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Abstract Human endogenous retroviruses (HERVs) and

related genetic elements form 504 distinct families and

occupy *8 % of human genome. Recent success of high-

throughput experimental technologies facilitated under-

standing functional impact of HERVs for molecular

machinery of human cells. HERVs encode active retroviral

proteins, which may exert important physiological functions

in the body, but also may be involved in the progression of

cancer and numerous human autoimmune, neurological and

infectious diseases. The spectrum of related malignancies

includes, but not limits to, multiple sclerosis, psoriasis, lupus,

schizophrenia, multiple cancer types and HIV. In addition,

HERVs regulate expression of the neighboring host genes

and modify genomic regulatory landscape, e.g., by providing

regulatory modules like transcription factor binding sites

(TFBS). Indeed, recent bioinformatic profiling identified

*110,000 regulatory active HERV elements, which formed

at least *320,000 human TFBS. These and other

peculiarities of HERVs might have played an important role

in human evolution and speciation. In this paper, we focus on

the current progress in understanding of normal and patho-

logical molecular niches of HERVs, on their implications in

human evolution, normal physiology and disease. We also

review the available databases dealing with various aspects

of HERV genetics.
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Introduction

Human endogenous retroviruses (HERVs) and related

genetic elements occupy *8 % of human genome.

Genomic copies of HERVs are of particular interest
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because in addition to functional viral genes, they have

multitude of regulatory DNA regions serving as promoters

[1–3], enhancers [4, 5], polyadenylation signals [6, 7],

insulators [8, 9] and binding sites for various nuclear pro-

teins [2, 10–13]. Many families of HERVs exhibit high

transcriptional activity in human tissues [1, 14–17].

HERVs are believed to be remnants of numerous retroviral

infections [18–20] that occurred repeatedly during primate

evolution [18, 21]. This was supported by the artificial

reconstruction of an active HERV element [20]. This ele-

ment successfully amplified via an extracellular pathway

involving retroviral particle exit from the cell and rein-

fection, thus recapitulating ex vivo the molecular events

responsible for its dissemination in the host genomes.

HERVs fixed in the genome and became inheritable

because their insertions occurred in the germ cell lineage

[22–25].

HERVs are composed of sequences related to retroviral

genes and are flanked from both ends by *1 kb long so-

called long terminal repeats (LTRs). A structure of an LTR

comprises functional enhancers [26], promoters and

polyadenylation signals [18] normally used for retroviral

gene expression. However, the LTRs may drive the tran-

scription of adjacent host genomic sequences [27, 28].

Most of HERVs reside in the human genome as solitary

LTRs arisen due to homologous recombinations between

the two 50- and 30-flanking LTRs of the same full-length

HERV elements [29–31]. However, some full-length

HERVs express viral genes in a variety of human tissues

[32] and even form virus-like particles [33, 34]. Expression

of HERV-encoded proteins is directly or indirectly asso-

ciated with progression of many human diseases [35].

In this review, we tried to elucidate the current progress

in the identification of the HERV-linked genomic features

dealing with the human gene expression. We consider

structure of HERVs, their protein-coding potential, their

influence on the transcription of host genes, their impli-

cation in human diseases and evolutional aspects of HERV

accumulation, mutation and selection. A special attention is

paid to the databases featuring functional peculiarities of

HERVs.

Structure of HERVs

Genomic structure

Human endogenous retroviruses are represented in the

human genome by 504 families including *520,000

individual members, which make up *8 % of human

DNA. Genomic structure of a full-length HERV includes

retroviral genes, typically Gag, Prot, Env and Pol, and

flanking *1 kb long sequences termed long terminal

repeats (LTRs). Most of the HERVs exist in the form of

solitary LTRs, arisen most probably due to homologous

recombinations between LTRs of full-length elements [29–

31]. In turn, recombinations between the different HERV

elements may cause further genomic rearrangements

including copy number variation (CNV) of known human

genes. For example, this mechanism may be responsible

for at least 78 CNV cases encompassing known human

genes [36].

Evolutionary recent HERVs have more intact open

reading frames (ORFs) and less mutated regulatory

sequences, as compared to the ancient elements [37]. The

most recent endogenous retroviral group of human gen-

ome, HERV-K/HML-2 (ERVK), comprises at least fifty-

five full-length members (termed proviruses) [21] and

*2000 solitary LTRs [38].

Having a variety of potential regulatory sequences such

as promoters, enhancers, transcriptional factor binding

sites, splice sites and polyadenylation signals, LTRs are

believed to possess the major transcriptional regulatory

potential of endogenous retroviruses. Solitary LTRs are

differentially methylated in different human tissues [39–

41], they may specifically bind host cell nuclear proteins

[42, 43], serve as tissue-specific transcriptional promoters

and enhancers [4, 26, 39, 44], and, finally, are transcribed

in vivo in many tissues [1, 45–48]. In addition, LTRs may

contribute to the host gene regulation network by acting in

cis (by providing regulatory elements) or in trans (by

driving expression of antisense transcripts) [30, 48–51].

Overall, the LTR sequences have a higher substitution rate

than the rest of the non-coding part of the genome [21].

This higher mutation rate underlines LTR regulatory

potential, since it may lead to its inactivation, thus coun-

teracting its deleterious effects for the host cell [21].

HERV life cycle

The life cycle of a HERV comprises reverse transcription

of viral RNA, followed by the integration of a nascent

DNA copy into genomic DNA of the host cell [52, 53].

Importantly, retroviral genomic RNA differs from genomic

copy by the absence of LTRs, which are built during the

reverse transcription, a multistep complex process includ-

ing several template switching events [54–56].

Transcription of an endogenous retrovirus can be shown

on the example of HERV-K/HML-2 (ERVK) family

members, which have the most complex organization

among all HERV elements [19]. The inserted full-length

proviral copy is normally transcribed using its functional

promoter on the 50 LTR (Fig. 1a). Transcription stops at the

polyadenylation signal of the 30-terminal LTR. The

polyadenylated full-length transcript can be further spliced,

thus generating at least three different spliceforms
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(Fig. 1b). Fully unspliced transcript encodes for 160-kDa

viral polyprotein Gag–Prot–Pol. Its translation requires two

(-1) ribosome frameshifts [37]. The Polyprotein is then

processed by the Prot (retroviral protease) intramolecular

activity, and the mature proteins are released. The Gag

protein is further cleaved to release matrix, core and

nucleocapsid proteins [37, 57]. Pol is the retroviral reverse

transcriptase (RT), possessing also RNase H activity. The

single-spliced transcript encodes for the envelope protein

(Env) that is needed to infect the cells via binding to a

cellular receptor [37]. Double-spliced RNA encodes a short

regulatory protein. Type 1 HERV-K/HML-2 (ERVK) ele-

ments share a 292 nt deletion in the Env region. Apart from

fusion of Pol and Env genes, this deletion also gives rise to

a difference between the two isoforms of regulatory pro-

teins encoded by the double-spliced transcripts. Type 2

HERV-K/HML-2 (ERVK) 1.8 kb-long proviral transcript

codes for the 15-kDa accessory protein Rec (also called

cORF [58]), which is the only known auxillary factor

encoded by HERVs [37]. Type 1-specific double-spliced

RNA product called Np9, is a 9-kDa protein that shares

only the N-terminal 15 aa residues with Rec [37, 59, 60].

Rec is specifically accumulated in the nucleoli. It has a

striking functional homology to lentiviral RNA-binding

nuclear export proteins like the HIV and HTLV proteins

Rev and Rex, respectively [37]. Similarly to those proteins,

Rec binds to unspliced or partially spliced viral transcripts

and mediates their transfer to the cytoplasm where they

escape the cellular splicing machinery and can be trans-

lated into retroviral polyprotein [61]. Rec may act via

interaction with the host-encoded protein Staufen-1 that

facilitates transfer of unspliced transcripts to the cytoplasm

[62]. The Rec binding site, termed Rec Responsive Ele-

ment (RRE), is a highly structured RNA motif within the

U3R region of the 30 LTR. Interestingly, this functional

motif can be recognized by the HTLV Rex protein that can

at least partly substitute for the Rec function [37, 61, 63].

Similarly to Rec, Np9 accumulates in the nucleus.

Although Np9 expression was found in many tissues and

cell lines, the exact molecular function for this protein

remains unclear.

Finally, *1.5 kb-long completely spliced proviral

transcripts (Fig. 1b) appear to lack any protein coding

regions and may have only some regulatory functions, if

any [64, 65].

Expression of HERV proteins

Human endogenous retrovirus proteins are actively

expressed in a variety of human tissues [37]. For example,

autologous antibodies against multiple HERV-K/HML-2

(ERVK) proviral Env epitopes were found in *30 % of

healthy individuals [66]. Increased HERV protein produc-

tion was also detected in placentas and in embryonic

tissues, in line with the identification of putative responsive

elements for several pregnancy hormones within the HERV

LTRs [67, 68]. Gag protein expression may induce massive

T cell stimulation or apoptosis [69]. Endogenous Prot

genes may help to exogenous retroviruses, such as len-

tiviruses, to infect the host cells [70–72]. Rec and Np9

activities may interfere with normal nuclear cytoplasmic

transport mechanisms [73] or even serve as inducers of

organ-specific tumorogenesis [74]. Finally, Env protein has

an immunosuppressive domain that inhibits T and B cell

activation and proliferation and induces modulation of the

expression of many cytokines [75, 76]. This may be

functionally linked to an increased HERV expression in

some tumors [37, 77]. Of note, human primary lympho-

cytes express up to 32 different HERV-K/HML-2 (ERVK)

envelopes, and at least two of the most highly expressed

Env genes retain the protein-coding capacity [78].

HERV proliferation in the genome

Although traces of several hundreds retroviral groups can

be identified in human DNA, there are no evidence that any

of them remains active in terms of generating new copies in

Fig. 1 Functional genes encoded by HERVs, on the example of

HERV-K (HML-2) elements. a Genomic organization of the recon-

stituted full-size provirus. Apart from ‘‘classical’’ retroviral genes

Gag, Prot, Pol and Env, an additional gene Rec or Np9, depending on

the provirus type, is encoded. b Different types of proviral transcripts.

Full-length subgenomic transcript encodes for Gag–Prot–Pol polypro-

tein, single-spliced product codes Envelope protein, double-spliced

RNA is for Rec/Np9, whereas *1.5 kb long completely spliced

transcript of unknown function appears to lack any functional open

reading frames
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human genome. However, up to recent times in human

evolution, few retroviral families were prolific [24]. Some

HERV inserts are specific to human DNA, which means

that they happened already after the radiation of human and

chimpanzee ancestor lineages, that occurred *6 million

years ago [38, 79, 80]. HERV-K/HML-2 (ERVK) is the

sole group of HERVs known to contain human specific

members, totally *140 such elements found in previous

works [1, 21, 24, 38, 47, 81–86], that contributed *330 kb

of the human DNA [87]. Similarly to other HERVs, this

group comprises mostly proliferation deficient and tran-

scriptionally silent elements [88]. However, many family

members are transcriptionally active [45] and theoretically

may possess an infectious potential [79, 86]. According to

the number of literature citations, this group may be con-

sidered the most biologically active human endogenous

retroviral family [31, 89, 90]. The detailed analysis of the

human-specific LTR structures provided evidence that at

least three HERV-K/HML-2 (ERVK) master genes were

active in the hominid lineage soon after the human-chim-

panzee ancestral radiation [24]. Moreover, few dozens of

HERVs are also insertionally polymorphic in human pop-

ulation [25, 79, 86, 91–94], thus suggesting that this family

remained prolific up to recent times in the human evolu-

tionary history [74, 86, 89, 95]. The bioinformatic

screening of human specific HERVs revealed that they may

encode a total of 11 functional genes for Gag, 12 genes for

Prot, 9 genes for Pol, 8 for Env, and 9—for Rec [19].

In contrast to humans, in other mammals, endogenous

retroviruses may be actively proliferating and highly

invasive [96, 97]. For example, murine ERVs are very

active and form a significant source of mutation of the

murine germ-line. Approximately, one in ten spontaneous

phenotypes that have been described in mice are caused by

insertional mutagenesis by an ERV [98].

In addition to standard mechanism for HERV proliferation

involving reverse transcription and genomic integration of

retroviral RNA using a complex of HERV-encoded proteins,

at least two alternative possibilities can be mentioned. First,

new HERV copies may be generated due to unrelated DNA

duplication mechanisms, as in the case of widespread

expansion of centromeric human endogenous retroviruses

[99]. Multiple copies of a single recently inserted HERV-K/

HML-2 (ERVK)provirus, namedK111, present in at least 100

copies spread across the centromeres of fifteen human chro-

mosomes. In the chimpanzee genome, K111 is present as a

single copy, and it ismost likely absent from theDNAof other

primates [99]. Second, new HERV copies may appear in the

form of processed pseudogenes generated using the reverse

transcriptase machinery of a LINE-1 retrotransposon rather

than using HERV self-encoded enzymes [10]. Such HERV

copies lack LTRs and most frequently are transcriptionally

silent [100]. This phenomenon is not unique to HERVs and

represents a general mechanism, e.g., there are on an average

1–10 processed pseudogenes per each human gene [101].

Regulatory potential of endogenous retroviruses

Not only proteins, but also non-coding sequences including

viral regulatory elements, considerably shaped human

genome and transcriptome [32, 102–104]. HERV LTRs

have functional enhancers, promoters, polyadenylation

signals and splice sites. They can regulate transcription in

human cells by using the following five major mechanisms:

(1) LTR enhancer/transcriptional repressor activity may

alter expression of the neighboring genes; (2) LTRs may

drive transcription of downstream genomic sequences, thus

creating new genes and non-coding RNAs; (3) LTR

polyadenylation sites may cause premature termination of

the read-through transcripts; (4) LTR splice sites may

change exon–intron structure of genes; (5) LTRs may

regulate host genes via RNA interference mechanisms

(Fig. 2). Below, we discuss examples of such functional

roles published in the literature.

Functional DNA regions

DNaseI hypersensitivity sites (DHS) are probably the most

important genomic landmarks for regions of open (func-

tionally active) chromatin, whereas transcription factor

binding sites (TFBS) denote regions of DNA with nuclear

protein binding properties [105, 106]. Garazha et al. com-

bined investigation of both DHS and TFBS content of

HERVs on a genomic scale. To this end, we devised a

bioinformatic algorithm mapping relevant TFBS identified

by annotating all the HERVs in the human DNA (504 fam-

ilies and *720,000 copies) [107]. For the whole set of

HERVs, *140,000 inserts (*19 %) had at least one map-

ped DHS and *110,000 inserts (*15 %) had at least one

mapped TFBS. The total numbers of all DHS and TFBS in all

HERV elements amounted to *155,000 and *320,000,

respectively [107]. All the 504 HERV families were char-

acterized with regard to their TFBS content (available at

http://herv.pparser.net/TotalStatistic.php). The individual

families differ dramatically in copy number, ranging from

just few copies as for the HERV-F (ERVFH21-1, ERVH48-

1) family, to more than 22,000 members as for the THE1B

family. The total number of TFBS was also strikingly dif-

ferent varying from 0 (families LTR5, LTR7A) to*13,000

(MLT1K family). The maximum absolute number of the

TFBS-positive members was observed for the MLT1K

family (*4000). The families with the greatest densities of

TFBS may be regarded as the most functionally active ones

among the HERVs. However, it is also important to consider

the absolute numbers of TFBS contributed by each family.
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For example, the family LTR12 has the highest proportion of

TFBS-positive members and contributed a total of *1300

TFBS to the human genome, whereas the family MLT1K

donated the greatest number of TFBS (*13,000), but has a

rather small density of TFBS-positive members. A definite

trend was seen when HERV-related DNase hypersensitivity

sites (DHS) and TFBS distributions were compared. The

probability that an individual HERV element has DHS

increases proportionate to the increase in mapped TFBS.

Further experiments confirmed that TFBS density may be an

overall measure of the functional activity of HERVs [107].

These results provide clues for identification and functional

validation of tens of thousands of previously unknown reg-

ulatory sequences of the human genome. Moreover, these

results are likely an underestimation of the HERV-related

TFBS pool. Due to the repetitive nature of HERVs, it is

impossible in many cases to directly map TFBS on any

particular element. Those TFBS that were successfully

mapped, corresponded mostly to the 50- or 30-terminal

regions of HERVs, no further than*200 bp from the border

with the unique flanking genomic sequence [107].

Enhancer activity

Human endogenous retroviruses and their LTRs include

numerous transcription factor binding sites and may be

involved in regulation of the neighboring host genes. One of

the first striking reports of the involvement of HERVs in

tissue-specific gene transcriptional regulation was for the

human amylase locus [108]. In humans, amylase is produced

in pancreas and in salivary glands. Human amylase locus

includes two genes of pancreatic amylase (AMY2A and

AMY2B) and three genes of salivary amylase (AMY1A,

AMY1B, AMY1C). The latter three genes are likely products

of a recent triplication, because in the chimpanzee genome

there is only one gene for AMY1. All genes for salivary

amylase contain a full-length insert of HERV-E (ERVE)

upstream their transcription start site. The insertion of a full

length endogenous retrovirus activated a cryptic promoter

that drives the transcription of amylase in salivary glands.

Promoter activity

Promoter strengths of HERVs were investigated in many

experimental assays. The application of novel high-

throughput techniques such as cap analysis of gene

expression (CAGE) and paired-end ditag (PET) sequencing

revealed 51197 HERV-derived promoter sequences. 114

HERV-derived transcription start sites appeared to drive

transcription of at least 97 human genes, thus producing

chimeric transcripts initiated within LTR and read-through

into known gene sequences [109]. In transient transfection

experiments, a human-specific HERV-K/HML-2 (ERVK)

LTR from contig L47334 displayed very low promoter

activity in three out of ten cell lines tested, moderate

activity (10–20 % of the SV40 promoter) in six cell lines

and, finally, the maximal value of *100 % of the SV40

activity—in embryonal teratocarcinoma cells Tera-1 [44].

Similarly, in another laboratory, five other individual

HERV-K/HML-2 (ERVK) LTRs showed high promoter

strengths in the same cell line [39].

The comprehensive study of the expression of human-

specific LTRs in human germ-line tissue (testicular

Fig. 2 Functional roles played by HERV elements (defined as LTRs)

in the regulation of gene expression. 1 HERVs may serve as

transcriptional enhancers or silencers by regulating activities of

downstream promoters. 2 HERVs may act as transcriptional promot-

ers for host non-repetitive DNA, thus creating new genes. 3 HERV

polyadenylation sites may cause premature termination of transcrip-

tion of the host genes. 4 HERV sequences may disrupt exon–intron

structure of genes by donating new splice sites. 5 HERVs may initiate

antisense transcripts overlapping with RNAs of the host genes
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parenchyma) and in the corresponding tumor (seminoma)

[1] showed that different individual LTRs were expressed

at markedly different levels differing *3000 times in

magnitude [47]. The LTR status (solitary, 50 or 30 proviral)
was an important factor affecting LTR activity: promoter

strengths of solitary and 30 proviral LTRs were almost

identical, whereas 50 proviral LTRs showed higher pro-

moter activity (*2-fold and *5-fold greater in testicular

parenchyma and seminoma, respectively). Another impor-

tant factor influencing promoter activity was the LTR

distance from genes: the relative content of promoter-ac-

tive LTRs in gene-rich regions was significantly higher

than in gene-poor loci.

The data obtained suggest also a selective suppression

of transcription for the LTRs located in gene introns. Such

a transcriptional suppression might be aimed at silencing

of the proviral gene expression in gene-rich regions and

may serve to minimize possible destructive effects of

undesirable transcription. Transcriptional peculiarities of

the LTRs are tightly associated with their capability of

binding the host transcription factors, e.g., DUX-4 by

MaLR, HERV-L (ERVL) and HERV-K/HML-2 (ERVK)

promoters [12].

Polyadenylation

Polyadenylation is an essential step for the maturation of

almost all eukaryotic mRNAs. A polyadenylation signal

(AAUAAA) nearby the 30 end of pre-mRNA is required

for poly(A) synthesis. HERVs encode proteins and utilize

functional poly(A) signals at the 30-termini of their genes.

Therefore, insertions of HERVs in the sense orientation

can influence the expression of neighboring genes by

providing new poly(A) signals. This consideration may

explain the clearly seen strong negative selection pressure

on such elements inserted in gene introns and oriented in

the same transcriptional direction as the enclosing gene

[110, 111].

Consistently, HERV polyadenylation signal may be

used for the non-retroviral human transcripts. For example,

eight human mRNAs are polyadenylated at the sequence of

HERV-K/HML-2 (ERVK) LTR [19, 112]. One of these

transcripts encodes a 8-kDa protein of unknown function,

highly similar to human protein GON4L, a transcription

factor that functions in cell cycle control [113]. 50 LTR of

the retrovirus HERV-F (ERVFH21-1, ERVH48-1) may

function as an alternative polyadenylation site for known

gene ZNF195 [114]. Human genes HHLA2 and HHLA3

utilize HERV-H (ERVH) LTRs as the major polyadeny-

lation signals. In the baboon genome, orthologous loci lack

retroviral inserts and these genes recruit other polyadeny-

lation motifs [115].

Antisense regulation of gene expression

This regulatory mechanism is based on formation of the

double-stranded RNA between mRNA and the antisense

transcript, followed by catalytic degradation of RNAs

containing the sites homologous to the double stranded

fragment [50]. Among twenty-eight antisense-oriented

human-specific HERV-K/HML-2 (ERVK) LTRs located in

gene introns, fifteen elements were shown to be promoter

active in human germ cells [1]. High expression levels of

certain intronic LTRs might suggest the possibility of their

involvement in antisense regulation of the enclosing genes

[30]. Recently, we found the first evidence for the human

specific antisense regulation of gene expression occurred

due to promoter activity of HERV-K/HML-2 (ERVK)

endogenous retroviral inserts [48]. The human-specific

LTRs located in the introns of genes SLC4A8 (for sodium

bicarbonate cotransporter) and IFT172 (for intraflagellar

transport protein 172) in vivo generate transcripts that are

complementary to exons within the corresponding mRNAs

in a variety of human tissues. Overexpression of antisense

transcripts resulted in *4- and 3-fold decrease in mRNA

levels for these genes, respectively [48].

Splicing

Human gene Hpr sequence for haptoglobin related protein

is 92 % identical to haptoglobin gene HP [116]. Both genes

are transcribed at the highest level in liver. Hpr promoter is

stronger than HP promoter, but the concentration of Hpr

liver transcripts is *17-fold lower than for the HP mRNA

[117]. The major distinction between these genes is the

endogenous retroviral sequence RTVL-Ia in the intron of

Hpr [118]. RTVL-Ia fragment demonstrated significant

silencer activity in a series of luciferase transient trans-

fection experiments [117]. The mechanism of the negative

Hpr regulation by the RTVL-Ia endogenous retrovirus is

most probably linked with aberrant splicing of the Hpr

transcript at the retroviral sequences.

Host regulation of HERVs

Suppression of HERVs by the host-encoded

mechanisms

Expression of HERVs is tightly controlled by the host cell

because it may be deleterious. Even the physical presence

of such a number of repetitive sequences in the genome can

generate considerable problems dealing with homologous

recombination between the different HERV elements,

which may disrupt functional genes located in their
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neighborhood [10]. HERV-derived transcription and gene

regulation can bias normal gene expression regulatory

networks [4, 10, 48]. Expression of HERV proteins in

various human tissues may result in dangerous inflamma-

tory or immunosuppressive effects [35].

In the mouse, endogenous retroviruses are transcrip-

tionally repressed using the tetrapod-specific KRAB-

containing zinc finger proteins (KRAB-ZFPs) and their

cofactor TRIM28. Recent study demonstrated that KRAB/

TRIM28-mediated regulation is responsible for controlling

a broad range of HERVs in human embryonic stem cells,

too. The authors revealed reciprocal dependence between

TRIM28 recruitment at specific families of HERVs and

their DNA methylation, which suggests that KRAB/

TRIM28 complex recruits methylation machinery to

HERV copies [119]. These data are in line with the striking

correlation observed across vertebrate genomes between

the number of LTR retroelements and the number of host

tandem KRAB domain zinc finger genes [120]. Similarly,

zinc finger protein Yin Yang 1 may be one of the crucial

components restricting HERV transcription in embryonic

cells by suppressing promoter activities of the LTRs [121].

Other known mechanisms suppressing endogenous and

exogenous retroviruses deal with the functions of APO-

BEC3, BST2, TREX, Tetherin, TRIM5a and Toll-like

receptor proteins [122–124].

They are able to limit viral replication by targeting

specific steps of the viral life cycle. Tetherin is interferon-

induced transmembrane protein that blocks the release of

particles of many enveloped viruses, including HIV [125].

It is associated with lipid rafts at the plasma membrane,

and at the trans-Golgi network [122]. Tetherin sequence is

highly variable among the mammalian organisms. It

appears to inhibit virus release, by connecting both viral

and host cell membranes [122]. However, the Envelope

proteins (Env) of HERV-K/HML-2 (ERVK) proviruses are

able to inhibit Tetherin using a yet unknown mechanism

mediated by the recognition of Tetherin by the surface

subunit of Env. In experimental tests, two out of six natural

complete alleles of HERV-K/HML-2 (ERVK) Env were

able to inhibit Tetherin and block Tetherin-mediated viral

restriction [126]. Notably, since many HERV-K/HML-2

(ERVK) elements are polymorphic in the human popula-

tion, it is likely that all individuals will not all possess the

same anti-Tetherin potential, which may have functional

consequences for individual responses to infection [126].

APOBEC3 protein family consists of seven members in

humans. Human APOBEC3G (hA3G) inhibits the infec-

tivity of HIV-1 variants lacking a Vif gene. Vif (virion

infectivity factor) prevents hA3G activity by binding and

inducing its degradation through ubiquitination [127]. If

not inactivated by Vif, hA3G enters HIV-1 particles, and

then induces hypermutation of HIV-1 proviruses by editing

the proviral genome during reverse transcription, leading to

G to A substitutions [122, 128]. Similarly, hA3G inhibits

the replication of many other exogenous retroviruses and

HERVs. In addition to hA3G, hA3F contributes to proviral

hypermutation by deaminating minus-strand of viral cDNA

during reverse transcription [122]. In mice, the activity of

endogenous retroviruses is also suppressed by the nucleic

acid-recognizing Toll-like receptors 3, 7, and 9 (TLR 3,

TLR7, and TLR9). Loss of TLR7 function caused spon-

taneous retroviral viremia that coincided with the absence

of ERV-specific antibodies. Additional TLR3 and TLR9

deficiency led to acute T cell lymphoblastic leukemia.

Experimental ERV infection induced a TLR3-, TLR7-, and

TLR9-dependent group of ‘‘acute-phase’’ genes previously

described in HIV and SIV infections [124].

Helpful HERVs

Co-evolution with the human genome resulted in a

recruitment of certain HERVs to the execution of important

molecular functions. HERV-H (ERVH) is a family of

endogenous retroviruses expressed preferentially in human

embryonic stem cells (hESCs) [129]. Recently, it was

published simultaneously by two research teams that

transcriptional regulation of the HERV-H (ERVH) LTRs

may be one of the primary mediators of cell fate repro-

gramming, e.g., induced pluripotency stem cells generation

using ‘‘Yamanaka cocktail’’ (by overexpressing OCT3/4,

SOX2, and KLF4 proteins) [130, 131]. This effect

appeared to be most probably mediated by the HERV-H

(ERVH)-driven intergenic long noncoding regulatory

RNAs [130, 131]. HERV-R (ERV3-1)-encoded Env pro-

tein is also suggested as possible developmental mediator,

as it is overexpressed in the developing tissues, like kidney,

tongue, heart, liver and brain [132].

The envelope proteins of HERV-W (ERVW-1) family

members (corresponding to human protein Syncytin) may

serve human physiology through their fusogenic or

immunosuppressive properties. For example, Syncytin is

essential for placentation, by mediating cell fusion of

syncytial cell layers, and for maternal tolerance of the

fetus, by immunosuppression [98, 133]. Syncytin, the

product of individual HERV-W (ERVW-1) proviral locus

ERVW-1, binds to its extramembrane receptor SLC1A5/

ASCT-2/RDR/ATB(0) and initiates formation of tro-

phoblast cell fusion, most likely via Cx43-mediated gap

junctional intercellular communication [134]. The defi-

ciencies in Syncytin expression, e.g., caused by

hypermethylation of ERVW-1, were reported to be associ-

ated with various placental abnormalities [135]. As shown

in cell culture experiments, Syncytin activity may be

negatively regulated by an RNA-binding protein LIN28A,

whose target downregulation, in turn, appeared to release
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Syncytin functionality and promoted fusion of cultured

human trophoblast cells [136]. This fusogenic effect was

specific to human, but not mouse trophoblast cells, which

suggests long-term species-specific molecular evolution of

mechanisms controlling spatio-temporal activation of

Syncytin in placenta [136]. Other retroviral Env proteins

encoded by the endogenous elements ERV-3 and HERV-

FRD (ERVFRD), may be also implicated in placentation,

as they promote intercellular fusion in cell culture model

[137] and are normally expressed in placenta [138].

Interestingly, in other mammalian species, other retroviral

Env proteins may behave similarly to Syncytin in placen-

tation, like EnvV protein encoded by ERV-V-1 and ERVV-

2 proviruses in the Old World monkeys, but not in the great

apes [139].

HERVs may serve as major transcriptional regulators of

human genes by direct enhancer or promoter activities, or

using other mechanisms, sometimes involving long non-

coding transcripts [140]. For example, human specific

transcription of human gene PRODH in hippocampus is

regulated by an enhancer element created by the insert of a

HERV-K/HML-2 (ERVK) LTR [4]. This might have an

important impact on human evolution since PRODH

metabolizes neuromediator molecules and has a strong

implication in higher nervous activity [4]. The ERV9 LTR

element upstream of the DNase I hypersensitive site 5

(HS5) of the locus control region in the human b-globin
cluster, 40–70 kb upstream of the human fetal gamma- and

adult beta-globin genes, is responsible for controlling

expression of this cluster in erythroid cells [141]. The

enhancer effect is caused by LTR-initiated transcription

driven in the direction of associated gene promoter [9, 142].

The LTR contains multiple CCAAT and GATA motifs and

competitively recruits a high concentration of NF-Y and

GATA-2 transcription factors present in low abundance in

adult erythroid cells to assemble an LTR/RNA polymerase

II complex. The LTR complex transcribes intergenic RNAs

unidirectionally through the intervening DNA to loop with

and modulate transcription factor occupancies at the far

downstream globin promoters, thereby regulating globin

gene switching by a competitive way [140].

Solitary ERVL LTR was shown to promote transcription

of a known human gene b3GAL-T5 in various tissues,

being especially active in colon, where it is responsible for

the majority of gene transcripts [143]. b3GAL-T5 is

involved in the synthesis of type 1 carbohydrate chains in

gastrointestinal and pancreatic tissues. Interestingly, mur-

ine b3GAL-T5 gene is also expressed primarily in colon,

despite the absence of an orthologous LTR in the mouse

genome. It is likely that in humans, the LTR adopted the

function of an ancestral mammalian promoter active in

colon [143]. Another interesting example of gene tran-

scriptional regulation by LTR was shown for NAIP

(BIRC1) gene coding for neuronal apoptosis inhibitory

protein [144]. Although human and rodent NAIP promoter

regions share no similarity, in both cases LTR serve as an

alternative promoter. Thus, two evolutionary distinct LTR

elements were recruited independently in primate and

rodent genomes for transcriptional regulation of this gene.

Human gene CYP19 codes for aromatase P450, the key

enzyme in estrogen biosynthesis. LTR insertion upstream

CYP19 led to the formation of alternative promoter located

100 kb upstream of the coding region [28]. This event

resulted in the primate-specific transcription of CYP19 in

the syncytiotrophoblast layer of placenta. Placental-specific

expression plays an important role in controlling estrogen

levels during pregnancy. Cases of placental-specific tran-

scription driven from endogenous retroviral promoters

were also shown for Mid1 gene linked with inheritable

Opitz syndrome [145], endothelin B receptor [146] and

insulin-like growth factor INSL4 [147]. HERVs may also

serve as unique promoters for human genes. For example,

the only apparent promoter of the liver-specific gene BAAT

implicated in familial hypercholanemia is an ancient LTR

in human but not in mouse [148].

In addition, a polymorphic HERV-K/HML-2 (ERVK)

insert in the ninth intron of the complement component C4

gene was reported as a novel marker of type 1 diabetes that

accounts for the disease association previously attributed to

some key HLA-DQB1 alleles raising the possibility that

this retroviral insertion element contributes to functional

protection against type 1 diabetes using any of the above

mechanisms [149].

HERVs and human diseases

Recent studies evidence that different activities of HERVs

may be involved in various human diseases including

autoimmune disorders, neurological, infectious diseases

and cancer [150].

Autoimmune diseases

The biased expression of proviral proteins in human tissues

may trigger autoimmune diseases [151, 152]. This was

indicated first by increased proviral transcript levels [153]

and finding anti-HERV protein antibodies in sera from

several groups of patients suffering from these systemic

disorders [37]. Immune reactivity to HERV products can

often occur spontaneously in infection or cancer and is

considered the driving force of several autoimmune dis-

orders also in mice. Immune reactivity against ERV

proteins can be experimentally induced in mice and non-

human primates, suggesting that immunological tolerance

to ERV-derived products is not complete [98].
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The apparent overexpression of HERV genes may be

associated with global hypomethylation as observed for the

DNA of T cells from systemic lupus erythematosus (SLE)

patients. However, different HERV families behave dif-

ferently in SLE. For example, HERV-E (ERVE) mRNA

expression was higher in lupus CD4? T cells than in

healthy controls, whereas the expression of HERV-K/

HML-2 (ERVK) and HERV-W (ERVW-1) family mem-

bers were similar in SLE patients and healthy controls.

Additionally, the HERV-E (ERVE) mRNA expression

level was positively correlated with SLE disease activity.

Consistently, the HERV-E (ERVE) LTR methylation level

was decreased and negatively correlated to the HERV-E

(ERVE) mRNA expression in lupus CD4? T cells [154].

Overexpression of the following HERVs is considered as

possibly implicated in SLE: HRES-1, ERV-3, HERV-E 4-1

(ERVE 1–4), HERV-K10 (ERVK-10) and HERV-K18

(ERVK-18) [155]. In addition to HERV-E (ERVE) LTRs,

the HERV-K/HML-2 (ERVK) LTRs were also found sig-

nificantly undermethylated in various types of T

lymphocytes in SLE patients [156]. Note that another study

showed decreased expression of most HERV genes in

purified monocytes from SLE [157].

In the patients with rheumatoid arthritis, statistically

significant increase in IgG antibody response to HERV-

K10 (ERVK-10) Gag protein was detected, as compared to

normal controls [158]. HERV-W (ERVW-1) transcripts

and protein products (isoforms of Syncytin) were over-

represented in cartilage of osteoarthritis patients [159]. In

osteoarthritis, the patients health status and the disease

severity index were also correlated with the expression of

HERV-K18 (ERVK-18) provirus, thus suggesting its pos-

sible involvement in the aetiopathogenesis of this disease

[160]. The implication of HERV-K/HML-2 (ERVK) ele-

ments in autoimmune disorders may be connected with the

presense of multiple binding sites for various inflamma-

tion-linked transcription factors in their LTRs [161].

However, inflammatory diseases may be equally asso-

ciated with decreased expression of HERV genes [162].

For example, Lichen planus (LP) is a common inflamma-

tory skin disease of unknown etiology. In LP subjects, a

significant decrease in the HERV-K/HML-2 (ERVK) Gag

and Env, as well as HERV-K18 (ERVK-18) and HERV-W

(ERVW-1) Env mRNA expression was detected, compared

to healthy controls. Overall, HERV-K/HML-2 (ERVK)

Gag expression strongly correlated with other HERV

sequences. The decrease of HERV expression in this case

may be at least partly explained by observed significant up-

regulation of known retroviral restriction factors like cyti-

dine deaminase APOBEC 3G gene, and the GTPase MxA

(Myxovirus resistance A) gene [162]. Other inflammation-

related transcripts, such as the master regulator of inter-

feron-dependent immune responses, STING, IRF-7

(interferon regulatory factor 7), IFN-b and the inflamma-

some NALP3, also had increased levels in LP, when

compared to healthy controls [162]. This study evidences

that interferon-inducible factors may contribute to the

negative transcriptional control of HERVs [162]. For pso-

riasis, which is a multifactorial chronic disease of skin, a

significant decrease in antibody response against HERV-K/

HML-2 (ERVK) protein products Gag and Env was

detected in plasma of the affected patients [163]. Congru-

ently, the expression of HERV-K/HML-2 (ERVK) and

ERV-9 gene transcripts was significantly lower in lesional

psoriatic skin as compared to healthy skin [163].

Interestingly, although there are currently no indications

that HERV reverse transcriptase (RT) is involved in

autoimmune disorders, some of the drugs targeting RT

enzymatic activity manifested good clinical effects for

inflammation-linked diseases [164].

Neurological diseases

Enhanced expression of the HERV-encoded proteins is a

promising biomarker for several neurological diseases

[165, 166]. Pro-inflammatory cytokine IFNc plays a key

role in the pathology of several HERV-associated neuro-

logical diseases. In model experiments, IFNc signalling

markedly enhanced the levels of HERV-K/HML-2

(ERVK) protein expression in both human astrocytes and

neurons. These findings again indicate that HERV

expression may be inducible under inflammatory condi-

tions [165]. For example, expression of HERV-K/HML-2

(ERVK) genes was significantly increased in postmortal

brains of Amyotrophic lateral sclerosis (ALS) patients

[167].

For multiple sclerosis (MS), a hypothesis was proposed

that HERV-encoded envelope proteins (Env) can act as

strong immune stimulators [168]. Thus, slow disease pro-

gression following neurodegeneration might be induced by

re-activation of HERV expression directly, while relapses

in parallel to inflammation might be secondary to the

expression of HERV-encoded superantigens [169]. In

Northern and Southern European cohorts, an association

with susceptibility to bout-onset MS was established and

confirmed for the HERV-Fc1 (ERVFC1) sequence in

chromosome X and the enclosing polymorphism rs391745

[170]. In addition, two polymorphisms mapped within the

HERV-K18 (ERVK-18) locus on the chromosome 1

appeared to be significantly associated with susceptibility

to MS in the Spanish cohort of patients [171]. MS occurs

more frequently in women than in men, and a possible link

between the HERV-W (ERVW-1) copy on chromosome

Xq22.3, and the gender differential prevalence in MS has

been suggested. This copy contains an almost intact open

reading frame for Env, but it is interrupted by a premature

Molecular functions of human endogenous retroviruses in health and disease 3661

123



stop codon, so the resulting protein, if any, is heavily

truncated [172]. Several MS-linked genetic polymorphisms

were recently reported that were located within the same

genomic region [172]. HERV-W (ERVW-1) Env protein

was detected in MS brain lesions within microglia and

perivascular macrophages and was shown to induce

proinflammatory response in human macrophage cells

through TLR4 activation pathway [173]. The correspond-

ing HERV-W (ERVW-1) mRNA levels were enriched in

blood, spinal fluid, and brain samples of the MS patients

[174]. Furthermore, HERV-W (ERVW-1) Env was even

utilized as a superantigen to develop a MS model in mice

[173]. While increasing during MS manifestation, HERV-

W (ERVW-1) expression decreases with the decline of this

disease. Natalizumab is a humanized monoclonal antibody

against the cell adhesion molecule a4-integrin. Since 2004,
it is widely used as the target drug against MS. In a cohort

of MS patients efficiently treated with Natalizumab, both

mRNA and protein levels of HERV-W (ERVW-1) Env

were significantly reduced [175].

There is frequently a cross-talk between MS and pre-

vious infections of the human CNS cells [168]. It was

recently demonstrated that infectious mononucleosis may

lead to enhanced levels of HERV-W (ERVW-1) Env pro-

tein and mRNA in blood mononuclear cells [174]. Flow

cytometry data showed increased percentages of cells

exposing surface HERV-W (ERVW-1) Env protein, that

occur differently in specific cell subsets, and in acute dis-

ease and past infection [174]. Expression of the same

retroviral protein was considerably increased in various

human cell types following influenza A virus infection [2].

Importantly, treatment with neuroleptics and antidepres-

sants (e.g., valproic acid, haloperidol, risperidone, and

clozapine) may greatly upregulate the expression of

HERV-W (ERVW-1) and ERV9 elements in CNS cells

[176]. Moreover, expression of HERV-W (ERVW-1) may

be significantly upregulated by some ubiquitous nutrients

and medicines like caffeine and aspirin [177]. Besides

HERV-W (ERVW-1), MS is genetically associated in

Scandinavians with one human endogenous retroviral locus

related to the HERV-F (ERVFH21-1, ERVH48-1) element

[123]. HERV-F (ERVFH21-1, ERVH48-1) Gag RNA in

plasma was increased fourfold in patients with recent his-

tory of attacks, relative to patients in a stable state and to

healthy controls [178]. It can be extrapolated that infec-

tions sometimes can upregulate HERV expression in the

CNS cells, thus provoking deleterious autoimmune

response [179]. Indeed, genetic variant in some genes

restricting retroviral infections were statistically linked

with the risk of getting MS, as shown for TRIM5, TRIM22

and BST2, but not for APOBEC3s and TREXs genes [123].

Interestingly, HIV infection is associated with a signifi-

cantly decreased risk of developing MS. Mechanisms of

this observed protective association may include

immunosuppression induced by chronic HIV infection and

antiretroviral medications [180].

In schizophrenia and bipolar disorder, abnormally high

levels of HERV-W (ERVW-1) Env gene product in the

plasma were also detected [176, 181]. The seroprevalence

for Toxoplasma gondii yielded low but significant associ-

ation with HERV-W (ERVW-1) transcriptional level in a

subgroup of bipolar disorder and schizophrenia, suggesting

a potential role in particular patients [182]. However, for

the HERV-K18 (ERVK-18) provirus, there were no sig-

nificant associations with the susceptibility to

schizophrenia [183].

Finally, HERVs may also cause neurological disorders

using quite distinct mechanism comprising HERV-linked

genomic rearrangements. For example, HERV-H (ERVH)-

mediated 3q13.2-q13.31 deletions cause a syndrome of

hypotonia and motor, language, and cognitive delays [184].

Infectious diseases

The long-term spontaneous evolution of humans and the

human viruses might generate various mechanisms

involving cooperation or interference of endogenous and

exogenous retroviruses. For example, the primate len-

tiviruses HIV and simian immunodeficiency virus (SIV) do

not express their own dUTPase, and it is believed that a

host cell endogenous retroviral enzyme (Prot) provides this

activity during reverse transcription [70–72], in line with

the recent observations that HIV-1 infection may increase

the expression of HERV-K/HML-2 (ERVK) proviruses

in vitro [185] and in vivo [185, 186]. The envelope gly-

coprotein of one of HERV-K/HML-2 (ERVK) members,

HERV-K18 (ERVK-18), is incorporated into HIV-1 in an

HIV matrix-specific fashion [78]. In HIV patients, HERV-

K/HML-2 (ERVK) proviruses are expressed at signifi-

cantly higher levels in peripheral blood mononuclear cells

than in those from uninfected individuals [187]. Proviruses

were expressed in multiple blood cell types, and the

magnitude of HML-2 expression was not related to HIV-1

disease markers [187]. In addition, a controversial data

were reported on whether HERV-K/HML-2 (ERVK) viral

particles are present or not in the plasma of HIV-infected

patients [187]. Increased levels of HERV-K/HML-2

(ERVK) RNA were detected in plasma of HIV patients

from Uganda, but not from the USA [188]. In contrast,

Esqueda et al. argue that there was no correlation between

HERV-K/HML-2 (ERVK) RNA levels and HIV viral loads

in plasma specimens they profiled [189]. However, pres-
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ence of antibodies against HERV-K/HML-2 (ERVK) Env

protein in blood was proposed as the new biomarker of

HIV-1 infection, because HIV-1 can modify HERV-K/

HML-2 (ERVK) Env mRNA expression, resulting in the

expression of a fully N-glycosylated HERV-K/HML-2

(ERVK) envelope protein on the cell surface [190].

Moreover, HERV-K/HML-2 (ERVK)-specific CD8? T

cells obtained from HIV-1-infected human subjects,

exhibited complete elimination of human cells infected

with a panel of globally diverse HIV-1, HIV-2, and SIV

isolates in vitro. This supports the consideration of HERV-

K/HML-2 (ERVK)-specific and cross-reactive T cell

responses for exploring HERV-K/HML-2 (ERVK)-tar-

geted HIV vaccines and immunotherapeutics [191]. The

mechanism of HIV-1 induced transactivation of HERV-K/

HML-2 (ERVK) and other transposable elements possibly

involves the activity of an HIV-1 Tat protein [192]. Recent

studies showed that in model experiments with peripheral

blood lymphocytes out of 91 annotated HERV-K/HML-2

(ERVK) proviruses, Tat significantly activates expression

of 26 unique HERV-K/HML-2 (ERVK) proviruses, silen-

ces 12, and does not significantly alter the expression of the

rest proviruses [193]. In addition, HIV infection may cause

transactivation of HERV-W (ERVW-1) family with their

Env genes and Syncytin [194].

On the other hand, endogenous retroviral Env produc-

tion theoretically can provide to the host cell a partial

resistance to infection of pathogenic exogenous counter-

parts or related retroviruses by receptor interference [77,

195, 196], as this is the case for endogenous Jaagsiekte

sheep retrovirus (JSRV) that blocks the entry of the cor-

responding exogenous virus. Both forms use the same

protein receptor for entry, implying interference between

endogenous and exogenous viruses [195]. Endogenous Gag

protein may be also involved in antiviral host cell protec-

tion. For instance, the expression of murine endogenous

Gag-sequence Fv1 blocks certain strains of mouse leuke-

mia virus (MLV) soon after entry [197], most probably,

due to a direct encounter with the incoming viral capsid

[37]. Similar cases were reported also for the chicken,

ground squirrel and cat endogenous retroviral elements

[198]. No direct evidence exists so far for the human ele-

ments, but theoretically this may be possible since human

DNA harbors hundreds of intact or largely intact retroviral

env genes [199]. The recent association study of *23,000

participants indicates that susceptibility to herpes zoster

caused by the varicella zoster virus (VZV) is linked with

the non-coding gene HCP5 (HLA Complex P5) in the

major histocompatibility complex. This gene is an

endogenous retrovirus that likely suppresses viral activity

through regulatory functions. Variants in this genetic

region are also known to be associated with delay in

development of AIDS in people infected by HIV [200].

Cancer

The role of HERVs in cancer is most likely limited to

retrovirus-driven gene expression and does not involve

their insertional activity [22]. In this regard, data from

cancer genome sequencing identified over 180 somatic

integrations in human cancer cells caused by LINE-1

retrotransposon activity [98, 201, 202]. In contrast, there

was only a single insertion of a small HERV fragment,

which was most likely the result of a microhomology-

mediated DNA repair mechanism [98, 201].

Abnormal expression of HERVs in cancer is well

known. For example, HERV-K/HML-2 (ERVK) elements

are overexpressed in germ cell tumors and in melanoma

[22, 203–205]. Upregulation of HERVs may be mediated

by the cancer-specific combinations of transcription fac-

tors, as shown for the HERV-K/HML-2 (ERVK) activation

by the melanoma-specific transcription factor MITF-M

[206]. A significant increase in frequency and titer of

antibodies against proviral proteins in patients suffering

from testicular cancers has been documented (60 % against

4 % in healthy control group) [57]. Importantly, shortly

after the elimination of the tumor, the antibody titers

dropped and became undetectable by 5 years after surgery

[57]. Both HERV-K/HML-2 (ERVK) mRNA and anti-

bodies against proviral proteins were significantly

overrepresented in plasma of the patients with primary

breast cancer [207]. Serum proviral mRNA levels tended to

be higher in the patients who later on developed the

metastatic disease [207]. Aberrant overexpression of

HERV-K/HML-2 (ERVK) proviruses was found also in

prostate cancer [208] and HERV-K/HML-2 (ERVK)

encoded transcripts or proteins are considered as possible

biomarkers of malignization, being overexpressed for the

patients with poor prognosis [209]. Increased HERV-K/

HML-2 (ERVK) Env gene expression was detected in the

prostate tumors in 40 % of European-American and 61 %

of African-American patients [208]. Expression of some

individual HERV-K/HML-2 (ERVK) elements can be of

an outstanding importance to follow prostate cancer

development, as recently shown for the HERV-K/HML-2

(ERVK) (ch22q11.23) Gag gene [209]. In a cohort of

patients with renal cell carcinoma, bone marrow trans-

plantation was reported to result in tumor regression likely

due to a graft-versus-tumor effect. In such patients, anti-

tumor cytotoxic lymphocytes were targeting a HERV-E

(ERVE)-encoded epitope [210], thus demonstrating the

importance of anti-HERV immune responses in the pro-

gression or cure of human diseases [98].

Chronic lymphocytic leukemia (CLL) cells demonstrate

increased transcription of auxillary HERV-K/HML-2

(ERVK) gene Np9, which was previously published as

possible oncogene [211]. Indeed, silencing of Np9 inhibits
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the growth of myeloid and lymphoblastic leukemic cells,

whereas its overexpression promotes the growth in vitro and

in vivo. In human leukemia cells, Np9 protein level is sub-

stantially higher than that in normal cells, e.g., in normal

hematopoietic stem cells. Np9 may act by activating ERK,

AKT and Notch1 signaling pathways and through the

upregulation of b-catenin, essential for survival of leukemia

stem cells [212]. Another group of researchers found that

Np9 may directly interact with the RING-type E3 ubiquitin

ligase LNX protein [59]. This interaction affects the sub-

cellular localization of LNX, whereas LNX can target the

cell fate determinant and Notch antagonist Numb for pro-

teasome degradation, thereby promoting Notch signaling.

The LNX-interacting Np9 is also unstable and degraded via

the proteasome pathway. Combined, these findings point to

the possibility that Np9 affects tumorigenesis by influencing

the LNX/Numb/Notch pathway [59]. In addition, Np9-pos-

itive leukemia samples highly expressed HERV-K/HML-2

(ERVK) Pol-Env polyprotein, Env and transmembrane

proteins as well as entire viral particles [212].

Expression of Syncytin, or Syncytin-1, which is Env

protein of HERV-W (ERVW-1) family, is normally

restricted to the placenta. However, it was also found in

many pathologies including cancers and it is hypothesized

that Syncytin-mediated cell fusion participates in cancer

cell transformation or metastasis [98]. Endogenous retro-

viral Env proteins possess immunosuppressive and

fusogenic activities [98]. As in the placenta, the expression

of immunosuppressive domain of HERV-W (ERVW-1)

and HERV-K/HML-2 (ERVK) Env in tumors may sup-

press immune responses and thus prevent rejection of the

tumour and the embryo [76]. Immunosuppression is most

likely mediated by the transmembrane subunit of the

envelope protein of several retroviruses [213]. Indeed,

overexpression of Moloney MLV transmembrane subunit

in murine tumor cell lines led to tumor growth in recipient

mice that would otherwise immunologically reject them

[98, 214]. Consistently, knockdown of env transcripts in

melanoma and neuroblastoma cell lines, both of which

produce infectious MLVs derived from endogenous retro-

viral precursors, rendered them susceptible to immune

rejection in vivo [215, 216]. In human DNA, in addition to

Syncytins, the Env genes of HERV-E (ERVE) [217] and

HERV-H (ERVH) [218] were shown to possess immuno-

suppressive potential [98]. MRNA contents of HERV-R

(ERV3-1), HERV-H (ERVH), HERV-K/HML-2 (ERVK),

and HERV-P Env genes were significantly increased in

breast cancer patients and dropped to normal levels fol-

lowing chemotherapy [219]. Syncytins and other Env genes

like Erv-3, envT and envFc2 were also upregulated in

endometrial carcinomas [220].

In addition, HERVs may promote cellular transforma-

tion by regulating downstream human gene expression

through their LTRs [98]. Transcriptional derepression of

the CSF1R gene, encoding colony stimulating factor-1

receptor, by a demethylated MaLR LTR acting as an

alternative promoter has been linked with survival of

cancer B cells in Hodgkin’s lymphoma [221]. Finally, the

discovery of HTLV-1 (human T-lymphotropic virus 1)

unequivocally proved the existence of a tumor-inducing

exogenous human retrovirus [98].

Impact on human evolution

VariousHERVfamilieswere active at the different timepoints

during human evolution [8, 10, 18, 222]. For primate-specific

regions, *63 % of mapped DNase I hypersensitivity sites

representing open chromatin regions corresponded to HERV

sequences [105]. The apparent emergence of *320,000

transcription factor binding sites donated byHERVs to human

genome, must have a deep impact on the regulation of intra-

cellular molecular networks [107]. Expression of viral genes,

HERV-driven transcription of neighboring DNA, attenuation

of splicing, polyadenylation and RNA degradation might all

considerably influence the human cell and organism [10]. In a

comprehensive genome-wide study, Subramanian and coau-

thors recently found that both solitary LTRs and full-size

proviruses of human HERV-K/HML-2 (ERVK) family are

preferably located on gene-rich chromosomes and close to

gene regions [223]. A small group of HERVs belonging to

ERVKelementswas actively proliferating in the genomeafter

the divergence of human and chimpanzee ancestor lineages

[19]. Few group members were even specific to non-human

hominid genomes of Neanderthals and Denisovans [224].

Human specific HERVs, in turn, are presented by*130–140

members that shaped *330 kb of the human DNA. This

group modified the human genome activity by endogenizing

*50 functional copies of viral genes that may have important

implications in the immune response, cancer progression and

anti-retroviral host defence. 134 potential promoters and

enhancers have been added to the humanDNA, about 50 %of

them—in the close gene vicinity, and 22 %—in gene introns

[1]. For sixty such human specific promoters their activitywas

confirmed by in vivo assays, with the transcriptional level

varying *1000-fold from hardly detectable to the level

comparablewith the expression ofmajor housekeeping genes.

New polyadenylation signals have been provided to four

human RNAs, and a number of potential antisense regulators

of known human genes appeared due to human-specific

retroviral insertional activity [47, 48].

When looking at all, not only human-specific, HERV

elements, a number of remarkable trends can be observed

dealing with transcription factor binding site (TFBS) den-

sities. Garazha et al. analyzed the distribution of the TFBS-

containing HERVs relatively to their divergence from the
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consensus sequence (this divergence positively reflects

evolutionary age of each HERV element) [225, 226].

Overall, the TFBS-activity of HERVs was decreasing with

evolutional age [107]. However, a significant heterogeneity

between the proportions of TFBS-positive elements was

found for the evolutionary ‘‘young’’ HERVs (divergence

less than 10 %). However, the proportion of TFBS-positive

elements drops as the divergence increases ([15 %) and

further tends to lay within a sharp interval of 0.12–0.18,

which is *6-times less wide than for the young elements.

This clearly demonstrates that the low-diverged (evolu-

tionally recent) HERVs have a significantly lower

likelihood of functional activity in human DNA compared

to the ‘‘older’’ elements. This observation may suggest that

genomic ‘‘domestication’’ of the newly integrated HERV

sequences involves reshaping of their active TFBS profiles

and their further ‘‘standardization’’, e.g., upon accumula-

tion of mutations [107]. Another aspect of the same

concept was uncovered when looking at the distributions of

TFBS for the different transcription factors. For example,

the protein NF-YA has highly abundant TFBS in the

evolutionary young HERVs (divergence 5–8 %), whereas

for the older elements, the TFBS ratio is significantly

lower. In contrast, for the protein Rad21 there is a rela-

tively low ratio of TFBS for the ‘‘young’’ elements

followed by a subsequent increase for the older elements,

reaching a maximum value at *22 % divergence [107].

This example shows, that for some transcription factors

(e.g., NF-YA), the recently inserted HERVs are enriched in

TFBS, whereas further genomic domestication and muta-

tion pressure progressively decrease the TFBS proportion.

In contrast, for another group of transcription factors like

Rad21, the older elements accumulate increased propor-

tions of TFBS [107]. Overall, most of the transcription

factors showed one common feature in their TFBS evolu-

tionary dynamics: a decrease in the proportion of TFBS in

the divergence interval around 5–15 %. This indicates that

functional adaptation and modification of a HERV insert

includes strong initial silencing of the original TFBS that

came from this element, and further accumulation of new

functional TFBS in tight co-evolution with the host gen-

ome [107]. Support for this hypothesis comes from the

studies showing that the newly integrated inserts are ini-

tially under strong DNA methylation repression [119, 227].

This preserves the cell genome from viral gene expression

and from the deleterious influence of these elements on the

host gene regulatory ensembles. Upon de-methylation, a

number of HERVs release their regulatory potential and

provide functional TFBS to the human genome. However,

de-methylation is followed by progressive mutation of the

HERV sequence, which is reflected by a further decline of

the ‘‘original’’ TFBS. However, mutations do not only

cause removal of these sites, but also create new TFBS in

the HERVs that, in turn, fall under selection pressure

according to their implication in the overall genomic

context [228]. Finally, the highly diverged HERVs become

roughly equilibrated with the enclosing genomic regions

and show little difference compared to the average geno-

mic sequence [107].

In a much closer evolutional scale, this theory is

exemplified by the investigations of the promoter activity

of an evolutionally recent family HERV-K/HML-2

(ERVK) [27]. Mapping of the transcriptional start sites for

several actively transcribed HERV-K/HML-2 (ERVK)

LTRs evidenced for the presence of two functional pro-

moter regions within their sequence [27]. The first

promoter was the canonical element located in the LTR U3

region, whereas the second one was mapped in the very 30

terminus of the LTR R region. Both promoters appeared to

be active in solitary LTRs and in full-length proviruses.

Surprisingly, this second non-canonical element was even

more active than the classical U3-based retroviral pro-

moter. Therefore, the R region is excluded from most

transcripts initiated on LTRs, whereas a classical retroviral

life cycle model implies that the transcription is driven

from between the LTR U3 and R elements (first promoter),

and the R transcript is a 50-terminal component of the

newly synthesized proviral RNA [27]. Such a mode of

proviral DNA transcription is a basis of the HERV life

cycle that provides the possibility of template jumps during

proviral RNA reverse transcription. Further studies con-

firmed the prevailing activity of a non-canonical HERV-K/

HML-2 (ERVK) LTR promoter and showed it is regulated

by Sp1 and Sp3 transcription factors via a TATA box-

independent transcription initiation mechanism [229]. A

shift of the transcriptional start site can be explained by the

initial adaptation to the human genomic context, which can

be an early step in the complex process of the HERV

sequence domestication and reshaping by the host genome.

Another important mechanism guiding coevolution of

HERVs with the human genome deals with inactivation of

full-size proviruses. This mechanism may include recom-

binations, most frequently eliminating viral genes and

producing solitary LTRs instead of complete proviral

sequences. An outstanding case of full-size provirus dis-

ruption by recombination was published by Hughes and

Coffin in 2004 [29]. The authors found a genomic locus,

which may exist in three alternative states: it may lack

proviral insert, may have a complete provirus, or may have

a solitary LTR instead. Overall, apparent polymorphic

solitary LTR formation from full-size proviruses was

documented in 5/13 of the studied cases and was found to

be a rather frequent event in the human population [29].

Moreover, the same authors previously found that *16 %

of all recently inserted ERVK elements are linked with

traceable genomic rearrangement events [230].
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Databases linked with HERV structure
and functions

The ubiquitous nature of HERVs and the plurality of their

molecular functions stress the importance of organization

and maintaining related databases. Some of the HERV

sequences and features were annotated and collected in

various databases. For example, in 2002 the first database

was published termed HERVd that was collecting struc-

tural data on most on the HERV elements known at that

time point [231]. However, this database was not updated

since 2003 and nowadays misses important information

available elsewhere. Villesen et al. published a database

putting together the sequences of HERV-encoded open

reading frames of the human genome available to the date

of publication (2005). Fifty-nine intact or almost intact

endogenous retroviral genes were identified, of them 29

encoding envelope proteins [232]. The database of human

retrotransposon insertion polymorphisms [233] presents the

data on the HERV elements that appeared polymorphic in

human population, and the database of human specific

transposable elements [234] contains information on the

genomic location of human specific HERVs and other

retrotransposons. However, many human specific HERVs

were unique to further database [19] which encompassed

134 human-specific endogenous retroviral inserts. It has

genomic coordinates of HERVs, their polymorphic state in

human populations, distances from known genes or map-

ped RNAs, structural status of HERVs (solitary LTR/

provirus), information about open reading frames puta-

tively encoded by the corresponding HERVs, and the

corresponding deduced aminoacid sequences. It also

accumulates data on methylation of individual elements,

and also on individual HERV transcription. This database

was probably the first attempt to characterize in detail a

particular group of HERVs [19]. However, it was focused

solely on human-specific HERV-K/HML-2 (ERVK) ele-

ments and was not updated since 2007. More recently,

Subramanian et al. cataloged all available HERV-K/HML-

2 (ERVK) sequences of the human genome, including both

proviruses and solitary LTRs [223]. However, other human

endogenous retroviral groups left outside the framework of

this study.

RNA of HERVs and other transposable elements may

form an intrinsic hairpin structures and/or serve as micro-

RNA precursor when inserted into transcriptionally active

genomic regions [235, 236]. To catalog the data on trans-

posable elements that may have an impact on gene

regulation and functioning via RNA interference, a data-

base termed ‘‘TranspoGene database’’ has been constructed

that covers not only human, but also mouse, chicken,

zebrafish, fruit fly, nematode and sea squirt genomes [237].

A variant of this database termed ‘‘microTranspoGene’’

collects data on human, mouse, zebrafish and nematode

TE-derived microRNAs [237]. HESAS (HERVs Expres-

sion and Structure Analysis System) database was

developed to link HERV sequences with the neighboring

genes to identify the elements having impact on the

expression of human functional genes. Inserts of HERV

elements were found into 17,317 of human genes and

linked (to the opinion of the authors) to expression of 898

genes [238]. However, the database was not updated since

2004 and lacks information on functional signatures of

regulatory sequences such as DNase I hypersensitivity sites

and transcription factor binding sites.

A bioinformatic algorithm termed RetroTector and

related database published in 2007 utilize automated

recognition of retroviral sequences in genomic data.

Retroviral sequences were detected in various vertebrate

genomes, including human. Most RetroTector-detected

chains were coincident with Repeatmasker output and the

HERVd database. However, RetroTector did not report

many evolutionary old HERV sequences, and was useless

for the detection of solitary LTRs [239].

Most recently, Garazha and coworkers published an

interactive comprehensive HERV database that groups the

individual inserts according to their familial nomenclature,

number of mapped TFBS and divergence from their con-

sensus sequence [107]. Database encompasses data from

717,612 individual elements represented by 504 different

HERV families, which covers *8 % of the human DNA.

Detailed information on any particular HERV element can

be easily extracted by the user. To facilitate data naviga-

tion, we created a genome browser tool enabling quick

mapping and finding of any HERV insert according to

genomic coordinates, known human genes and densities of

TFBS. This browser is cross-linked with the UCSC Gen-

ome Browser to enable easy mapping of other genetic

features of the interest. This database may be widely used

for quickly locating functionally relevant individual

HERVs, and for analyzing their impact on the regulation of

human genes. In addition, option of browsing TFBS dis-

tribution for any particular transcription factor among the

HERVs is enabled [107]. These resources are freely

available at http://herv.pparser.net.

Concluding remarks

In the last decade, human endogenous retroviruses attracted

attention of the research society because of multiplicity of

ways they can influence human physiology in health and

disease. Since 2005, the grant funding for HERV-related

projects by governmental agencies increased *4-times
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([240]; International Aging Research Portfolio, http://

www.agingportfolio.org/) and the number of PubMed-in-

dexed publications featuring HERVs increased by *1.4-

fold reaching a number of approximately 200 publications

per year. This growing interest of biomedical community is

linked with the immense role that these elements played,

play and may play in shaping of human genome and

transcriptome, in molecular evolution and in the progres-

sion of many autoimmune, neurological, infectious and

oncological diseases. Contemporary experimental and

bioinformatic methods enable investigation of HERVs at

the unprecedental levels of whole transcriptomes and even

proteomes. This promises further acceleration of the pro-

gress in decoding molecular functions of HERVs,

hopefully at the level of each individual genomic element.
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