without the need for an EJC. A set of experiments

examined the effect of EJC-dependent and EJC-indepen-

dent NMD. A reporter with an intron downstream of a PTC

was susceptible to NMD even after knocking down the EJC

core factor eIF4A3, albeit to a lesser extent compared to

non-knockdown conditions [54]. Degradation of a second

reporter with no intron downstream of a PTC was unaf-

fected by the eIF4A3 knockdown [54]. This suggests that

an EJC downstream of a PTC certainly has an NMD-en-

hancing effect, but an EJC is not mandatory for NMD

activation.

Several long 30 UTR containing mRNAs are known to be

regulated by NMD even though they lack an EJC down-

stream of the stop codon [5]. Furthermore, it has been shown

that triosephosphate isomerase (TPI) reporter constructs

containing different 30 UTRs (e.g. SMG5 30 UTR, UPF3b 30

UTR, and heterologous GFP coding sequence as a 30 UTR)
are able to elicit NMD [55]. Interestingly, the NMD

machinery does not distinguish between the 30 UTRs of

natural NMD targets (SMG5 and UPF3b) but also degrades

a TPI reporter with the heterologous GFP coding sequence

as a 30 UTR [55]. This suggests that any long 30 UTR might

be sufficient for NMD activation. Conversely, a different

analysis of multiple long 30 UTR containing reporter con-

structs revealed that some long 30 UTRs are targeted by

NMD, whereas others are not [56]. This was evident by

decreased reporter levels being stabilized by a UPF1 (a

central NMD factor, explained in detail below) knockdown

[56]. These results imply that the mere length of a 30 UTR is

not enough to determine the fate of a transcript. Instead, they

suggest the need for a cis factor binding in close proximity to

the termination codon, possibly mediated by the AU-content

of the 30 UTR [56]. An example of a long 30 UTR containing

mRNA is depicted in Fig. 3d (top).

A different approach on long 30 UTR mediated NMD

holds UPF1 occupancy on a transcript responsible as the

culprit for NMD activation. It has recently been shown that

UPF1 is populating the 30 UTR of mRNAs in human cells

[57–59]. It has been proposed that UPF1 being displaced

from mRNA by a translating ribosome is able to increas-

ingly bind to the 30 UTR where no ribosomal

destabilization can occur [58, 59]. This occupancy might

differ from transcript to transcript, explaining why some

long 30 UTR containing mRNAs are more susceptible to

NMD than others.

The faux 30 UTR model

Different models of NMD activation have been proposed

based on the available data. An early model suggested for

NMD in yeast is called the ‘‘faux 30 UTR model’’. This

model advocates that NMD is activated by an aberrant

translation termination event. It has been shown in yeast

that a PTC lengthens the distance between a terminating

ribosome and the yeast poly(A)-binding protein (Pab1),

leading to inefficient translation termination [60]. Fur-

thermore, tethering Pab1 downstream of a PTC suppresses

NMD, possibly by restoring normal translation termination

[60]. Taking into account that yeast lack EJCs, these data

suggest that NMD substrates are defined by 30 UTR length

[61]. This indicates that the distance between a termination

codon and Pab1 determines whether NMD in yeast is

activated or not. This model was proposed prior to findings
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linking proper and aberrant translation termination in

human cells to NMD activation or suppression.

NMD is linked to active translation

First results indicated that cap-binding protein 80 (CBP80)-

bound mRNA was targeted by NMD, suggesting that NMD

occurs during the pioneer round of translation [62]. How-

ever, it was later reported that NMD is able to occur on

eIF4E-bound mRNA, suggesting that NMD is not limited

to the first round of translation [63, 64].

It has been well established that NMD requires active

translation. Secondary structures in the 50 UTR inhibiting

cytoplasmic translation have been linked to NMD inhibi-

tion [36, 65]. Additionally, protein synthesis inhibitors

cycloheximide, anisomycin, emetine, pactamycin, and

puromycin were able to suppress NMD of T-cell receptor

mRNA harboring a PTC [66]. Furthermore, Polio virus

infection, which is known to shut down protein translation

by inactivating eIF4GI, eIF4GII, and PABP, increased an

out-of-frame TCR-b mRNA in HeLa cells indicating NMD

suppression [66–68]. Additionally, in-frame start (Met)

codons downstream of a PTC in the TPI mRNA and the b-
globin mRNA serve as sites of translation re-initiation and

have also been shown to suppress mRNA degradation via

NMD [69, 70]. This suggests that additional aspects

besides active translation and factors recruited to and

interacting with a stalling ribosome might be responsible

for NMD activation.

Aberrant translation termination

An aberrant translation termination event starts out similar

to a normal translation termination, namely by a premature

translation termination codon (PTC) entering the A-site of

a translating ribosome. However, the subsequent termina-

tion cascade has to be different from normal termination,

resulting in NMD initiation. Indicative of a substantial

difference between normal and premature translation ter-

mination are the ribosome profiles at both a normal

termination codon (NTC) and a PTC. Toeprinting assays in

yeast cell extracts fail to show any signals for ribosomes at

NTCs, unless eRF1 was defective [60]. In contrast, ribo-

somes stalling at PTCs show typical toeprinting signals for

a ribosome with an occupied A-site independent of eRF1

inactivation [60]. Human b-globin mRNA with a PTC at

position 39 (b-globin NS39) is a known NMD target,

which has been identified in patients suffering from beta

thalassemia [36, 71, 72]. Toeprinting assays of b-globin
NS39 show a signal indicating a stalled ribosome at the

PTC, whereas b-globin wild-type mRNA does not [73].

These results are indicative of the aberrant nature of

translation termination of PTC-containing mRNA and

provide evidence for a mechanistic difference between

normal and premature translation termination.

The exact nature of how prematurely terminated transla-

tion leads to the degradation of an mRNA is still not entirely

clear. Several different sets of data pointing to different

models exist. One such model is based on the competition

between UPF1 and PABPC1 for eRF3 binding. As described

above, PABPC1 is known to interactwith eRF3a, stimulating

peptide release and ribosome recycling. UPF1 has been

shown to interact with eRF3 aswell; however, the interaction

between PABPC1 and eRF3 seems favored over the UPF1–

eRF3 interaction [5, 74]. The fact that both PABPC1 and

UPF1 can bind eRF3 but PABPC1 binding to eRF3 is pre-

ferred leads to the idea that PABPC1 might be able to

antagonize the interaction between eRF3 and UPF1. Indeed,

it has been shown that increasing amounts of PABPC1 can

prevent the interaction between UPF1 and eRF3 in vitro [5].

This finding suggests that when a translating ribosome stalls

at a PTC the interaction between PABPC1 and eRF3 is

outcompeted by UPF1, possibly due to the large physical

distance between PABPC1 and the termination complex.

Thismodel is further supported by the fact that aMS2-tagged

PABPC1 tethered downstream but in close proximity to a

PTC of a b-globin NS39 reporter mRNA prevented NMD [3,

5]. Tethering PABPC1 close to the PTC shortens the distance

between PABPC1 and eRF3, which suggests that PABPC1

efficiently outcompetes UPF1 for eRF3 binding. Supporting

evidence for this competition model has been shown by

detailing two distinct roles for PABPC1 and UPF1 in effi-

cient or aberrant translation termination, respectively. A

readthrough assay with a reporter containing the ORF of

Renilla luciferase upstream of the ORF of firefly luciferase,

with a termination codon in between, showed decreased

readthrough uponUPF1 knockdown for all three termination

codons [3]. This suggests that UPF1 is able to decrease the

efficiency of translation termination.

Another possible mechanism, besides the competition

between PABPC1 and UPF1, for NMD suppression

involves both ribosome recycling as well as translation

initiation. It is known that NMD can target mRNAs with a

long 30 UTR and tethering MS2-tagged PABPC1 at the

beginning of a long 30 UTR can suppress NMD [2, 5, 75,

76]. Additionally, it has been shown that MS2-eIF4G

tethered downstream of a termination codon and upstream

of a long 30 UTR or downstream of a PTC is able to sup-

press NMD in a similar manner as PABPC1 [2, 4]. Point

mutations of PABPC1 that abolish the interaction between

PABPC1 and eIF4G lose their ability to suppress NMD [2].

In contrast, PABPC1 lacking the ability to interact with

eRF3 can still suppress NMD when tethered downstream of

a termination codon and upstream of a long 30 UTR as well
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as downstream of a PTC [2, 4]. The fact that PABPC1 does

not require the interaction with eRF3 to suppress NMD

contradicts the findings that PABPC1 and UPF1 compete

for eRF3 binding during translation termination at a PTC

and, thereby, either suppress or activate NMD, respec-

tively. Additionally, these findings also implicate eIF4G

and, therefore, the eIF4F complex in NMD inhibition. This

suggests that the interaction cascade involving eRF3,

PABPC1, and eIF4G is required for NMD suppression.

These interactions promote a normal translation termina-

tion event, followed by efficient ribosome release and

recycling, essentially antagonizing NMD [1, 2].

Further support for a model that links ribosome recy-

cling and translation initiation to NMD suppression was

given by the fact that the eukaryotic initiation complex 3

(eIF3) was shown to be involved in NMD suppression [4].

Although tethering subunits of eIF3 to an NMD-susceptible

reporter did not antagonize NMD, knockdown of eIF3

subunits eIF3f and eIF3 h reduced the reporter mRNA

levels of an NMD reporter stabilized by tethered eIF4G [4].

Overall, this leads to the paradoxical situation that efficient

translation re-initiation after ribosome recycling suppresses

NMD, while at the same time efficient translation of a

substrate mRNA is required to activate NMD.

Additional evidence implicates the proximity of PABPC1

to a termination codon in NMD suppression. A reporter

carrying several PTCs shows gradually less efficient NMD

for 50 as well as 30 PTCs [76]. The more 50 PTCs resistant to
NMD implicate the closed loop structure of a transcript in

translation termination. Since 50 PTCs are not efficiently

degraded it can be suggested, that PABPC1 is in close

proximity to these PTCs by looping of the mRNA and,

thereby, signaling a normal translation termination event. A

similar experiment uses a reporter construct that harbors two

complementary sequences to fold the poly(A) tail back into

close proximity of a PTC. This foldback brings PABPC1 in

close proximity of the PTC and is able to antagonize NMD

even without the depletion of UPF1 [76].

Figure 2 shows a current model of NMD of a PTC-

carrying transcript. Still, many links between ribosome

recycling, translation initiation, and NMD are still missing

and need to be unveiled in future research.

Various cellular transcripts are NMD substrates

Selenoproteins are a class of polypeptides containing the

trace element Selenium (Se) and are characterized by the

incorporation of the unusual amino acid selenocysteine

(Sec) [77]. Selenoprotein-encoding transcripts are believed

to be degraded via NMD since the codon UGA, more

prominently known for being a stop codon, also codes for

Sec when it is accompanied by specific sequence elements

(SECIS) [78]. It has been shown that the stability of

Fig. 2 Model for degradation of PTC carrying transcripts. Step 1

Translation is initiated at the AUG start codon. The ribosome starts

translation in the 50 to 30 direction. Step 2 When the translating

ribosome stalls at a PTC, eRF1 and eRF3 interact with and bind to the

ribosome. The physical distance between poly(A)-bound PABPC1

and the stalled ribosome is too large for efficient interaction and

subsequent translation termination. Step 3 Since the interaction

between PABPC1 and eRF3 is inefficient in this scenario, UPF1 is

able to interact with eRF3 instead. Furthermore, the EJC serves as a

binding platform for UPF3b and UPF2. Additionally, SMG1 is

recruited to UPF1. SMG1 not only interacts with UPF1 and UPF2 but

also phosphorylates UPF1. Step 4 Phosphorylated UPF1 recruits the

SMG5/7 heterodimer as well as the endonuclease SMG6. The stalling

ribosome has been removed from the transcript by this point. SMG6

cleaves the transcript in close proximity of the PTC, whereas SMG5/7

recruit the catalytic subunit of the CCR4-NOT deadenylase complex

POP2. Step 5 The NMD factors are removed from the cleaved

transcript and decapping and deadenylation commences. As a last

step, the exonuclease XRN1 is recruited and degrades the transcript in

50 to 30 direction, and the exosome supposedly mediates 30 to 50

degradation
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selenoprotein mRNAs is dependent on Se concentrations

[79, 80]. Interestingly, about half of all selenoprotein-en-

coding mRNAs are regulated by NMD, whereas the other

half is not [81]. This occurrence is believed to be related to

the location of the termination codon in the mRNA of

selenoproteins. Sec codons in the last exon are NMD

resistant, while Sec codons in any other exon are subjected

to NMD [81].

As described previously, many NMD targets have an

EJC downstream of a termination codon. This also fits for

many transcripts carrying upstream open reading frames

(uORFs), which are usually followed by a long main ORF

with several splice sites. Microarray analysis in HeLa cells

showed that several uORF transcripts are upregulated after

UPF1 knockdown [82]. This indicates that transcripts with

a uORF can be endogenous targets for the NMD pathway.

It is of interest to note that not all uORF containing tran-

scripts are degraded via NMD. Thrombopoietin (TPO) is

such an example. TPO contains seven uORFs and has been

shown to be unaffected by knockdown of UPF1 [83]. This

leads to the current understanding that many uORF tran-

scripts are in fact targeted by NMD, but a uORF can by no

means be generally considered a NMD target.

Alternative splicing is responsible for modulation of

gene expression by generating different mRNA transcript

isoforms [84]. It has been shown that alternatively spliced

pre-mRNAs can be targets of NMD, since many of the

transcript variants will carry a PTC [85]. An interesting

example is the splicing factor SRSF2 (SC35). SRSF2 is

known to regulate its own mRNA expression by altering its

splicing pattern [86].

Another subset of NMD targets are so-called long non-

coding RNAs (lncRNAs). A study employed growth arrest

factor 5 (GAS5) as an exemplary lncRNA to examine if

lncRNAs are indeed degraded via NMD [87]. The study

showed that GAS5 transcript levels were increased upon

UPF1 depletion, which indicates that NMD is responsible

for the degradation of GAS5 mRNA [87]. It is surprising

that lncRNAs are NMD targets since NMD is known to

require actively translated mRNA. However, a recent study

showed that many lncRNAs are indeed protein coding and

therefore actively translated [88]. Figure 3 depicts a

graphical overview of possible NMD targets and Table 1

lists examples for each class of NMD substrate.

NMD factors and their role in substrate
recognition and degradation

The number of identified proteins involved in NMD, espe-

cially in metazoan cells, has tremendously increased over the

past two decades. The first NMD factors were described more

than 30 years ago in S. cerevisiae. At that time, genetic

A

B

D

C

Fig. 3 Examples of NMD substrates. a Alternative splicing of a pre-

mRNA can lead to PTC formation by, for example, exon-skipping.

The PTC-containing transcript isoform is degraded in an EJC-

dependent manner, whereas regularly spliced transcripts without a

PTC will not be targeted by NMD. b An error during gene expression

can lead to a nonsense mutation in the ORF of a transcript. If the PTC

that arises due to this nonsense mutation is upstream of the last exon–

exon junction, an EJC will be present downstream of the PTC and the

transcript will be degraded via NMD. c Some long ncRNAs are known

to harbor snoRNAs within their introns. The snoRNAs are released

when the introns are spliced. snoRNA host genes do not encode a

protein, but instead have only a short ORF with a PTC, which will lead

to activation of NMD followed by subsequent degradation of the

transcript. d Top Many transcripts with long 30 UTRs are known

targets of NMD. Middle Some mRNAs can host one or multiple

uORFs, which will lead to EJC-mediated NMD, since the EJCs will

not be displaced by a translating ribosome. Bottom Selenoprotein-

encoding transcripts are a class of NMD targets that incorporate the

unusual amino acid selenocysteine (Sec) at UGA codons. With low

concentrations of Sec present, the UGA codon is decoded as a classical

stop codon and, depending on its position, is treated as a PTC
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screening was done in a yeast strain expressing a HIS4 tran-

script with a ?1 frameshift, which leads to premature

translation termination and decreased stability of the mRNA.

The screen aimed to identify mutations, which suppress this

frameshift and result in increased mRNA stability [89].

Several upf (up–frameshift) mutants were characterized later

and the mutated genes were termed UPF1, UPF2 and UPF3

[90–92]. They represent the central set of NMD factors. The

UPF proteins have been found in all late-branching eukary-

otes, ranging from yeast over nematodes and fruit flies to

mammals and plants, whereas the set is incomplete in certain

protists [93–96]. Additional factors in the NMD pathway of

higher metazoans were found in nonsense suppression

screens in C. elegans and were termed smg1-7 (suppressor

with morphogenetic effect on genitalia). Mutation of these

genes did not only abolish NMD, but also caused phenotyp-

ical abnormalities in the male bursa and hermaphrodite vulva

[97–99]. Smg2-4 represent homologs of the conserved UPF1-

3; therefore, the extended NMD core machinery comprises

UPF1-3, SMG1, and SMG5-7 [100–106]. An overview of the

central characteristics of these core NMD factors can be

found in Table 2. Figure 4 depicts the molecular architecture

of the core NMD factors and summarizes their functions and

interaction sites, both of which are discussed in detail below.

A number of additional NMD factors have been identified in

different organisms, including SMG8, SMG9, PNRC2,

DHX34, NBAS, RUVBL1, RUVBL2, MOV10, GNL2 and

SEC13 for the human system [107–113].

UPF1 is the central nexus of the NMD machinery

UPF1 is considered the centralNMDfactor, since it acts as an

interaction hub for other NMD factors, is involved in all

decisive stages of the NMD process, and is essential for

NMD in all investigated organisms [91, 114–117]. The

central part of UPF1 is highly conserved between species

with more than 40 % sequence identity between the yeast

and human homolog. It consists of two functional domains:

an N-terminal zinc knuckle cystidine-histidine-rich CH

domain followed by a central helicase domain [94]. UPF1 is

classified based on several functional features. The helicase

domain of UPF1 is formed by two RecA-like domains

belonging to the superfamily 1Ba (SF1Ba), which uses ATP
hydrolysis to unwind double stranded nucleic acids in 50-30

direction [118–121]. The helicase domain also mediates the

direct binding of UPF1 to the RNA and, according to the

current model, RNA-bound UPF1 is required for NMD

factor assembly [118, 122].Whereas the presence of ATP, or

nucleotide analogs that mimic certain transition states in the

hydrolysis reaction, reduce the RNA binding affinity of the

helicase domain in vitro, these nucleotide-induced confor-

mational changes still allow concomitant ATP and RNA

binding [119, 122–124]. Initially it was proposed that UPF1

is recruited to the NMD target by the terminating ribosome

via the interaction with the release factors eRF1 and eRF3.

This implies that UPF1 recruitment on NMD targets is

directly linked to translation termination and hence occurs in

the proximity of the termination codon [74]. However,

individual nucleotide resolution UV cross-linking and

immunoprecipitation (iCLIP) experiments showed that

UPF1 directly binds mostly spliced transcripts, regardless of

whether they are NMD targets or not [59]. Thus, UPF1

abundance on an mRNA does not correlate directly with its

NMD susceptibility. As mentioned above, UPF1 preferen-

tially occupies the 30 UTR region of mRNAs due to

displacement from the 50 UTR and coding region by scan-

ning and translating ribosomes, respectively [57–59]. The

overall importance of a functional UPF1 helicase domain is

represented by the fact that the ATPase activity and direct

Table 1 Example targets for different NMD-inducing features

NMD-inducing feature Transcript Accession number Reference

PTC T-cell receptor b (TCRB)

b-Globin (HBB)

HGNC:12155 (TCRB)a

HGNC:4827 (HBB)

[66, 218]

Long 30 UTR Protein SMG5 (SMG5)

Regulator of nonsense transcripts 3B (UPF3b)

HGNC:24644 (SMG5)

HGNC:20439 (UPF3b)

[5, 55]

Sec codon Glutathione peroxidase 1 (GPx1)

Selenoprotein W (SelW)

HGNC:4553 (GPx1)

HGNC:10752 (SelW)

[81, 219]

uORF Interferon-related development factor 1 (IFRD1)

Mitogen-activated protein kinase kinase kinase 14 (MAP3K14)

HGNC:5456 (IFRD1)

HGNC:6853 (MAP3K14)

[82, 220]

Alternative splicing Serine/arginine splicing factor 2 (SRSF2/SC35)

Fibroblast growth factor receptor 2 (FGFR2)

HGNC:10783 (SRSF2/SC35)

HGNC:3689 (FGFR2)

[86, 221]

lncRNA Growth arrest-specific 5 (GAS5)

Small nucleolar RNA host gene 5 (SNHG5)

HGNC:16355 (GAS5)

HGNC:21026 (SNHG5)

[87, 181]

a Accession number will not lead to the gene sequence targeted by NMD
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RNA binding ability are both required for NMD [124–126].

Once associated with the mRNA, the helicase domain of

UPF1 is believed to utilize the hydrolysis of ATP to remodel

the downstream mRNP, which is essential to facilitate

recycling of NMD factors [119, 121]. This would allow

efficient progression of exonucleolytic degradation of the

Table 2 Key characteristics of core human NMD factors

NMD Factor

(Uniprot ID)a
Cal.MW

(kDa)

Length

(aminoacids)

Alternative

names

Major cellular

localization

Direct NMD

interactors

Functions in NMD

UPF1 (Q92900-2) 123 1118 NORF1, RENT1,

smg-2

Steady state cytoplasmic,

nucleocytoplasmic

shuttling

UPF2, SMG1,

SMG6, SMG7

Direct RNA binding; helicase

activity; (phosphorylated)

N- and C-terminus are

binding platforms for

SMG5-7, PNRC2 and

decapping factors

UPF2 (Q9HAU5-1) 148 1272 RENT2, smg-3 Cytoplasmic UPF1, SMG1,

UPF3

Regulates UPF1 helicase

activity; stimulates SMG1

kinase activity; establishes

a physical link between

UPF1 and UPF3

UPF3a (Q9H1J1-1) 55 476 RENT3A, UPF3 Nucleocytoplasmic

shuttling

UPF2, EJC

(eIF4A3, Y14,

MAGOH)

Establishes a physical link

between UPF1-UPF2 and

the EJC; EJC-independent

function unknown

UPF3b (Q9BZI7-2) 56 470 RENT3B,

UPF3X

Steady state nuclear,

nucleocytoplasmic

shuttling

UPF2, EJC

(eIF4A3, Y14,

MAGOH)

Establishes a physical link

between UPF1-UPF2 and

the EJC; EJC-independent

function unknown,

functionally dominant over

UPF3a

SMG1 (Q96Q15-1)b 410 3661 ATX, LIP Cytoplasmic and nuclear UPF1, UPF2,

SMG8, SMG9

Phosphorylates the N- and

C-terminus of UPF1 at

various SQ and TQ motifs

SMG5 (Q9UPR3-1) 114 1016 EST1B Steady state cytoplasmic,

nucleocytoplasmic

shuttling

UPF1, SMG7 Forms a complex with

SMG7; recruits PP2A for

UPF1 dephosphorylation;

provides additional binding

affinity to phosphorylated

UPF1

SMG6 (Q86US8-1) 160 1419 EST1A Steady state cytoplasmic,

nucleocytoplasmic

shuttling

UPF1, EJC (via

EBM)

Binds phosphorylated, as

well as non-

phosphorylated UPF1;

executes endonucleolytic

cleavage of the target

mRNA

SMG7 (Q92540-2) 122 1091 EST1C Steady state cytoplasmic,

nucleocytoplasmic

shuttling

UPF1, SMG5 Forms a complex with

SMG5; required for

SMG5/7 binding to

phosphorylated UPF1;

recruits POP2 for mRNA

deadenylation

SMG8 (Q8ND04-1) 110 991 FLJ10587,

FLJ23205

Cytoplasmic and nuclearc SMG1, SMG9 Regulation of SMG1 kinase

activity; induces

inactivating

conformational changes in

SMG1

SMG9 (Q9H0W8-1) 58 520 FLJ12886 Cytoplasmic and nuclearc SMG1, SMG8 Regulation of SMG1 kinase

activity; required for

SMG1 complex formation

a All other information (e.g. length and calculated molecular weight) refer to the isoform indicated here with the Uniprot ID
b SMG1 Q96Q15-1 differs from the mostly used SMG1 clone ENA: BAB70696 by an insertion of 5 glycines at position 14
c Implied by subcellular fractionation and co-immunoprecipitation with SMG1
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mRNA once initial decay steps have taken place [127].

Alternatively, it was proposed that UPF1 is able to translo-

cate on, or thread in, the mRNA to bridge the physical

distance to downstreammRNP components, such as the EJC

[128]. This early ‘‘licensing’’ step would explain why a

distance-independent activation of NMD is observed, no

matter how far away the EJC is located from the upstream

terminating ribosome [55]. However, it was shown that both

the CH domain as well as a C-terminal region of UPF1 (SQ

region) can regulate the helicase activity, which ensures that

UPF1 clamps to the RNA and does not translocate in the

earlier stages of NMD [123, 129]. More specifically, the CH

domain directly interacts with the RecA2 domain, which

results in conformational changes that promote more

extensive RNA binding and thereby repress the helicase

activity [123]. In order to initiate the unwinding activity of

UPF1, the CH domain has to be removed from the helicase

core, which is achieved by the interaction with the C-ter-

minal UPF1-binding domain (U1BD) of UPF2 [122, 123].

This means in turn that if UPF1 needs to use its helicase

activity in the early steps of NMD, for example for finding a

downstream EJC, UPF2 already needs to be bound to UPF1

or the CH domain has to be pulled away by a as of yet

unknown mechanism or factor.

Multiple functions define the role of UPF2

The domain architecture of UPF2 consists of three tandem

MIF4G domains (middle portion of eIF4G), followed by the

U1BD [130–132]. Proteins containing MIF4G domains are

commonly involved in general mRNA metabolism, such as

the components of the nuclear or cytoplasmic cap-binding

complex (CBC) CBP80 and eIF4G, or the spliceosomal

protein CWC22 [130, 133–136]. Consistent with the role of

MIF4G domains to provide the surface for critical interac-

tions, the MIF4G-3 domain of UPF2 is required for the

interaction with UPF3 [137, 138]. This interaction establishes

a linear cascade ranging from UPF1 over UPF2 to UPF3

[122]. Whereas the exact function of the first two MIF4G

domains is not known, a structural role was proposed in which

these domains are required to form a ring-like scaffolding

structure required for NMD factor assembly [131, 139].

Moreover, conserved residues on the surface of the N-termi-

nal helices of MIF4G-1 of the S. cerevisiae Upf2 were shown

to be essential for NMD [140]. Although potential interaction

partners were identified, the function of these interactions in

the molecular pathway of NMD remains unclear [140].

However, this finding strengthens the possibility that the

MIF4G-1 and -2 domains of UPF2 play a role that goes

beyond providing the correct structural architecture for NMD.

UPF3 bridges decay inducing elements and NMD
factors

Higher eukaryotes contain two UPF3 paralogs with high

sequence similarity, UPF3a and UPF3b, the latter being

expressed from the X chromosome in mammals [103, 138].

In contrast, only one UPF3 protein exists in yeast and other
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Fig. 4 Overview of the core NMD factors UPF1, UPF2, UPF3b/a,

the kinase SMG1, and the decay inducing factors SMG5, SMG6, and

SMG7. The domain architecture for all factors, as well as the NMD-

specific functions of important regions are depicted here (for details,

see text). The most studied isoforms of NMD factors were chosen for

representation and match, except for SMG1, those indicated in

Table 2 (see footnote b for SMG1 discrepancy). UPF1 phosphory-

lation sites (SQ and TQ motifs) verified by various experimental

approaches (ultradeep HeLa cell phosphoproteome [222], in vitro

phophorylation assay with UPF1 peptides [106] or full length UPF1

[154] ) are indicated. The phosphosites connected to specific

recruiting functions are highlighted specifically
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invertebrates. UPF3b was found to be the dominant NMD

factor of both paralogs. However, a cross-regulatory circuit

was described, in which the stability of UPF3a is regulated

as a consequence of the competition of both UPF3 proteins

for binding to UPF2 [53, 141, 142]. Besides providing

robustness to NMD by functional redundancy, the advan-

tage of having two UPF3 paralogs becomes evident when

the expression of one paralog is cell-specifically down

regulated. Meiotic male germ cells are one such example,

since they inactivate the X chromosome transcriptionally

and, therefore, shut down UPF3b expression [141, 143].

UPF3b is a nucleocytoplasmic shuttling protein and con-

tains a conserved N-terminal RRM [103, 138]. The

N-terminal RRM domain is the binding site for the MIF4G-

3 domain of UPF2, but does not mediate RNA binding as

the name suggests [137]. A short linear motif termed EJC-

binding motif (EBM) at the C-terminus of UPF3b is

responsible for the interaction with a composite binding

site of the EJC formed by the core components eIF4A3,

MAGOH and Y14 [53, 122, 144, 145]. The exact molec-

ular function of UPF3 in NMD remains elusive. The

proposed role of UPF3b in mammals was the bridging of

the EJC and UPF1-UPF2; however, this does not explain

the function of UPF3 in EJC-independent NMD [122, 139,

146]. This is especially interesting in organisms that do not

employ EJC-enhanced NMD as the standard pathway, but

still rely on UPF3 for NMD. Examples are yeast, flies, and

worms, which either contain a very small number of

spliced transcripts, lack EJC proteins and the EBM in the

C-terminus of UPF3, or do not require EJC core compo-

nents for NMD [53, 94, 111, 147–149].

Regulation and mechanism of UPF1
phosphorylation

It was first observed in C. elegans that the phosphorylation

status of the phosphoprotein UPF1/SMG2 is regulated by

other core NMD factors. Of these, SMG1, UPF2/SMG3

and UPF3/SMG4 are required for phosphorylation,

whereas SMG5, SMG6, and SMG7 are involved in the

dephosphorylation of UPF1/SMG2, respectively [105].

SMG1 is a member of the phosphatidylinositol (PI) 3-ki-

nase-related kinase (PIKK) family and was confirmed to be

the kinase responsible for UPF1 phosphorylation [102, 105,

106, 150]. The 410 kDa human SMG1 has quite a complex

domain structure with N-terminal helical HEAT repeats,

followed by the FRAP, ATM, and TRRAP (FAT) domain,

a FKBP12-rapamycin-binding (FRB) domain, the catalytic

PIKK domain, and the very C-terminal FATC domain

[151]. Cryo-EM structures of SMG1 showed a thinner arm

formed by the HEAT repeat region and a globular head

consisting of the remaining C-terminal domains [151, 152].

SMG8 and SMG9, additional NMD factors and compo-

nents of the SMG1 complex (SMG1C), interact with the

HEAT repeat region, and regulate the kinase activity of

SMG1 by inducing conformational changes [113, 152,

153]. More specifically, SMG9 is required for SMG8

interaction with SMG1, which leads to a motion of the

SMG1 arm and a concomitant conformational change of

the head region. This conformational change has been

shown to repress kinase activity [113, 152]. Although it

was previously observed that the C-terminal domain of

SMG1 can interact with UPF1 and UPF2, recent structural

and biochemical studies refined this observation. It has

been shown that UPF1 interacts with the PIKK domain of

SMG1 via its helicase domain, whereas UPF2 binds the

FRB domain via its MIF4G-3 domain [131, 151]. The

concurrent interaction of SMG1 with a UPF2-UPF3b dimer

is possible, pointing to different interaction sites within the

MIF4G-3 domain of UPF2 for both interaction partners

[131]. UPF2 binding to the FRB domain of SMG1 is

believed to modulate and positively stimulate the kinase

activity [3, 74]. Although UPF2 is also phosphorylated

preferentially at S1046 by SMG1 in vitro, the functional

relevance of this phosphorylation site is unclear as it is not

essential for NMD [131].

Phosphorylated UPF1 recruits decay inducing
factors

SQ and TQ motifs in the extended and unstructured N-

and C-terminus of UPF1 are the preferred motifs for

phosphorylation by SMG1 [105, 106, 154]. Even though

phosphorylation was also reported for yeast Upf1, the

mechanism and the responsible kinase are different. Yeast

Upf1 lacks most of the clustered SQ and TQ motifs in the

C-terminus and no ortholog of SMG1 has been found

[155, 156]. The phosphorylation sites in mammalian

UPF1 act as recruitment platforms for the remaining core

NMD factors, SMG5, SMG6, and SMG7. The three

proteins share one common domain feature, a 14-3-3-like

domain which folds similar to 14-3-3 proteins and is able

to interact with phosphorylated peptides [157]. SMG5 and

SMG7 interact with their N-terminal 14-3-3-like domains

in a perpendicular back-to-back orientation in order to

form a heterodimer. This heterodimer exhibits an

uncommon arrangement compared to the normal head-to-

head interaction found in most 14-3-3 dimers [158–160].

The 14-3-3-like domain of SMG7 is mostly responsible

for the phosphorylation-dependent interaction between

phosphorylated amino acids (e.g. S1096) in the C-termi-

nus of UPF1 and the heterodimer SMG5-SMG7 [154,
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157, 159, 161]. The 14-3-3-like domain of SMG5, which

by itself is not able to interact with UPF1, is postulated to

provide additional binding strength and specificity [159,

161].

Initiation of exonucleolytic degradation

Early work showed that tethering of full length SMG7 or

the C-terminal proline-rich (PC) region to a reporter

mRNA induces mRNA degradation in a position-inde-

pendent and XRN1-/DCP2-dependent manner [162].

Recently, the direct interaction of the PC region of SMG7

with POP2, the catalytic subunit of the CCR4-NOT dead-

enylase complex has been shown [163]. Therefore, SMG7

recruitment to phospho-UPF1 induces deadenylation fol-

lowed by DCP2-mediated decapping and XRN1-catalyzed

degradation of the mRNA in the 50-30 direction [163]. Early

reports showed that UPF1 can associate with decapping

proteins like DCP2, the catalytic subunit of the decapping

complex. However, it was unclear if this interaction is

direct or mediated by another factor [164–167]. Recent

studies have identified the proline-rich nuclear receptor

coregulatory protein 2 (PNRC2) as an additional NMD

factor. PNRC2 interacts with UPF1 and the decapping

complex component DCP1, thereby providing a link for

deadenylation-independent decapping during NMD [168,

169]. Additionally, PNRC2 was reported to form a func-

tional complex with SMG5, which is devoid of SMG6 or

SMG7 and initiates NMD in a UPF1-dependent manner

when tethered to a reporter mRNA [170]. Recent data,

however, contradicts these observations, as no interaction

between PNRC2 and SMG5 could be detected and SMG5-

mediated degradation was reported to be strictly SMG7-

dependent. Therefore, the existence and contribution of a

PNRC2-SMG5 complex to NMD remains unclear [159].

Dephosphorylation of UPF1 is initiated by decay
factors

NMD is impaired under conditions where UPF1 accumu-

lates in the hyper- or hypo-phosphorylated form,

suggesting that a cycle of UPF1 phosphorylation and

dephosphorylation is essential for NMD activity [104–106,

150, 161]. Protein phosphatase 2A (PP2A) was identified

as the specific phosphatase essential for the dephosphory-

lation of UPF1. PP2A associates with the SMG5-SMG7

heterodimer via a direct interaction with SMG5 [104, 171].

SMG5 contains a C-terminal PilT N-terminus (PIN)

domain, which is potentially involved in the interaction

with PP2A. Deletion of the very C-terminal amino acids or

the replacement of a conserved aspartate at position 860 in

this domain increased phosphorylation of UPF1 [104]. PIN

domains are commonly found in proteins exhibiting

endonuclease activity. However, the catalytic triad nor-

mally consisting of three aspartate residues is mutated in

the SMG5 PIN domain and no endocleavage activity was

observed in vivo or in vitro [172–174]. Interestingly, D860

is the one remaining aspartate residue in the active site of

SMG5, which was implicated in the regulation of UPF1

phosphorylation status [104]. It is worth mentioning that

SMG6 associates with the PP2A complex as well, sug-

gesting that, in line with initial observations in C. elegans,

all three SMG5-7 proteins mediate UPF1 dephosphoryla-

tion by recruiting phosphatases [175].

Endonucleolytic cleavage is executed by SMG6

Studies to elucidate the degradation pathway of PTC-con-

taining mRNA in D. melanogaster S2 cells showed that the

knockdown of exonucleolytic machineries catalyzing

deadenylation (CCR4, CAF1, PAN2, PAN3), decapping

(DCP1, DCP2, LSM1), 30-50 (CSL4, RRP4, RRP6 and

SKI2), and 50-30 degradation (XRN1, RAT1) could not

stabilize reporter mRNA levels [176]. However, evidence

for PTC-dependent endonucleolytic cleavage was found

due to the accumulation of 30 and 50 fragments upon

depletion of the major 50-30 exonuclease XRN1 and com-

ponents of the 30-50 degrading exosome complex,

respectively [176]. In metazoans, SMG6 was identified as

the endonuclease responsible for cleavage of the NMD

targets in the vicinity of the PTC [176–178]. SMG6 con-

tains a C-terminal PIN domain similar to SMG5. In

contrast to SMG5, however, all catalytically important

residues are present in the active site and the SMG6 PIN

domain exhibits endonucleolytic activity in vitro [174].

Mutations of any of the catalytic aspartate residues, which

are required to coordinate divalent metal ions for the

nucleophilic attack of H2O on the phosphodiester bond of

the RNA, renders the protein inactive and abolishes

endonucleolytic degradation of NMD targets [55, 145, 174,

177–179]. Like SMG5 and SMG7, SMG6 contains a 14-3-

3-like domain, which is located centrally in the protein

[157]. Interestingly, the SMG6 14-3-3-like domain was

found to be monomeric as it neither forms homodimers nor

heterodimers with either SMG5 or SMG7 14-3-3-like

domains [154]. This domain was also suggested to bind

phosphorylated UPF1 and biochemical analysis showed

that mutation of the residues in the phosphopeptide binding

pocket abolished the interaction with UPF1 [161]. Simi-

larly, alanine exchange of T28 in the N-terminus of UPF1

greatly reduced the interaction with SMG6, suggesting that
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the 14-3-3-like domain of SMG6 interacts with the phos-

phorylated N-terminus of UPF1 [161]. The phospho-

dependent interaction of phosphorylated UPF1 with

SMG5-SMG7 was confirmed by recently reported in vitro

experiments [154]. However, no interaction of the isolated

14-3-3-like domain of SMG6 with hyperphosphorylated

UPF1 was observed [154]. This is in line with recent data

showing that phosphorylated UPF1 preferentially occupies

the 30 UTR of NMD targets in a complex with SMG5 and

SMG7, but not SMG6 [180]. However, the unstructured

region preceding the 14-3-3-like domain of SMG6 was

observed to bind UPF1 in a phospho-independent manner

in vitro [154]. This observation was supported by func-

tional studies of SMG6 tethering and UPF1

complementation assays performed in another recent pub-

lication [179]. Additionally, two EBMs were characterized

in the very N-terminus of SMG6, which, similarly to

UPF3b, mediate the interaction with the EJC [145]. Despite

initial observation that these motifs are crucial for NMD,

recent data suggests that they are dispensable for endo-

cleavage [55, 145]. Taken together, the exact mechanisms

by which SMG6 is recruited to a target mRNA remain

elusive, although at least three potentially redundant or

inter-dependent mechanisms exist: (1) recruitment to the

EJC via the EBMs, (2) interaction with various regions of

UPF1 in a phospho-independent manner, (3) phospho-de-

pendent binding of the 14-3-3-like domain to the

N-terminus of UPF1.

Interplay between exo- and endonucleolytic decay
during NMD

Recent high-throughput sequencing experiments showed

that SMG6-mediated endocleavage is the preferred NMD

degradation pathway compared to SMG7-mediated degra-

dation [181, 182]. However, other studies showed that the

knockdown of either SMG6 or SMG7 alone is not sufficient

to achieve NMD inhibition. Consequently, both proteins

need to be depleted, thereby shutting down both degrada-

tion pathways, to substantially increase reporter mRNA

level [159]. It is still unknown, whether both pathways

(initiated by SMG6 or SMG5/7) operate independently, or

are somehow connected and regulate each other. As the

factors required for the initiation of degradation share the

majority of their binding sites (N- and C-terminus of UPF1),

it is conceivable that there is a cross-talk between SMG5-7,

PNRC2 and/or DCP1/2. Interestingly, in vitro binding

studies showed that due to the phosphorylation-independent

interaction of SMG6 with UPF1, both SMG6 and SMG5/7

can in principle be accommodated simultaneously on

phosphorylated UPF1 [154].

Physiological functions of NMD factors

In lower eukaryotes, such as S. cerevisiae or C. elegans, an

NMD factor deficiency has only very mild effects at the

organismal level. In contrast, several mammalian NMD

factors are essential for normal embryonic development

and knockout mice display striking phenotypes [183]. For

example, murine Upf1 is essential for embryonic devel-

opment. Mouse embryos lacking Upf1 are only viable in

the pre-implantation period and die due to massive apop-

tosis soon after uterine implantation [115]. Furthermore,

Upf1-deficient blastocysts could be maintained in cell

culture for 5 days, but ultimately regressed showing mas-

sive apoptosis. Likewise, homozygous targeting of Upf1 in

ES cell lines was unsuccessful and Upf1 null cells were

never observed [115]. The importance of NMD for normal

embryonic development is underscored by data demon-

strating that mice deficient of Upf2 die in utero around

E3.5-E7.5 [184], whereas Smg1-deficient mice die before

embryonic day 12.5 [185]. The use of conditional Upf2

alleles enabled testing of the function of Upf2 in adult

animals [184, 186]. Induced loss of Upf2 is highly detri-

mental to a steady state adult liver, but only a relatively

minor phenotype is observed in Upf2 null fetal livers.

However, Upf2 null fetal livers do not undergo terminal

differentiation, which is incompatible with postnatal life

[186]. Furthermore, ablation of Upf2 in the hematopoietic

system results in a complete extinction of hematopoietic

stem cells and subsequent death of the affected organisms

[184]. It was suggested that NMD plays a particularly

important role in proliferating cells, because differentiated

cells were only mildly affected by the Upf2 knockout

[184].

Very recently, knockout mice lacking Smg6 have been

reported to show embryonic lethality at the blastocyst stage

[187]. However, a floxed Smg6 allele could be used to

delete the Smg6 locus in cultured embryonic stem cells

(ESC) and to establish Smg6D/D ESCs, which were mor-

phologically indistinguishable from control ESCs and

proliferated normally. While Smg6 appears to be dispens-

able for normal viability and self-renewal of ESCs, its

deletion blocks ESC differentiation in vitro and in vivo in a

c-Myc-dependent manner. Although it has been previously

suggested that the knockdown of NMD factors compro-

mises the survivability of mouse ESCs, the NMD factors

Smg1, Smg5, Upf1, and Upf2 could be knocked down

successfully using shRNA vectors [187]. However, these

ESCs showed a differentiation defect similar to that

observed for Smg6, indicating that NMD plays a general

role during ESC differentiation.

UPF1, SMG1, and SMG6 have reported functions

beyond NMD and it is difficult to disentangle to what
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extent the dramatic effects of the genetic knockout can be

attributed to the inhibition of NMD [188, 189]. However,

non-overlapping moonlighting functions of these factors

argue that the majority of the observed phenotypes indeed

reflect their role in NMD itself. Furthermore, it was shown

that SMG1- and UPF2-deficient cells displayed NMD-

specific changes in their transcriptome and many potential

NMD targets appear to be upregulated [184, 185]. In

summary, according to the prevailing view in the field, the

regulation of gene expression by NMD has an important

role during normal embryonic development and cellular

viability.

Human disorders associated with NMD factor
mutations

Upf3b

Mutations in the UPF3B gene were described in males with

mild to severe X-linked mental retardation [190]. Until

now, ten families carrying UPF3B mutations have been

analyzed and seven truncation mutations and three mis-

sense mutations in the UPF3B gene have been identified

[190–194]. A broad range of clinical symptoms, including

autism, schizophrenia, and facial dysmorphism have been

observed in patients with UPF3B mutations. The different

degree of mental retardation and of the other phenotypes of

patients with UPF3B mutations depend on the amount of

UPF3a, which is upregulated in response to UPF3b defi-

ciency [190]. However, the clinical manifestations of

UPF3B mutations demonstrate that the degree of UPF3a up

regulation is insufficient to completely compensate for the

lack of UPF3b. Hence, UPF3a only partially rescues NMD

in the absence of functional UPF3b and is a potential

modifier of the clinical phenotype of UPF3B patients [195,

196].

Upf2

The idea that misregulation of NMD predisposes for neuro-

developmental disorders is supported by an association

with heterozygous deletions of a genomic region that

include UPF2 [197]. In addition, a de novo missense

mutation in UPF2 has been identified in a patient with

schizophrenia [198].

Upf1

Recently, somatic mutations in the UPF1 gene have been

described in pancreatic adenosquamous carcinoma (ASC)

tumors [199]. All mutations were somatic in origin and not

detected in normal pancreatic tissues from the same

patients. ASC-specific point mutations clustered in two

regions of the UPF1 gene and many seem to trigger

alternative splicing of the UPF1 pre- mRNA, leading to the

expression of truncated UPF1 proteins. UPF1 mutations

appear to represent a signature of many pancreatic ASC

tumors, since no UPF1 mutations were found in non-ASC

pancreatic tumors and lung squamous cell carcinomas.

Furthermore, no mutations in other NMD genes (UPF2,

UPF3A and UPF3B) were detected in ASC tumors.

Although the molecular effects of UPF1 mutations remain

to be elucidated, it is very likely that they alter the effi-

ciency of NMD. This is supported by the observation that a

PTC-containing splice variant of p53, representing an

endogenous NMD substrate, was only detectably expressed

in tumor tissue.

Y14

TAR syndrome (thrombocytopenia with absent radius) is a

rare genetic disorder with 55 cases being described until

today [200]. Patients with TAR syndrome have low num-

bers of megakaryocytes, leading to a dramatically reduced

platelet count (hypomegakaryocytic thrombocytopenia). In

all cases the radius bone in the forearm is absent, but the

skeletal abnormalities show a high degree of variation,

from absence of radii to virtual absence of upper limbs.

The lower limbs, the gastrointestinal as well as the car-

diovascular systems may also show defects [201]. In most

cases, TAR syndrome manifests in patients having one

allele with a reduced expression of the RBM8A gene

(encoding the Y14 component of the EJC) in combination

with a heterozygous small deletion on chromosome 1q21.1

containing the RBM8A gene [200]. The reduced expres-

sion of the RBM8A gene is caused by low-frequency SNPs

either in its 50 UTR, or in the first intron. Two patients with

TAR syndrome did not have the chromosome 1q21.1

deletion. In these cases the 50UTR SNP was found in

combination with a 4-bp frameshift insertion at the start of

the fourth exon of the RBM8A gene and a nonsense

mutation in the last exon of RBM8A. Hence, the compound

inheritance of a null allele (deletion, frameshift-, or non-

sense mutation) and low-frequency noncoding SNPs in

RBM8A is the genetic cause of TAR syndrome [200]. Why

certain tissues require higher levels of Y14 and are there-

fore specifically affected by its reduced expression is

currently unclear. While these patients likely have reduced

amounts of EJCs due to the insufficiency of the Y14 pro-

tein, the effects on NMD will require further analysis.

eIF4A3

In 1992 Richieri-Costa and Pereira described a new auto-

somal-recessive syndrome characterized by mandibular
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median cleft associated with other craniofacial anomalies

and severe limb defects [202]. This syndrome, now referred

to as Richieri-Costa-Pereira Syndrome (RCPS), almost

exclusively affects families from Brazil. Different non-

coding expansions in the 50UTR of the mRNA encoding

the EJC core component eIF4A3 have been found in

patients [203]. The expansions are located in a region with

several repeat motifs. Homozygosity as well as compound

heterozygosity of different repeat expansions and a mis-

sense mutation have been described. Notably, the presence

of the expansions does not seem to influence processing of

the pre-mRNA, but rather reduces the abundance of the

eIF4A3 transcript by 30–40 % in patient cells compared to

control cells [203]. A similar reduction of the expression of

eIF4A3 by injecting specific morpholinos in zebrafish

embryos led to developmental defects in several craniofa-

cial cartilage and bone structures [203]. Nonetheless, it is

currently unclear how the partial loss-of-function of

eIF4A3 leads to the pleiotropic phenotype of RCPS.

Effect of NMD on human disease

Hereditary disorder

Many inherited disorders and several cancers have been

suggested to be caused by nonsense or frameshift mutations

[204]. More than 2400 genetic disorders have at least one

causative nonsense allele [205]. A recent meta-analysis

showed that nonsense mutations account for approximately

11 % of all described gene lesions causing human inherited

disease. Furthermore, they represent approximately 20 %

of disease-associated single-basepair substitutions [206].

For many diseases caused by nonsense mutations, NMD

acts as a modifier of the clinical phenotype and eliminates

mutated transcripts, which encode C-terminally truncated

proteins [207]. Such truncated proteins may have domi-

nant-negative effects and, therefore, may be deleterious to

the cell. This observation has been made for b-thalassemia,

which is caused in many cases by nonsense mutations in

the first or second exon of the b-globin gene. Due to the

activity of NMD only very low levels of mutant b-globin
mRNA are present in red blood cells of heterozygous

individuals, which are clinically usually asymptomatic.

This can be explained by sufficient amounts of b-globin
that are produced from the normal allele. In contrast,

nonsense mutations in the last exon of b-globin escape

NMD and high levels of mutant mRNA are translated into

truncated b globin. The proteolytic system of the red blood

cells fails to degrade these truncated b chains, causing a

clinical phenotype in the heterozygote called thalassemia

intermedia [208]. A similar effect has been documented in

many other diseases [207, 209].

In recent years it has become clear that the protective

function of NMD is only one side of the coin. Indeed,

NMD can worsen the clinical manifestation of genetic

disorders, in which the reduced expression of partially

functional proteins leads to haploinsufficiency. For exam-

ple, nonsense mutations in the dystrophin gene, which

activate NMD and preclude the synthesis of truncated

dystrophin protein, cause a severe form of Duchenne

muscular dystrophy (DMD). In contrast, some mutations in

the dystrophin gene escape NMD and produce partially

functional C-terminally truncated dystrophin protein.

These mutations are usually associated with a clinically

less severe disease, termed Becker muscular dystrophy

[210].

Treatment of genetic disorders by targeting NMD

A large number of patients are affected by nonsense

mutations, but only a limited amount of therapeutic treat-

ments are available. In many cases, disease-causing

nonsense mutations exert two effects, namely accelerated

mRNA degradation due to NMD and translation of a

truncated ORF. Hence, potential treatment strategies would

require translational read-through by nonsense suppression,

inhibition of NMD, or both. Since it may not be necessary

to restore normal gene expression levels in order to elim-

inate the disease [211], translational read-through at stop

codons without inhibiting NMD is currently assumed to be

the favorable approach. Notably, a drug that is able to

induce translational read-though at a given nonsense

mutation may potentially be used for the treatment of other

nonsense mutations and could, therefore, be used to treat

many different diseases caused by nonsense mutations

[205].

Currently only a few approaches have been specifically

tested to treat diseases caused by nonsense mutations.

Originally, aminoglycosides were used due to their ability

to cause read-through of translation termination codons by

recognition of a near-cognate tRNA and misincorporation

of an amino acid [212]. After initial tests of aminoglyco-

sides in cystic fibrosis (CF) cell culture models [213],

clinical trials with gentamycin were carried out in patients

suffering from CF or DMD. These trials were in principle

successful and confirmed that the administration of

aminoglycosides in vivo is capable of restoring protein

function. However, the high doses of gentamycin required

for a prolonged effect may have adverse effects, and

therefore limits the application as treatment for patients

[214].

An alternative for aminoglycosides is the drug Ataluren,

a small-molecule compound formerly known as PTC124

[205]. Ataluren has been reported to selectively promote

the read-through of premature termination codons, while
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not affecting normal stop codons [215]. However, the

molecular mechanism of the compound has recently been

challenged [216, 217] and its future prospects will largely

depend on its efficacy in currently ongoing clinical trials.

Concluding remarks

NMD plays a pivotal role during mammalian gene

expression. It controls not only the fidelity of mRNA

expression, but also regulates the expression of many genes

at a post-transcriptional level. NMD employs a sophisti-

cated machinery of conserved factors, which act at

different steps (nuclear and cytoplasmic) of gene expres-

sion. Factors involved in NMD are essential for embryonic

development in mammals and regulate the symptoms of

inherited and acquired genetic diseases. However, a large

portion of the NMD pathway and its specific activation

remains elusive and needs to be addressed in future studies.
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