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Abstract Kidneys are highly complex organs, playing a

crucial role in human physiopathology, as they are impli-

cated in vital processes, such as fluid filtration and

vasomotor tone regulation. There is growing evidence that

gap junctions are major determinants of renal phys-

iopathology. It has been demonstrated that their expression

or channel activity may vary depending on physiological

and pathological situations within distinct renal compart-

ments. While some studies have focused on the role of

connexins in renal physiology, our knowledge regarding

the functional relevance of pannexins is still very limited.

In this paper, we provide an overview of the involvement

of connexins, pannexins and their channels in various

physiological processes related to different renal

compartments.
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Abbreviations

ATP Adenosine triphosphate

Cx(s) Connexin(s)

EDHF Endothelium-derived hyperpolarizing factor

eNOS Endothelial nitric oxide synthase

GJ(s) Gap junction(s)

HC(s) Hemichannel(s)

JGA Juxtaglomerular apparatus

KO Knock-out

MEJ(s) Myoendothelial junction(s)

MR Myogenic response

NO Nitric oxide

Panx(s) Pannexin(s)

TGF Tubuloglomerular feedback

VSMC(s) Vascular smooth muscle cell(s)

Introduction

Although kidneys only represent about 0.4 % of the total

body weight, they receive 20 % of the cardiac output. This

high flow is essential for refined regulation of body fluid

volumes and solute concentrations, which in turn are

dependent on tight control of glomerular filtration and

excretory functions of the kidneys. Physiological and

pathological processes involved in kidney function and

dysfunction are as complex as its structure. Since renal

function involves numerous interactions between same and

different cells types within the same and/or among distinct

renal compartments, it was inevitable to consider gap

junctions (GJs) in this context. The presence of connexins

(Cxs) in the kidney was first detected in the early 1960s in

humans by electronic microscopy [1]. Since then, several

studies demonstrated the expression of some members of

the Cx family in all renal cell types in humans and rodents

[2–8]. Although impairment of GJs and hemichannels

(HCs) has been reported to exert substantial impact in renal

diseases [9–15], our knowledge regarding the involvement

of GJs in renal physiology is still limited. In addition, even

though recent studies have associated high or decreased

pannexin (Panx) expression with a wide range of human

diseases, their role in kidney is poorly known [16].

Recently, two members of the Panx family have been

identified in renal vasculature and the tubular compartment
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[17, 18]. However, the field of the Panx biology is quite

young and the role of Panxs in renal function is not elu-

cidated. In this review, we will first briefly discuss the

expression of Cxs and Panxs in distinct renal compartments

and then focus on their potential roles in renal physiology.

Connexin and pannexin distribution in the kidney

Previous studies reported that mRNA transcripts of about

half of the Cx family are expressed in human and rodent

kidney, including Cx26, Cx30.3, Cx31, Cx32, Cx37, Cx40,

Cx43, Cx45 and Cx46 [8, 19]. However, Cx mRNA and

protein expression do not always correlate, implying that

mRNA data should be routinely verified at the protein

level. Unfortunately, several currently used Cx antibodies

display limitations and have generated conflicting data

about Cx expression and localization depending on the

experimental settings. Although most studies have focused

on the contribution of vascular Cx proteins to renal

hemodynamics, accumulating evidence suggests an essen-

tial physiological role for these proteins in tubular

epithelial function. Regarding the Panx family, our

knowledge is still limited, as today there are only two

studies reporting their expression throughout different renal

compartments [17, 18]. It should be noted though that Panx

localization in some experiments was performed in paraf-

fin-embedded tissues [17]. Flaws, such as lack of a strong

signal in immunofluorescence and poor antigenicity com-

pared to frozen sections, could mean that expression levels

and localization sites of Panx proteins are underestimated.

Localization of Cx and Panx isoforms within distinct renal

compartments is illustrated in Fig. 1.

Renal vasculature

Cx37, Cx40, Cx43 and Cx45 are expressed in the renal

vasculature, forming not only endothelial-to-endothelial or

smooth muscle-to-smooth muscle junctions, but also

myoendothelial coupling within afferent and efferent

arterioles [7, 20, 21]. Panx1 was recently detected mainly

in the endothelium of renal arteries and to a lesser extent in

smooth muscle cells [17]. In contrast, no Panx isoforms

were found at the myoendothelial junctions [17].

Renal endothelium

Some studies reported endothelial expression of Cx40,

Cx37 and Cx43 in the entire renal vasculature of rodents.

Preglomerular vasculature strongly expresses Cx40 and

Cx37, while production of Cx43 is weaker and irregular

[19]. In postglomerular vessels, some discrepancies in

endothelial Cx expression between mice and rats have been

described. For instance, endothelial cells of murine efferent

arterioles express only Cx43 [7], whereas the same cells

harbor Cx37 in rats [21]. Moreover, vasa recta expresses

Cx37 and Cx40, but not Cx43 in mice, whereas all three Cx

species are present in its rat counterpart [19]. Panx3 was

found to be expressed in the endothelium of renal arterioles

[17].

Vascular smooth muscle cells

In contrast to renal endothelium, Cx expression in vascular

smooth muscle cells (VSMCs) is less clear. Nevertheless,

Cx45 was suggested to be the major Cx isoform expressed

in these cells. Mice in which the Cx45 gene-coding region

was replaced by lacZ showed a strong staining in the media

of interlobular, efferent and afferent arterioles [22]. Some

studies showed Cx37 and Cx43 presence in renal VSMCs

[7, 12, 23], but others failed to reproduce these findings

[19].

Glomerulus

Glomerular endothelium

Cx40 has been detected in glomerular endothelial cells [21,

24]. In addition, Cx37 expression was noticed in intra-

glomerular capillaries, while expression of Cx43 was only

minor [12, 14, 25]. Furthermore, Panx3 presence has been

seen in these cells [17].

Mesangial cells

The entire intraglomerular mesangium expresses Cx40.

Cx37 was found only in mesangial cells at the vascular

pole of the glomerulus, while Cx43 was detected in

mesangial cells of rat glomeruli [7, 13, 24].

Podocytes

Cx43 is abundantly produced by human and rat podocytes

[10, 13], but is only present in small quantities in mouse

podocytes (unpublished observations). In addition, a single

study reported Cx45 staining in peripheral glomerular cells,

presumably podocytes [26].

Juxtaglomerular apparatus

With the exception of macula densa cells, the juxta-

glomerular apparatus (JGA) has been shown to be

extensively coupled by GJs in humans and rodents [27, 28].

Interestingly, GJs are more numerous between the renin-

containing granular cells than between other parts of

afferent arterioles [5]. Cx40 is the predominant Cx species
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in the JGA, expressed by both granular and extra-

glomerular mesangial cells. The same cells also display

Cx37 expression, albeit only minimally [21]. Cx45 was

also found in renin-producing JGA cells in mice [20]. The

expression of Cx43 is a matter of debate, as unlike previous

studies [19, 24, 29, 30], only Kurtz and collaborators

reported that Cx43 is expressed in the JGA of adult mice

[27]. Recent studies also show the expression of Panx3 as

very distinct punctuate stains throughout the JGA, whereas

Panx1 and Panx2 are undetectable [17].

Tubules

In situ and ex vivo reverse transcriptase-polymerase chain

reaction analysis revealed expression of many Cx isoforms

in tubular cells, including Cx30, Cx36, Cx37, Cx40, Cx43,

Cx45, Cx46 and Cx50 [19]. However, in many cases,

immunohistochemistry experiments either could not con-

firm these results or provided conflicting data. It is of

interest that the expression pattern of these Cx species is

cell type-specific. For instance, in cortical collecting ducts,

Cx37 is expressed by principal cells basolaterally, whereas

Cx30 in the same segment is restricted to intercalated cells

at the luminal surface in the form of HCs [25, 31]. A recent

study showed Panx1 expression in several tubular seg-

ments, including proximal tubules, thin descending limbs

and collecting ducts, along their apical cell membranes

[19].

Role of connexins and pannexins in renal
physiology

Gap junctions and renal microcirculation

Cx proteins contribute to renal microcirculation control,

most likely due to their ability to regulate renal vascular

conductance, endothelium-derived vasodilatation and

autoregulatory mechanisms (Table 1).

Vascular-conducted responses

Vascular-conducted responses are characterized by a dis-

tant propagated vasoconstriction or vasodilatation initiated

Fig. 1 Schematic localization of connexin and pannexin isoforms in

the kidney (AA, afferent arteriole, ATL ascending thin limb of the loop

of Henle, CCD cortical collecting duct, CNT connecting tubule, DCT

distal convoluted tubule, EA efferent arteriole, GC glomerular

capillaries, JGC juxtaglomerular cells, MC mesangial cells, MCD

medullary collecting duct, PC podocytes, PT proximal tubule, TAL

thick ascending limb of the loop of Henle)
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by a local electrical or metabolic stimulation of an arteri-

ole. These responses are most likely spread through GJs in

the vascular beds and play a major role in the regulation of

blood flow in microcirculation and maintenance of vascular

resistance. Propagated vasoconstriction in kidney takes

place in renal microcirculation mainly in afferent and

interlobular arterioles [32, 33]. It has been shown that

propagated vasodilatation after acetylcholine application,

but not vasoconstriction, is partially disturbed in Cx40

knock-out (KO) mice [34]. In addition, potassium chloride-

propagated vasoconstriction is blunted in Cx37 KO mice,

indicating a high level of specialization and selectivity of

Cx subtypes for different metabolic signals [35]. Electrical

signals can also produce the same response by eliciting

calcium waves passing through GJs. Electrical stimulation

of preglomerular arterioles from Cx40 KO mice fail to

induce this response [8]. Moreover, in the same study,

calcium response in isolated preglomerular vessels from

rats was blocked by GJ inhibitors. Although both smooth

muscle cells and endothelial cells are responsible for this

response, it appears that in renal microcirculation,

endothelial cell function is more GJ-dependent, since these

cells are highly coupled via Cx proteins [36]. In a recent

study using an ex vivo rat kidney perfusion technique, the

effect of Cx-blocking peptides infusion on phenylephrine-

induced vasoconstriction was examined. The authors

showed that Cx43 plays a pivotal role in regulating renal

vascular resistance, as administration of 43Gap26 signifi-

cantly elevated perfusion pressure. In addition, infusion of
40Gap27 considerably suppressed the increase in perfusion

pressure induced by phenylephrine, indicating that Cx40

attenuates phenylephrine-induced vasoconstriction [37].

Finally, blocking peptides directed against Cx37, Cx40,

Cx43 or Cx45 had no effect on conducted calcium

responses in isolated rat interlobular arteries [38].

Endothelium-derived vasodilatation

It is well known that endothelium can change vascular wall

contractility either by releasing vasoactive agents, such as

prostaglandins and nitric oxide (NO), or by radial spread-

ing of the initial endothelial hyperpolarization to the

vascular media, resulting in muscle relaxation. The latter

type of vasodilation has been attributed to endothelium-

derived hyperpolarizing factor (EDHF) and was described

to be dependent on myoendothelial junctions (MEJs) [39,

40]. Blocking Cx40 and Cx43 channel function with
40Gap27 and 43Gap27, respectively, inhibited EDHF in

isolated rat renal arteries [41]. Of note, under these

experimental conditions, the inhibitory effect of 43Gap27

was greater than that of 40Gap27. By contrast, in human

mesenteric arteries, myoendothelial GJ activity was con-

sistent with Cx37 expression and distribution [42].

Endothelium-derived vasodilatation is also related to NO

activity. NO is produced from L-arginine by the action of

endothelial nitric oxide synthase (eNOS) and diffuses to

smooth muscle cells, thereby mediating vasodilatation

[43]. A direct link between Cx40 and eNOS expression and

function has been well established, since Cx40 KO mice

showed reduced expression of eNOS, which possibly

increases the vascular resistance via T-type calcium

channels [44]. A recent study provided evidence that both

Cx40 and Cx37 participate in eNOS regulation in vivo. In

mice subjected to the 1-kidney 1-clip procedure, a model of

volume-dependent hypertension, the interaction of Cx40

and Cx37 with eNOS was enhanced, resulting in increased

NO release. Mice lacking Cx40 featured decreased levels

of eNOS [45]. Moreover, NO itself had opposite effects on

different Cxs expressed within the vascular wall, as it

decreased the functional coupling of Cx37-consisting GJs,

whereas it increased de novo formation of Cx40-containing

GJs [46]. Regarding Cx43 and NO interaction, it has been

hypothesized that endothelial Cx43 plays a key role in the

production and/or action of NO. Indeed, endothelial cell-

specific Cx43 KO mice are hypotensive and bradycardic

compared to heterozygous or floxed counterparts. This

hypotension is associated with elevated plasma levels of

NO as well as angiotensin I and II [47]. By contrast, Theis

and colleagues showed that mice lacking endothelial Cx43

do not exhibit any blood pressure abnormalities and

Table 1 The role of major connexin and pannexin isoforms in renal functions

VCR EDV Renal autoregulation Tubular function Blood pressure

Cx37 11 1 111 1 1

Cx40 111 ??? ??? – ???

Cx43 – ?? ?? – ?

Cx30 – – – ?? –

Panx1 – – ? ?? ?

Panx3 – – ± – ?

EDV endothelium-derived vasodilatation, VC vascular-conducted responses
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respond normally to NG-nitro-L-arginine, a potent NO

synthase inhibitor [48]. These discrepancies may be due to

differences in the genetic background of the mouse strains

used.

Autoregulation of renal blood flow

Autoregulation of renal blood flow describes the capacity

of the vascular bed to maintain its perfusion constant

despite variations in levels of arterial pressure. This func-

tion is particularly pronounced in the kidney and is based

on two major mechanisms, namely tubuloglomerular

feedback (TGF) and myogenic response (MR). TGF is a

highly regulated process leading to vasoconstriction of

afferent arterioles in response to increased luminal con-

centration of sodium chloride at the macula densa in the

early distal tubule. The concentration of sodium chloride

reaching the macula densa is dependent on the rate of

tubular flow, with larger flow resulting in a higher distal

tubular concentration. Increased arterial pressure will

enhance tubular flow due to enhanced glomerular filtration

and reduced proximal tubular reabsorption. This will raise

the sodium chloride concentration at the macula densa and

cause afferent arteriolar vasoconstriction, providing

restoration of filtration and autoregulation of renal blood

flow [49]. Molecular mechanisms involved in TGF regu-

lation have been extensively studied. Several studies

support the concept that initial absorption of sodium

chloride through sodium–potassium-chloride cotrans-

porters results in adenosine triphosphate (ATP) release

from macula densa cells, most likely mediated through

changes in intracellular concentrations of calcium, chloride

and sodium, depolarization or cell swelling [50]. There are

two hypotheses regarding the role of ATP release. The first

concept says that ATP directly activates specific ATP

purinoceptors, such as P2X1, located on afferent arterioles

[51]. The second concept supports that ATP is converted to

adenosine by ectonucleotidases in the interstitial space of

the JGA, which then acts on A1 adenosine receptors of the

P1 group of purinoceptors. Activation of these receptors

results in increased levels of intracellular calcium in

macula densa cells. Calcium ions can then spread rapidly to

all JGA components, provoking vasoconstriction of affer-

ent arterioles and inhibition of renin release [51, 53]. The

contribution of Cxs to TGF has been studied using Cx-

blocking peptides, mainly in rats. Indeed, autoregulation of

renal blood flow and glomerular filtration rate in the whole

kidney required GJ coupling, involving Cx37 and Cx40,

but not Cx43. This contribution requires ATP release,

rather than direct intercellular diffusion of calcium waves

[54, 55]. These observations are in line with immunohis-

tochemical studies, showing expression of Cx37 and Cx40

in renin-secreting cells of the JGA, Cx40 in

extraglomerular mesangial cells, but absence of Cx43 from

both these sites [21]. Expression of Panx3 has also been

recently reported in the JGA of mice as well as in

endothelial cells of renal cortical arteries [17]. Given that

Panx3 has been shown to release ATP, a role for TGF

regulation via purinergic signaling cascades cannot be

excluded [16]. In contrast to previous studies [21, 55, 56],

Piao and colleagues showed a pivotal role of Cx43 in

perfusion pressure [37]. These discrepancies in the

involvement of different Cx species in renal autoregulatory

mechanisms could be related to different experimental

settings and the stability of different blocking peptides.

Cx40 KO mice were found to have an impaired steady-

state autoregulatory response to a steep increase in renal

perfusion pressure [57]. Interestingly, mice in which Cx40

is replaced by Cx45 have weaker steady-state autoregula-

tion and TGF than wild-type mice, but stronger than Cx40

KO mice, suggesting that Cx45 can partially mimic Cx40

functions [26].

The second mechanism in renal autoregulation is MR.

Smooth muscle cells contract in response to stretching

force [58]. In the case of VSMCs, a rise in intraluminal

pressure leads to vasoconstriction, which not only over-

comes the passive distension of the elastic vascular wall,

but, at least in small resistance vessels, also reduces the

diameter below the one at lower pressure. This enhances

vascular resistance at higher pressure and allows for

autoregulation of flow [58]. The relationship between GJs

and MR in the kidney has not been fully determined.

However, in isolated rat mesenteric arteries, inhibition of

GJ activity by Cx37 and Cx43 blocking peptides attenuates

MR. This effect is related to GJs between VSMCs, which

may contribute to this response by controlling early sig-

naling events, such as coordinating smooth muscle cell

depolarization or mechanosensitivity of VSMCs, but not

synchronized calcium signaling [59]. Moreover, isolated

cerebral arteries treated with nonselective GJ uncouplers

showed inhibited myogenic tone [60]. However, in several

vascular beds, endothelium removal resulted in the loss of

synchronized calcium oscillations in VSMCs [61]. This

may suggest a possible role of MEJs, connecting the two

cellular layers, in controlling MR by coordinating syn-

chronized calcium signaling.

Gap junctions and tubular function

The main role of the renal tubular compartment is the

reabsorption of the glomerular filtrate. Reabsorption relies

on a highly regulated set of physiological processes,

involving specific primary and secondary active transport

mechanisms that accomplish the return of a wide variety of

nutritionally important ions or molecules from the plasma

filtrate as it passes along the tubular system of the nephron.
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These processes are mediated by several transporters

located in the tubular surface and are energy-consuming.

The function of epithelial Cxs could be related to

purinergic P2 receptors activation and/or propagating the

effect of this activation. Purinergic P2 receptors have been

suggested to contribute to tubular function, as they are

expressed nearly by all nephron segments [62]. Mechanical

stimulation is known to promote release of nucleotides,

such as ATP, and trigger autocrine and paracrine activation

of purinergic P2 receptors in renal epithelia regulating salt

and water reabsorption. Activation of purinergic P2

receptors was proposed to be responsible, at least partially,

for the flow-induced intracellular calcium response in the

renal tubule [63]. Increased intracellular calcium levels

affect different tubular cells in different ways. Thus, prin-

cipal cells of cortical collecting ducts are responding to

luminal and to a lesser extent to basolateral ATP by

inhibiting sodium reabsorption via reducing sodium chan-

nel nonneuronal 1 activity [64]. In inner medulla,

purinergic P2 receptors activation was proposed to balance

the effect of vasopressin in urine concentration [65]. At

present, there is some evidence to support a relation

between Cx30 and epithelial function in distal nephron

segments. Sipos and colleagues found that the luminal HCs

formed by Cx30 have an integral role in pressure natri-

uresis by releasing ATP into the tubular fluid, which

inhibits salt and water reabsorption [66]. In addition, Cx30

KO mice display hyperactive sodium channel nonneuronal

1 activity due to diminished ATP-mediated inhibition [67].

The role of other epithelial Cxs in tubular function is still

unknown. However, rats treated with low-salt diet showed

a significant increase in Cx37 levels in renal cortex, which

may indicate a functional role for this Cx species in renal

tubules [25]. In addition, a recent study from Hanner and

collaborators demonstrated a major role for Panx1-based

channels in ATP release. Indeed, urinary ATP levels were

reduced by 30 % in Panx1 KO mice compared to wild-type

mice. Since Panx1 was located at the apical membrane of

various tubular segments, the authors suggested that

Panx1-based channels may regulate ATP release and fur-

ther participate in the control of renal epithelial fluid,

electrolyte transport and vascular functions via purinergic

signaling [18].

Gap junctions and blood pressure

The kidney regulates blood pressure through two distinct

mechanisms, namely by means of the control of salt and

water excretion, and via the control of renin secretion.

Since these processes require highly coordinated interac-

tions between vascular and tubular cells, several studies

have considered a role for GJs in this context. The role of

Cx43 in the regulation of blood pressure is still a matter of

debate. Mice with endothelial deletion of Cx43 were

reported to be either hypotensive or normotensive [47, 48].

However, in hypotensive mice, decreased blood pressure

was not associated with renin secretion. Along the same

line, intrarenal infusion of Cx43 blocking peptides exerted

no influence on renin secretion or on blood pressure [21].

In contrast to these reports, it has been demonstrated that

replacement of Cx43 by Cx32 in mice leads to lower

concentrations of circulating renin associated with slightly

decreased blood pressure. Interestingly, in the kidneys of

these mice, the number of renin-expressing cells was

reduced [68]. Even though Cx37 is expressed in the pre-

glomerular endothelium and by renin-secreting cells, Cx37

KO mice showed normal blood pressure and renin secre-

tion [69]. However, intrarenal infusion of Cx37 blocking

peptides in rats showed an acute increase in both renin

secretion and blood pressure [69]. In addition, it has been

reported that renin expression, plasma renin activity and

blood pressure were all increased in genetically engineered

mice with reduced JGA Cx45 expression [20].

In contrast to the above-mentioned Cxs, different studies

corroborate that Cx40 is highly important for the control of

renin secretion and hence of blood pressure. Intrarenal

infusion of Cx40 blocking peptides enhanced both renin

secretion and blood pressure in rats, while Cx40 KO mice

were found to be hypertensive [21, 70]. Of note, these mice

showed impaired autoregulation of renal blood flow. Under

normal conditions, elevated blood pressure should suppress

renin secretion from the kidneys as a negative feedback,

allowing preservation of normal blood pressure. This control

was defective in the absence of Cx40. Interestingly, selective

deletion of Cx40 in renin-producing cells, but not in

endothelium, fully mimics the phenotype of global Cx40

deletion [71]. In addition, generation of mice carrying a loss-

of-mutation in Cx40 with impaired pore function, which has

been recently discovered in humans, showed a similar renin

phenotype to that of Cx40 KO mice [72]. The molecular

mechanisms via which GJs control renin secretion are poorly

known. Some studies suggest that calciummay be a relevant

signal passing through Cx40-based GJs in the control of

renin secretion [52]. As Panx3 expression has been recently

described within the JGA [17], its implication in the regu-

lation of blood pressure cannot be ruled out. Generation of

Panx3 KO mice would be useful in this respect.

Conclusions and perspectives

There is accumulating evidence that GJs play crucial role

in renal physiology, as alteration of GJ activity con-

tributes to structural and functional damage, leading to

several kidney diseases [12–15, 73]. In this paper, the

major relevant processes that are indispensable for the
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maintenance of renal homeostasis and function have been

discussed. Despite the already existing tools, such as Cx

KO mice and Cx-blocking peptides, our knowledge about

Cx implication in renal physiology is still limited.

Moreover, whether required communication for renal

homeostasis occurs via GJs or HCs is currently poorly

understood [19, 36, 74]. The recent development of

specific HC blocking peptides will allow us to further

study molecular mechanisms underlying Cx signaling in

renal functions [75–77]. Furthermore, cell type-specific

deletion or overexpression of different Cx isoforms in

mice will be a valuable approach to study the role of

these proteins in renal physiological processes. The role

of the Panx family in renal physiology is still unclear,

although some studies reported their involvement in

several diseases in humans and rodents. The use of Panx-

deficient mice will be of major interest to further increase

our knowledge in Panx channel biology in the kidney.
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