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Abstract Glutamate is the predominant excitatory neu-

rotransmitter in the central nervous system. Excitatory

amino acid transporter 2 (EAAT2) is primarily responsible

for clearance of extracellular glutamate to prevent neuronal

excitotoxicity and hyperexcitability. EAAT2 plays a criti-

cal role in regulation of synaptic activity and plasticity. In

addition, EAAT2 has been implicated in the pathogenesis

of many central nervous system disorders. In this review,

we summarize current understanding of EAAT2, including

structure, pharmacology, physiology, and functions, as well

as disease relevancy, such as in stroke, Parkinson’s disease,

epilepsy, amyotrophic lateral sclerosis, Alzheimer’s dis-

ease, major depressive disorder, and addiction. A large

number of studies have demonstrated that up-regulation of

EAAT2 protein provides significant beneficial effects in

many disease models suggesting EAAT2 activation is a

promising therapeutic approach. Several EAAT2 activators

have been identified. Further understanding of EAAT2

regulatory mechanisms could improve development of

drug-like compounds that spatiotemporally regulate

EAAT2.
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Abbreviations

NF-kB Nuclear factor kappa B

Sp1 Specificity protein 1

NFAT Nuclear factor of activated T-cells

YY1 Yin Yang 1

EGF Epidermal growth factor

TGF-alpha Transforming growth factor alpha

EGR Early growth response protein

Introduction

Glutamate is the predominant excitatory neurotransmitter in

the central nervous system (CNS). Glutamate is released

from pre-synaptic terminals and diffuses across the synaptic

cleft where it binds glutamate receptors. Glutamatergic

transmission is terminated once excitatory amino acid

transporters (EAATs) take up synaptic glutamate. Five

mammalian EAAT isoforms (EAAT1-5) have been char-

acterized (for review see: [1–5]) with each having different

nomenclatures, expression patterns, and uptake kinetics

(Table 1). EAAT1, 2, and 3 are widely expressed in the

CNS, whereas the expression of EAAT4 and 5 is predom-

inately limited to the cerebellum and retina, respectively.

The expression of EAAT2 is higher than that of EAAT1 in

the forebrain while the inverse is true in the cerebellum.

Under normal conditions, EAAT1 and 2 are mainly

expressed in astrocytes and localized to the cellular mem-

brane while EAAT3, 4, and 5 are mainly expressed in

neurons [6–12]. EAAT2 is the most abundant EAAT and is

primarily responsible for glutamate homeostasis in the

forebrain [6, 13–16]. Therefore, dysfunction or dysregula-

tion of EAAT2 can lead to excessive glutamate-mediated

toxicity [16]. This review describes what is currently known

about EAAT2 basic biology and role in disease state.
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Structure and pharmacology

EAAT2 splice variants

The EAAT2 gene is composed of 11 exons which form

multiple splice variants. EAAT2 transcripts contain a long

30 UTR (11–12 kb transcript; 30UTR of *9.5 kb) and

multiple terminal variants (at least two types of N-terminal

and three types of C-terminal) which yield a protein pro-

duct composed of eight transmembrane (TM) domains [3,

17, 18]. EAAT2 also has two N-glycosylation sites located

in the extracellular loop between TM domains 3 and 4. For

the splice variants, the two N-terminal start sequences are

MASTEG- and MVSANN-, while the three C-terminal

sequences are -PWKREK (-a type), -DIETCI (-b type), and

EYQSWV (-c type). EAAT2b (GLT1b) and EAAT2c

(GLT1c) contain a PDZ-binding domain (the last three

amino acids as indicated by the underline) whereas

EAAT2a (GLT1a) does not. The PDZ-binding domain of

EAAT2b is involved in an interaction between EAAT2b

and the PDZ domain protein, PICK1 [19, 20]. The inter-

action modulates EAAT2 functions but it has a minor

effect on [3H]glutamate uptake [19, 20]. These results are

consistent with a previous report that the pharmacological

properties of EAAT2a and EAAT2b are indistinguishable

[21].

EAAT2 proteins are almost exclusively expressed in

astrocytes under normal conditions and rarely in neurons

[7, 8, 22, 23]. EAAT2a in CA1 of the hippocampus is

expressed in neuronal axon terminals (as well as in astro-

cytes) but accounts for approximately 10 % of total

EAAT2a hippocampal expression [23]. The percentage of

total EAAT2 protein in the adult rat hippocampus is 90 %

(EAAT2a), 6 % (EAAT2b), and 1 % (EAAT2c) [24].

Results for EAAT2b protein distribution are inconsistent

among researchers. In the early study, some results indicate

that the EAAT2b protein in the brain is preferentially

expressed in neurons [21, 25, 26], while others show that

the expression is restricted to astrocytes [27, 28]. The

inconsistencies may be attributed to the following reasons:

(1) EAAT2b protein levels are much lower than EAAT2a

protein levels and (2) the unique splice region is only 11

amino acids between the two variants. Therefore, the

antibodies for EAAT2b may have insufficient affinity to

distinguish between isoforms [29]. Recently, the verified

EAAT2b antibody, with EAAT2 knockout mice as a neg-

ative control, shows EAAT2b protein is preferentially

expressed in astrocytes [24]. Interestingly, in situ

hybridization demonstrates that both EAAT2a mRNA and

EAAT2b mRNA are expressed in neurons and astrocytes in

the brain implicating cell-specific translational regulation

[30]. For the subcellular mRNA distributions in astrocytes,

EAAT2a mRNA is predominant in perisynaptic processes,

whereas EAAT2b mRNA is distributed in the cell body

[30]. EAAT2c protein is expressed in rat and human retinal

neurons [31].

EAAT2 regulation

EAAT2 expression is regulated at the level of transcription

(including epigenetic modification), translation, trafficking,

transport, and degradation. For regulation at the transcrip-

tional level, endogenous and pharmacological modulators

can induce activation or repression, such as EGF, cAMP,

PACAP TGFbeta, TNFalpha, ceftriaxone, and estrogen

related compounds as well as co-culturing astrocytes with

neurons [32–37]. The EAAT2 promoter contains several

transcription factor-binding sequences, including NF-jB,

Sp1, N-myc, CREB, EGR, and NFAT [37, 38]. Several

lines of study have demonstrated that NF-jB plays an

important role in the transcriptional regulation of EAAT2

by functioning as an intrinsic activator. EGF-induced

EAAT2 transcriptional activation is mediated by NF-jB

activation, but not by the canonical enhancement of IjB

degradation and nuclear accumulation of the p65 isoform

of NF-jB [36, 39]. On the other hand, TNFalpha-mediated

Table 1 Nomenclature, expression pattern, and uptake kinetics of EAATs

Gene

name

Symbol Alternative

name

Cell type Uptake turnover rate

(ms)

Steady state Km,

(lM)

References

EAAT1 SLC1A3 GLAST Astrocytes 60 20 [7, 8, 70, 93]

EAAT2 SLC1A2 GLT-1 Mainly in astrocytes

Minority in neurons and

oligodendricytes

70 18 [7, 8, 70, 97]

EAAT3 SLC1A1 EAAC1 The dendrites of neurons 9–11 28 [6, 7, 70, 121]

EAAT4 SLC1A6 Post-synaptic neuons in Purkinje

cells

[300 0.6–2.5 [9, 10, 12, 71,

122]

EAAT5 SLC1A7 Retinal rod photoreceptor and bipolar

cells

[1000 61–64 [11, 123]
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EAAT2 repression also utilizes NF-jB activation but also

requires N-myc activation which leads to the conversion of

NF-jB to a transcriptional repressor [36]. Tamoxifen (an-

tagonist of the estrogen receptor), raloxifene (selective

estrogen receptor modulator), and 17beta-estradiol increase

EAAT2 expression via activation of both NF-jB and

CREB [33–35]. Ceftriaxone, a beta-lactam antibiotic,

increases EAAT2 expression via the conventional NF-jB

pathway with IjB degradation and p65 nuclear accumu-

lation [40, 41]. It is also notable that basal EAAT2 protein

expression in primary astrocyte culture is maintained at a

low level, but co-culturing with neurons strongly enhances

EAAT2 expression [42, 43]. This induction involves

binding of NF-jB to the EAAT2 promoter and activation

of kappaB-motif binding phosphor-protein (KBPP) [38,

44]. These results indicate that the NF-jB pathway serves

as an important modulator of EAAT2 expression at the

transcription level. On the other hand, riluzole, a neuro-

protective drug for the treatment of amyotrophic lateral

sclerosis (ALS), has many effects which include enhanced

EAAT2 uptake activity and protein expression [45, 46].

EAAT2 transcriptional activation by riluzole is mediated

by heat shock factor 1 (HSF1) which regulates heat shock

proteins (HSPs) that are essential for proper protein fold-

ing, trafficking, and degradation in cellular stress responses

[46]. EAAT2 expression is also regulated epigenetically.

Histone deacetylase (HDAC) inhibitors (valproic acid and

trichostatin A) enhance EAAT2 expression in primary

astrocytes [47]. Yin Yang 1 (YY1), a ubiquitous tran-

scription factor, decreases EAAT2 promoter activity by

recruiting HDACs as co-repressors in primary astrocytes

[48]. In addition, the EAAT2 promoter exhibits

hypomethylation in cortex relative to the cerebellum,

suggesting a potential explanation for why EAAT2

expression is higher in cortex than in cerebellum [49]. The

methylation on CpG sites of the EAAT2 promoter is

reduced in astrocytes isolated from astrocyte–neuron co-

cultures when compared to astrocytes cultured alone [50].

These results indicate that the acetylation and methylation

state of the EAAT2 promoter is strongly involved in the

regulation of EAAT2 expression.

EAAT2 expression and function are regulated at the

post-transcriptional level. EAAT2 translation is controlled

by corticosterone in primary astrocyte cell lines, primary

cortical neuron–astrocyte mixed cultures, and mice [51].

This regulation involves the 50-UTR of EAAT2. Neuronal

exosomes have been shown to use miR-124a, via a trans-

lational regulation mechanism, to increase EAAT2 protein

[52]. In addition, EAAT1 and EAAT2 protein, but not

mRNA, are increased in ephrin-A3-knockout mice and

accompany synaptic changes [53, 54]. Recently, we have

developed drug-like, small-molecule pyridazine derivatives

which can activate EAAT2 translation [55–57]. One of

these compounds increases EAAT2 protein within only 2 h

in vivo which is very rapid when compared with tran-

scription activators which require 24–48 h. This

translational activation mechanism involves PKC activa-

tion and subsequent YB-1 phosphorylation [56]. At the

level of post-translational modification, EAAT2 protein

undergoes palmitoylation at cysteine 38 (C38) which is

required for normal glutamate uptake function [58].

EAAT2 is also constitutively sumoylated in the CNS

in vivo. The sumoylated form of EAAT2 is localized to

intracellular compartments while non-sumoylated EAAT2

is primarily found at the plasma membrane [59].

Desumoylation in primary astrocytes causes increased

EAAT2-mediated glutamate uptake. In addition, EAAT2 is

ubiquitinated at the C-terminal which mediates PKC-in-

duced internalization and degradation [60–62]. In addition,

the glutamate uptake function of EAAT2 is decreased by

reducing membrane cholesterol levels by dissociation from

lipid rafts which are microdomains of organized gly-

cosphingolipids, cholesterol, and protein receptors. This

indicates that plasma membrane organization of lipid rafts

regulate EAAT2 activity [63]. Moreover, the activity of

EAAT2 is associated with clustering at the astrocyte

perisynapse which is mediated by neuronal activity [64,

65]. There are many potential EAAT2 regulators at the

post-transcriptional level.

There are pharmacological agents that directly modulate

the transport function of EAAT2. Parawixin1, purified

from the spider Parawixia bistriata venom, directly

enhances the glutamate uptake function of EAAT2 [66,

67]. On the other hand, there are many glutamate trans-

porter inhibitors. The pharmacological properties of these

compounds are described in recent review articles [68, 69].

In this review, inhibitors are categorized into two classes:

(1) competitive inhibitors (binding to the substrate binding

site) and (2) noncompetitive inhibitors (interacting with a

site that is different from the substrate binding site)

(Fig. 1). The competitive inhibitors (i.e., substrate ana-

logues) include the cyclic molecules L-trans-2,4-

pyrrolidinedicarboxylic acid (PDC; nonselective EAATs

affinity) [11, 70–73], and Dihydrokainic acid (DHK; a

selective inhibitor for EAAT2) [70]. To reduce affinity for

the glutamate receptor, a bulky substituent was added to

the hydroxyl group of hydroxyl-aspartate, e.g. L-threo-beta-

benzyloxyaspartate (TBOA) and (3S)-3-[[3-[[4-(Trifluo-

romethyl)benzoyl]amino]phenyl]methoxy]-L-aspartic acid

(TFB-TBOA). While TBOA is a nonspecific subtype

inhibitor, TFB-TBOA has higher affinity for EAATs than

TBOA [74, 75]. More recently, N-[4-(2-Bromo-4,5-diflu-

orophenoxy)phenyl]-L-asparagine (WAY-213613) has

been developed. WAY-213613 has higher potency and

selectivity for EAAT2 over EAAT1 and EAAT3 [76, 77].

HIP-B is a noncompetitive EAATs inhibitor which binds at
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an allosteric binding site [78, 79]. UCPH-101 is an

EAAT1-selective noncompetitive inhibitor that targets a

predominantly hydrophobic crevice in the trimerization

domain of EAAT1 [80–82]. In sum, these studies show that

EAAT2 expression is dynamically regulated at the tran-

scription and post-transcriptional level and that EAAT2

function can be pharmacologically modulated with mod-

erate specificity.

Mechanisms of glutamate transport

Extracellular glutamate transport is achieved by the co-

transportation of 3 Na? and 1 H? for the antiport of 1 K?.

The Na? gradient drives glutamate transport. The mecha-

nisms of glutamate transport have been assessed by

mutagenesis and crystal structure studies (for review see:

[5, 83]) based on the archaeal homolog of the EAATs from

Fig. 1 Structure of substrate,

activators, and inhibitors
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Fig. 2 Transport mechanism and structure of glutamate transporter.

There are eight transmembrane (TM) domains and two helical

hairpins (HP1 and HP2). a The topology model of an archaeal

homolog of the EAATs from pyrococcus horikoshii, GltPh, is shown.

TM 1, 2, 4, and 5 are included in the scaffold domain (trimerization

domain) while TM 3, 6, 7, and 8, and HP1-2 are included in the core

transport domain. b The stoichiometry of transport. EAATs exhibit

influx of glutamate/aspartate (Glu), 3 Na? and 1 H?, and outflux of 1

K?. GltPh utilizes influx of aspartate (Asp) and 3 Na?. c The

hypothetical transport mechanism of GltPh. Reyes et al. proposed that

the tips HP1 and HP2 contribute to substrate binding and transport

[85] and are accompanied with rotation of the core transport domain

(red). The trimerization domain is indicated in blue. d The bowl-

shaped structure of the GltPh trimer. Each subunit is represented as

blue, green, and white. The crystal structure is based on GltPh binding

with TBOA (PBD 2NWW, http://www.rcsb.org/pdb/home/home.do)
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pyrococcus horikoshii, GltPh [84–86]. The GltPh protein has

37 % conserved identity with human EAAT2. GltPh con-

tains the 8 TM domains and two re-entrant loops (Fig. 2a).

Although, there are some differences between the archaeal

and the mammalian transporter, including substrate pref-

erence (high affinity of L-aspartate when compared with

EAATs transport as well as similar efficiency for aspartate

and glutamate), the cotransport and countertransport

molecules (without 1 H?, 1 K?), and slow transport turn-

over (Fig. 2b). However, the GltPh structure provides

important information for understanding the transport

mechanism. The first six TM domains of N-terminal form a

scaffold domain. The C-terminal domain contains two

helical hairpins (HP1 and HP2), and two TM domains,

including the core transport domain. Initiation of transport

requires substrate binding on the extracellular side. The tips

HP1 and HP2 are proposed to contribute to the substrate

binding and transport (Fig. 2c, [85]). The structure of GltPh

shows a homotrimeric assembly of subunits containing the

substrate-binding site to form a bowl-shaped structure

(Fig. 2d). The cavity of the bowl faces the extracellular

side with a solvent-filled extracellular basin extending

halfway across the membrane bilayer. This trimeric for-

mation is also observed in EAATs protein from biological

studies. EAAT1 and EAAT2 are homotrimeric, while

EAAT4 forms heterotrimers [15, 87, 88]. Understanding

underlying details of the mechanisms of EAAT2 transport

will facilitate drug development for EAAT2 modulators.

Physiology and functions

Glutamate uptake

Pre-synaptic nerve terminals release glutamate by synaptic-

vesicle exocytosis. The glutamate release elevates gluta-

mate concentration in the synaptic cleft, and the glutamate

binds to glutamate receptors (NMDA and AMPA recep-

tors) on the post-synaptic neurons. This binding stimulates

the neurons via Ca2? or Na? influx. The glutamate is then

quickly removed from the synaptic cleft by EAAT2 in

astrocytes. EAAT2 is responsible for up to 80–90 % of

total extracellular glutamate uptake activities [6, 14–16,

89]. The roles of glutamate uptake by EAAT2 are to

modulate glutamate transmission, prevent excitotoxicity,

supply glutamate to adjacent neuron via conversion to

glutamine, and energy production.

Glutamate uptake by EAATs plays an important role in

reducing the glutamate concentration in the extracellular

space as there is no strong evidence of a specific enzyme

for glutamate degradation here. The baseline concentration

of extracellular glutamate is as low as 25 nM in hip-

pocampal slice [90]. The concentration of released

glutamate from the pre-synaptic terminal reaches approx-

imately 1 mM, and is rapidly decreased by binding to

glutamate transporters (rate constant: 107 M-1 s-1) [91–

93]. EAATs then transport glutamate into the intracellular

space slowly (*30 glutamate/s) [4, 94–97]. A growing

body of evidence shows that EAAT2 effects synaptic

transmission. Blocking of EAAT2 with a specific inhibitor,

DHK, shows extended NMDA-receptor mediated excita-

tory post-synaptic current [98]. EAAT2 is responsible for

increased glutamate uptake during late-LTP (long-term

potentiation) and may also play an ongoing role in hip-

pocampal circuitry to encode and store information [99].

These results indicate that EAAT2 contributes to gluta-

matergic signal transmission as well as maintenance of

synaptic glutamate concentration at a low level.

Excess glutamate diffuses from the synaptic cleft to the

extrasynaptic (outside of the synapse) space. The activation

of synaptic NMDA receptors promotes cell survival while

extrasynaptic NMDA receptor activation promotes cell

death which is termed excitotoxicity (for review see: [100,

101]). The primary synaptic NMDA receptor subunit

GluN2A (NR2A) and the primary extrasynaptic NMDA

receptor GluN2B (NR2B) contribute to neuronal survival

and death, respectively [102]. Because of this differential

distribution of NMDA receptor subunits, the synaptic and

extrasynaptic NMDA receptors have different intracellular

signaling pathways. The activation of synaptic NMDA

receptors induces anti-apoptotic genes and many tran-

scription factors, including cyclic-AMP response element

binding protein (CREB) via nuclear Ca2? signaling. The

activation of CREB subsequently increases BDNF pro-

duction which has neuroprotective properties [100]. On the

other hand, the activation of extrasynaptic NMDA recep-

tors inhibits the neuroprotective signaling promoted by

synaptic NMDA receptors which lead to excitotoxicity.

Excitotoxicity is postulated to contribute to a myriad of

acute and chronic diseases. Acute increased glutamate is

involved in many diseases associated with severe neuronal

damage such as stroke and traumatic brain injury. Chronic

excitotoxicity and/or hyperexcitability are/is related to

chronic neurological disease as well as psychiatric disease,

including Alzheimer’s disease, Parkinson’s disease, ALS,

major depressive disorder, and addiction. Therefore,

reduction of glutamate could prevent excitotoxicity in

numerous neurological and psychiatric diseases.

Once glutamate is taken up by the astrocyte, it is con-

verted into glutamine via glutamine synthetase. Glutamine

is then transported back to the pre-synaptic neuron and then

converted back into glutamate via glutaminase. This

completes the glutamate–glutamine cycle which was first

proposed in the 1970’s [103, 104]. It is notable that these

canonical biochemical pathways are not essential for sup-

plying glutamate for neurotransmitter production or release
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[2]. Blocking the glutamate–glutamine cycle failed to

suppress glutamatergic synaptic transmission in organ-

otypic brain slices [105] indicating that the glutamate–

glutamine cycle contributes little to glutamate transmis-

sion. However, a local astrocyte-dependent glutamate–

glutamine cycle is required to maintain glutamate trans-

mission in active neurotransmission at excitatory terminals

[106].

Glutamate taken up by EAAT2 can also be oxidized for

energy by astrocytes [107]. Glutamate oxidative metabo-

lism occurs at high rates in astrocytes [108–110] and

produces ATP. The oxidation of one glutamate is estimated

to produce 24–27 ATPs via the TCA cycle and pyruvate-

recycling pathway. The sodium–potassium ATPase spends

one ATP to maintain membrane sodium–potassium gradi-

ents to drive glutamate uptake. Therefore, one glutamate

can then net produce 23–26 ATPs [107]. Although EAAT2

is not localized to mitochondria, mitochondria are densely

localized at perisynaptic astrocytic processes where

EAAT2 is expressed. EAAT2, therefore, has the potential

to interact with hexokinase which is a mitochondrial pro-

tein and is the first step of glycolysis [111]. These results

indicate that some glutamate transported via EAAT2 is

taken up by local mitochondria for oxidative energy

metabolism.

Reverse transport

EAATs can release glutamate into the extracellular space

via reverse transport (for review see: [2, 112]). A driving

force (Na? influx) for the inward transport of glutamate

into astrocytes by EAATs is generated by the sodium–

potassium ATPase under normal physiological conditions.

When the driving force is reduced, such as in a membrane-

depolarized condition, EAATs can reverse glutamate

transport outward [113]. It is known that sodium–potas-

sium ATPase activity is decreased in an energy deprivation

condition due to the lack of ATP synthesis which results in

disruption of the sodium and potassium gradients. Indeed,

ischemia-induced depolarization causes glutamate release

via reverse transport of neuronal EAATs [114]. Interest-

ingly, extrasynaptic NMDA receptors on dendrite

membranes are closely apposed to astrocytic processes

[115]. Therefore, reversed astrocytic glutamate transport

may stimulate extrasynaptic NMDA receptors in disease

condition to induce excitotoxicity [116].

Heteroexchange

EAATs can also facilitate substrate exchange of external and

internal substrate in a 1:1 ratio (for review see: [2]). It is

notable that transportable inhibitor, like PDC, induce release

of internal endogenous substrates (i.e., glutamate), thus,

exacerbating excitotoxicity [117, 118]. Recently, the results

of EAAT2 reconstituted in liposomes shows that heteroex-

change is electroneutral but is voltage dependent [119].

Anion conductance

EAATs also exhibit anion conductance that is not coupled

to glutamate transport [91, 120–123]. The magnitude of

this conductance is inversely related to the pattern of glu-

tamate transport rates (the glutamate transport rate are

EAAT1/EAAT2/EAAT3 � EAAT4/EAAT5). EAAT4

and EAAT5 have a high chloride conductance which

inhibits glutamate transmission. EAAT4 and EAAT5 are

expressed in cerebellar and retinal neurons, respectively.

EAAT4 and EAAT5 predominantly serve to inhibit gluta-

mate transmission in these neurons rather than to transport

glutamate [124]. EAAT2 exhibits weak anion conductance

and mainly plays a role in glutamate uptake.

Disease relevancy

Neurodegenerative disease is primarily characterized by

the pathology of neuronal death which occurs in different

regions and cell types in a disease specific pattern. Neu-

ronal death is predominant in excitotoxicity. The current

therapeutic strategy is to prevent neuronal death (e.g., the

prevent excitotoxicity) and delay disease-related symptom

progression. Excess glutamate plays an important role in

excitotoxicity, and, therefore, glutamate uptake enhance-

ment is one of the most promising drug targets for the

prevention of excitotoxicity. On the other hand, psychiatric

diseases are characterized by no obvious classical patho-

logical phenomenon. Recently, advances in brain imaging

techniques have revealed dysregulation in the glutamate

pathway that make it a candidate therapeutic target for

psychiatric disease. Here, we review how the glutamate

pathway is involved in select neurological (stroke,

Parkinson’s disease, epilepsy, ALS, and Alzheimer’s dis-

ease) and psychiatric diseases (major depressive disorder

and addiction) as well as accumulating evidence that

EAAT2 activators are a potential therapeutic strategy for

drug development in these diseases.

Stroke

Stroke is the second leading causes of death in both men

and women (12 % of total death, WHO data in 2012) and

the third leading cause of disability-adjusted life-years

(DALYs) worldwide [125, 126]. DALYs indicate how

many years of ‘‘healthy’’ life are lost. Stroke patients

typically experience a long period of disability associated

with the disease. Stroke is caused by either ischemia (80 %
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of cases) or hemorrhage (20 %) [127]. Ischemic stroke

causes a reduction in oxygen and glucose supplies which in

turn prevents ATP synthesis. The deprivation of ATP leads

to reduced sodium–potassium ATPase activity, disruption

of sodium and, potassium gradients, and, in turn, increased

synaptic glutamate concentrations via reverse transport of

glutamate by neuronal EAATs [102, 114]. Neuronal

EAATs involvement here is confirmed by the finding that

ischemia-induced glutamate release is blocked by PDC

(non-specific glutamate transporter inhibitor) but not DHK

(EAAT2 specific inhibitor). EAAT2 uptake function is

preserved in the ischemic condition. This is possibly due to

the fact that astrocytes are able to metabolize glycogen and

glucose [128], as well as produce ATP by oxidation of

glutamate to obtain energy for maintenance of glutamate

uptake in an acute ischemic condition. Several studies of

ischemia animal models show glutamate levels in the brain

are increased which subsequently cause excitotoxicity

[129–134]. The detailed mechanisms of excitotoxicity in

the context of stroke are described in a current review

article [102]. The strategy of reducing glutamate by

blocking neuronal reverse transport and/or enhancing

EAAT2 glutamate uptake is attractive here. Several studies

demonstrate that increased EAAT2 provides neuroprotec-

tion in ischemia. GFAP-driven EAAT2 expression in

astrocytes enhances neuroprotection after moderate oxy-

gen–glucose deprivation in rat hippocampal slice cultures

[135]. Ceftriaxone-induced EAAT2 expression shows

protective effects in several ischemia animal models [136–

141]. These results indicate that EAAT2 is a potential

therapeutic target for stroke.

Parkinson’s disease

Parkinson’s disease (PD) is characterized by motor symp-

toms, including akinesia, bradykinesia, rigidity and tremor.

The neuropathological hallmark of PD is the progressive

degeneration of dopaminergic neurons in the substantia

nigra pars compacta (SNc). The development of PD motor

symptoms is believed to be due to a loss of dopaminergic

neurons here. This leads to loss of modulatory input and

results in glutamatergic hyperexcitability of the subthala-

mic nucleus (STN) which projects to the medial globus

pallidus and the substantia nigra pars reticulata—the output

regions of the basal ganglia [142, 143]. In addition, over-

activation of the glutamatergic neurons in the STN can

result in excitotoxicity and degeneration of surviving

neurons in the SNc. Blocking-enhanced glutamate trans-

mission in this circuit could both alleviate symptoms and

delay progression. Both preclinical and clinical studies

demonstrate that glutamate receptors are a therapeutic

target for PD (see review [142, 144]). Recently, several

studies demonstrated that EAAT2 expression is involved in

PD. Decreased EAAT2 expression has been reported in

animal models of PD, including the 6-hydroxydopamine-

lesioned PD model and the acute 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine treated mouse model [145, 146].

Recently, growing evidence shows ceftriaxone has benefi-

cial effects in PD animal model, including the prevention

of motor dysfunction, neuronal death, and PD related

memory deficits [147–152]. EAAT2 has the potential as a

target for PD therapy.

Epilepsy

Epilepsy is a chronic neurological disease characterized by

seizures and has a prevalence of 1–2 % worldwide.

Epileptic seizures generally fall into two major categories:

generalized seizures and partial seizures. Generalized sei-

zures exhibit a widespread electrical discharge in both

brain hemispheres and are typically associated with genetic

factors. The partial seizures are a local electrical discharge

in the brain and are typically caused by brain injury, stroke,

or tumor. The molecular mechanisms underlying the

development of epilepsy during initial insults (epileptoge-

nesis) are not well understood. The progression of

epileptogenesis during the latent period involves differen-

tial release of several neurotrophic factors, neuronal

sprouting, altered synaptic plasticity, neurogenesis, and

excitotoxicity [153, 154] which subsequently result in the

development of spontaneous recurrent seizures. Enhanced

synaptic glutamate concentration during the initial insult is

related to excitotoxicity and is maintained during epilep-

togenesis [155, 156]. EEG and microdialysis studies in

epilepsy patients show that the basal glutamate concen-

tration in epileptogenic areas is 4.7 times higher than in

nonepileptogenic areas of the hippocampus [157]. The

concentration of glutamate in epileptogenic areas reaches

neurotoxic concentration under basal conditions and

increases further during seizures [157, 158]. Dysfunction of

glutamate transport may contribute to high extracellular

glutamate in the epileptogenic hippocampus. Impaired

glutamate transport function has been reported in human

epilepsy but remains controversial [159–163]. Excessive

glutamate released by astrocytes plays a role in the syn-

chronous firing of large populations of neurons during

seizures [164–167]. Reducing glutamate-mediated excito-

toxicity may prevent epileptogenesis and, subsequently,

spontaneous-recurrent seizures. Ceftriaxone shows protec-

tive effects by reducing seizure activity and the acute

mortality in a pentylenetetrazole model of epilepsy [168], a

model of tuberous sclerosis [169], and a traumatic brain

injury-induced epilepsy model [170]. We have investigated

pilocarpine-induced status epilepticus in EAAT2 trans-

genic mice and the pyridazine-derivative EAAT2

translational-activator-treated mice [56, 171]. Enhanced
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EAAT2 expression significantly prevents seizure-induced

epileptogenesis and subsequent spontaneous recurrent sei-

zures. Overall, these studies indicate that enhanced EAAT2

protein expression is a potential therapeutic approach for

epilepsy.

ALS

Amyotrophic lateral sclerosis (ALS) is a selective motor

neuron degenerative disease which exhibits rapid progres-

sion in the brain and the spinal cord. The incidence is 2–3/

100,000. Sporadic ALS accounts for approximately 90 %

of cases and hereditary (familial ALS) accounts for the

other 5–10 %. SOD1 mutation accounts for 20 % of

familial ALS [172]. While differing or currently unknown

causes result in ALS, a similar pathogenesis occurs for all

ALS cases, including: oxidative damage, aberrant RNA

metabolism, accumulation of intracellular aggregates,

growth factor deficiency, defects in axonal transport,

mitochondrial dysfunction, glial cell pathology, and glu-

tamate excitotoxicity [173]. A 30–95 % loss of the EAAT2

protein in the motor cortex and spinal cord is observed in

approximately 60–70 % of ALS patients [174]. The loss of

EAAT2 protein is also observed in a transgenic animal

model of mutant SOD1-mediated familial ALS [175–177].

These results suggest that the EAAT2 protein decline is

correlated with neuronal loss. Enhanced EAAT2 expres-

sion by genetic manipulation and pharmacological

treatment in SOD1 mice has shown some beneficial effects

[41, 56, 178]. However, ceftriaxone treatment in patients

with ALS did not show clinical efficacy [179]. There are

many complex conditions in the disease stage that may

have led to the lack of efficacy in this trial. It is notable that

this study did not include pharmacodynamic results, such

as measuring EAAT2 expression pre- and post-treatment.

EAAT2 PET imaging is required in future clinical trials to

confirm EAAT2 is upregulated as expected.

Alzheimer’s disease

Alzheimer’s disease (AD) is a progressive neurodegener-

ative disease characterized by declarative memory

impairments and progressive dementia. The cognitive

deficits are more significantly correlated with reduced

glutamatergic pre-synaptic-bouton density than with neu-

rofibrillary tangles or amyloid-b burden [180]. In addition,

deficiencies in the glutamatergic system (e.g., reduced

glutamate uptake) have been observed in AD and are

correlated with cognitive decline [181–186]. Reduced

glutamate uptake function may result in increased extra-

cellular glutamate levels which, in turn, potentially

increase amyloid-b production over time [187–189].

Amyloid-b can directly further enhance glutamate release

thus creating a positive feedback cycle that synergistically

increases glutamate at the synaptic cleft [190–192]. In

addition, amyloid-b has been reported to prevent induction

of long-term potentiation (LTP) and promote long-term

depression (LTD) [193–196]. This amyloid-b-facilitated

LTD is inhibited by addition of an extracellular glutamate

scavenger [193]. Overall, homeostatic regulation of extra-

cellular glutamate levels may play a crucial role in the

pathogenesis of AD.

EAAT2 plays an essential role in cognitive functions

[99, 197, 198]. The loss of EAAT2 protein and function are

observed in AD patients [181, 184, 185] and constitutes an

early event in disease pathology. This EAAT2 protein

decline is likely due to disturbances at the post-transcrip-

tional level because EAAT2 mRNA is not decreased in AD

patients [199]. Mice that lack one allele for EAAT2 and

crossed with AbPPswe/PS1DE9 mice, an animal model of

AD, exhibit accelerated cognitive deficits when compared

to AbPPswe/PS1DE9 mice. These results suggest that

decreased EAAT2 levels may contribute to AD pathogen-

esis. We have investigated whether restored EAAT2

protein could benefit cognitive functions and pathology in

APPSw,Ind mice, an animal model of AD. We conducted

this investigation using both a transgenic mouse approach

by crossing EAAT2 transgenic mice with APPSw,Ind mice

and a pharmacological approach using a novel EAAT2

translational activator (LDN/OSU-0212320) [200]. Both

approaches resulted in restored EAAT2 protein function

which attenuated premature death, memory loss, and AD-

like pathology (amyloid b deposition and loss of synaptic

integrity) in APPSw,Ind mice. It is notable that LDN/OSU-

0212320 could (1) reverse cognitive deficits after a short

treatment period, (2) sustain the cognitive benefits even

after 1 month of treatment cessation, (3) restore synaptic

integrity, and (4) increase EAAT2 expression via the

translational, rather than the transcriptional, activation

mechanism which resolves the central problem of reduced

EAAT2 protein expression. LDN/OSU-0212320 or its

derivatives may have therapeutic potential as a drug for

AD.

Major depressive disorder

Major depressive disorder (MDD) is estimated to have a

lifetime prevalence of 12.8–16.6 % and is predicted to be

the 2nd leading cause of disease burden by 2030 [201–

203]. Symptoms of depression are characterized by a

depressed mood or a loss of interest or pleasure in daily

activities consistently for at least 2 weeks. Brain imaging

studies have demonstrated abnormalities in the prefrontal–

limbic circuit, specifically decreased top-down connectiv-

ity and increased bottom–up connectivity. MDD patients

show decreased activity in the prefrontal cortex (associated
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with executive function) while activity in the amygdala

(involved in emotional response) and the anterior cingulate

cortex (related to decision-making and emotional regula-

tion) is increased [204, 205]. These network changes are

postulated to contribute to the clinical phenotypes of

depression, but it is not clear what causes these changes.

One possibility may be related to a loss of astrocytes in the

depressed brain. Astrocyte loss is a prominent feature of

mood disorders [206, 207] although there is no unique

pathology for depression. Postmortem studies of patients

with depression have demonstrated that the density of glial

cells is decreased in the amygdala as well as prefrontal,

orbitofrontal, and cingulate cortices [208–213]. Astrocyte-

related genes, glial fibrillary acidic protein (GFAP),

EAAT1, EAAT2, and glutamine synthetase, are reduced in

cortical and amygdalar regions of MDD patients [211,

214–217]. In preclinical studies, a reduction in astrocyte

number in the hippocampus and frontal cortex region is

observed after chronic unpredictable stress [218, 219].

Moreover, the local treatment of the astrocyte toxin, L-

alpha-aminoadipic acid (L-AAA), but not the neurotoxin

ibotenate, in the prefrontal cortex produces an anhedonia-

like behavior (a core clinical feature of depression) and

anxiety behavior [218]. These results suggest that dysreg-

ulated glutamate transmission, due to pathological

astrocytic functional changes, may be involved in depres-

sion symptom development. Indeed, the anti-glutamatergic

agent, riluzole, has antidepressant effects in depressed

patients and animal models of depression [220–223].

EAAT2 expression may play a role in depression-like

symptoms. Glutamate release and uptake in the frontal

cortex and hippocampus are increased by acute stress

[224–226]. Chronic mild, predictable stress also causes

increased glutamate release but also results in EAAT2

upregulation [227–230]. This likely accounts for the fact

that predictable stress has beneficial effects on depressive-

and anxiety-like behaviors [231, 232]. On the other hand,

chronic, unpredictable stress reduces EAAT2 expression

which is a similar phenomenon observed in MDD patients

[215, 216, 233, 234]. A growing body of evidence suggests

that loss of EAAT2 function causes depression-like

behaviors. DHK treatment in rat prefrontal cortex or

cerebral ventricle induces anhedonia behavior as measured

by intracranial self-stimulation [197, 235]. DHK treatment

in the amygdala reduces social interaction [236]. The

inhibition of EAAT2 in the lateral habenula increases

susceptibility to chronic stress, including increased anxiety

and disinhibition during rapid eye movement sleep [237].

These results indicate that loss of EAAT2 expression

contributes to depression-like behavior. In addition,

chronic antidepressant treatments increase EAAT2

expression in the hippocampus [233]. Ceftriaxone reduces

helplessness behavior in the forced swim and tail

suspension tests [238]. It is notable that animal models can

reflect only a single or limited range of symptoms of

depression. In humans, the symptoms of depression are

complex and arise from multi-phenomena. Thus, to deter-

mine whether enhanced EAAT2 expression is a target for

depression treatment, several models of depression must be

examined.

Addiction

Addiction is a behavioral state characterized by altered

reward processing, disrupted emotional responses and poor

decision-making. The motivationally relevant circuitry

involved here is the cortico-striato-thalamic circuit,

including prelimbic cortex, nucleus accumbens, and ventral

tegmental area. Brain imaging studies have demonstrated

that relapse in drug seeking is related to activation of the

prefrontal and anterior cingulate cortices which project to

the nucleus accumbens [239]. During the late withdraw

period, low activities in the prefrontal and anterior cingu-

late cortices are observed. Animal studies demonstrate that

the reinstatement of drug seeking occurs due to an imbal-

ance in glutamate transmission from the prelimbic cortex to

the nucleus accumbens core [240]. These impairments lead

to disruption of cortico-striato-thalamic processing. Rein-

statement of drug seeking in animal models is commonly

associated with increased extracellular glutamate levels in

the nucleus accumbens [241–244]; however, extracellular

glutamate is not increased by the reinstatement of food

seeking [244]. Thus, the enhanced glutamate levels in the

nucleus accumbens play an important role in drug addic-

tion [240, 245].

Importantly, the expression of EAAT2 is altered in

animal models of addiction. Animal studies of cocaine self-

administration exhibit reduced glutamate uptake [246, 247]

and heroin-reduced EAAT2 expression causes the spillover

of synaptic glutamate that leads to the activation of

extrasynaptic NMDA receptors in the nucleus accumbens

core [248]. Ethanol withdrawal reduces EAAT2 expression

in striatum [249]. Ceftriaxone attenuates relapse-like

ethanol intake [250–252]. Ceftriaxone was also shown to

prevent cue-induced heroin seeking through increased

glutamate uptake and a subsequent reduction in synaptic

glutamate spillover [248]. Ceftriaxone also prevents mor-

phine physical dependence [253]. In addition, ceftriaxone

reduces the reinstatement of drug seeking in animals

trained to self-administer cocaine [247, 254–256].

Propentofylline, an adenosine uptake and phosphodi-

esterase inhibitor, prevents cue-primed cocaine seeking via

restored expression of EAAT2 in the nucleus accumbens

[257]. Ceftriaxone attenuates the reinstatement of

methamphetamine seeking in a condition place preference

paradigm [258]. Ceftriaxone also reduces nicotine
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withdrawal and nicotine-seeking behaviors [259]. These

results strongly suggest that enhanced EAAT2 protein

expression is a potential therapeutic approach for addiction

treatment.

Other diseases

Schizophrenia is associated with dysregulation of the glu-

tamatergic system, including EAAT2 expression (for

review see [260, 261]). Briefly, a glutamate receptor

blocker, phencyclidine, induces schizophrenic-like behav-

ior. Although the results of EAAT2 expression changes in

schizophrenia remain controversial, antipsychotic drug

treatments decrease EAAT2 expression. Ceftriaxone

exacerbates phencyclidine-induced prepulse inhibition

impairment [262]. Traumatic brain injury (TBI), which

typically results in glutamate excitotoxicity at and near the

lesion site, is expected to be a therapeutic target for

enhanced EAAT2 (for review see [263, 264]). Ceftriaxone

treatment shows beneficial effects for TBI including neu-

roprotection [170, 265]. The Huntington’s disease animal

model exhibits both decreased EAAT2 protein and mRNA

expression; however, dysregulation of EAAT2 expression

in patients with Huntington’s disease is controversial (for

review see [1, 266, 267]). Ceftriaxone attenuates the

Huntington’s disease phenotype in the R6/2 mouse [268].

EAAT2 expression in the spinal cord is decreased in ani-

mal models of pain (for review see [261, 269]). Ceftriaxone

has anti-nociceptive effects in pain models [270–272].

EAAT2 expression is altered in malignant gliomas (for

review see [273]). Multiple sclerosis (MS) exhibits both

excitotoxicity and oxidative stress (for review see [263,

265]). Ceftriaxone dampens excitotoxic inflammatory CNS

damage in a mouse model of MS, but this may not be due

to increased EAAT2 expression [274]. Finally, EAAT2 has

also been linked to autism [275, 276]. Certainly, the evi-

dence is overwhelming that EAAT2 dysregulation plays an

important role in several neurological and psychiatric

diseases.

Future perspectives

Glutamate transmission is essential for normal brain

functions, inducing learning and memory. Reduced gluta-

mate transmission affects normal brain functions and

produces negative side effects through decreased glutamate

receptor occupancy. Several neurological and psychiatric

diseases exhibit excess extracellular glutamate and loss of

EAAT2 expression. Restored EAAT2 expression levels

and function may provide therapeutic benefit. Here, we

have described three types of EAAT2 activators at different

levels; (1) transcriptional (2) translational, and (3)

functional. Each type has advantages and disadvantages.

Certain diseases demonstrate decreased EAAT2 protein but

not EAAT2 mRNA. In such a case, the transcriptional

activator type, such as ceftriaxone, is unlikely to increase

EAAT2 at a therapeutic level as EAAT2 dysregulation

occurs post-transcriptionally. The translational activator

type, such as pyridazine-derivative, is unlikely to increase

EAAT2 when there is no EAAT2 mRNA; but this type is a

putative fit for an immediate EAAT2 requirement disease

such as stroke. The EAAT2 functional activator, such as

spider extracts, is unlikely to modulate disease symptoms

when there is little EAAT2 protein remaining. A better

understanding of disease mechanisms will be essential to

design and select therapy types for disease with EAAT2

dysregulation. Accumulation of knowledge in the EAAT2

variant, structure, localization, expression regulation, traf-

ficking, and degradation could produce a therapeutic drug

that provides higher spatiotemporal EAAT2 regulation. In

addition EAAT2 function can now be monitored by PET

probe in human subjects. This may pave the way for tailor-

made medicine for disease associated with EAAT2

dysregulation.
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