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Abstract Blood vessels have been described a long time

ago as passive circuits providing sufficient blood supply to

ensure proper distribution of oxygen and nutrition. Blood

vessels are mainly formed during embryonic development

and in the early postnatal period. In the adult, blood vessels

are quiescent, but can be activated and subsequently in-

duced under pathophysiological conditions, such as

ischemia and tumor growth. Surprisingly, recent data have

suggested an active function for blood vessels, named an-

giocrine signaling, releasing trophogens which regulate

organ development and organ regeneration including in the

pancreas, lung, tumor cells, liver and bone. Lung devel-

opment is driven by hypoxia as well as an intense

endothelial–epithelial interaction, and important mechan-

isms contributing to these processes have recently been

identified. This review aims to summarize recent devel-

opments and concepts about embryonic pulmonary

vascular development and lung regeneration. We discuss

hypoxia-inducible factor HIF-2a and vascular endothelial

growth factor VEGF as important mediators in lung de-

velopment and focus on endothelial–epithelial interactions

and angiocrine signaling mechanisms.

Keywords Angiogenesis � Lung development �
Angiocrine signaling � Hypoxia-inducible factors �
VEGF

Introduction

Preparation for birth after proper intrauterine develop-

ment includes the major switch from placental

oxygenation to breathing. More precisely, it is the tran-

sition from a fluid-filled to a functional air-filled lung

which is essential for neonatal survival. A large clinical

study reported that preterm delivery is associated with a

significantly increased risk for severe breathing problems.

In addition, this study has described that the preterm de-

livery rate increases in developed countries—12–13 % in

the USA and 5–9 % in many others [1]. Respiratory dis-

tress develops in 80 % of the infants born before

27 weeks of gestation and in about 24,000 infants a year

[2]. Major advances in perinatal care, including

therapeutic treatment with glucocorticoids and postnatal

application of surfactant, save many newborns from

death. Thus, glucocorticoid treatment that promotes lung

maturation is a subject of intensive discussion [3–6].

A better understanding of lung development may help to

define new molecular targets that can potentially be used to

develop new therapies. A newly identified process named

‘‘angiocrine signaling’’ points to an endothelial cell-driven

active paracrine function of blood vessels on organ de-

velopment and regeneration mediated by the organ-specific

microvasculature. In lung, recent studies identified pul-

monary endothelial–epithelial interactions revealing that

pulmonary development and regeneration is driven by

blood vessels derived growth factors that trigger epithelial

differentiation (Fig. 1).
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Regulation of lung development

Lung development is a well-regulated process that depends

on complex interactions of the epithelium, mesenchyme

and endothelium. It starts with the primary lung bud for-

mation during the fourth gestational week in human—

which corresponds to the embryonic days (E) 9.0–11.5 in

mice—and is subdivided into five morphologically and

biochemically defined stages: the embryonic stage, the

pseudoglandular stage, the canalicular stage, the saccular

stage and the alveolar stage (Fig. 2) as reviewed by

Deutsch and Pinar [7] and Harding and colleagues [8].

During the embryonic stage, the primary lung buds form

from the ventral foregut endoderm, and fuse in the midline

to develop the tracheal primordia and two main bronchi.

The lung bud grows into adjacent splanchnic mesoderm

where it is induced to branch repeatedly, giving rise to the

future respiratory tree. In parallel, the first blood vessels

arise from condensed mesenchymal progenitors by

vasculogenesis [9]. The pseudoglandular stage is defined

by branching morphogenesis resulting in the primary

bronchial tree including the bronchi and the terminal

bronchioles. During this stage epithelial cells, lining the

trachea, the bronchi and bronchioles, remain relatively

undifferentiated [9]. During the canalicular stage, the

conducting airways become lined by diverse cell types

including squamous, basal, ciliated and secretory Clara

cells. Morphological changes include bronchiole differen-

tiation and formation of the respiratory ducts and sacs [9].

Furthermore, the vascular plexus enlarges by vasculoge-

nesis and angiogenesis [9]. In the following saccular stage,

each acinus supplied by a terminal bronchiole gets three to

four respiratory bronchioles that end in a transitional duct

from which saccules arise. In addition, the saccular stage is

characterized by the differentiation of type I and type II

pneumocytes and by capillary remodeling [9, 10]. This

stage prepares the respiratory unit for the transition at birth.

The subsequent alveolar stage occurs postnatally in mice
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Fig. 1 Regulation of angiocrine organ development and regeneration

in lung, pancreas, liver, hematopoietic system, tumors and bone.

Blood vessels produce and release factors named ‘‘angiocrine

molecules’’ which regulate organ growth and organ regeneration in

a paracrine manner. For details see text and references
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but starts within the last prenatal weeks in human and

continues into adolescence. Herein, septation of the sac-

cules gives rise to 300 million alveoli resulting in an

immense surface extension that reaches 75–100 m2 in adult

human lung [11]. In addition, there is substantial capillary

and epithelial proliferation and remodeling before and after

birth that ensures a close proximity of the vascular and

alveolar bed [7]. In the end, the transition to breathing

dependents on alveolar epithelial cell differentiation but is

also regulated by capillary endothelial differentiation [12].

Surfactant production

Breathing at birth requires prenatal surfactant production

that is indispensable for respiration at birth because it re-

duces alveolar surface tension at the air–liquid interface

and prevents alveolar collapse [13]. Thus, birth before the

end of saccular stage is often accompanied by severe res-

piratory distress based on insufficient surfactant

production. Surfactant is produced by type II pneumocytes.

Surfactant produced by type II pneumocytes consists of

*10 % protein, *10 % cholesterol and *80 % phos-

pholipids [14]. To synthesize surfactant at birth, type II

pneumocytes further accumulate prenatal glycogen that

gets transferred into phospholipids upon delivery [15]. In-

terestingly, surfactant production is also strongly regulated

by hypoxia [16].

Surfactant proteins (SPs) include SP-A, SP-B, SP-C and

SP-D. SP-C expression is unique to type II pneumocytes

while SP-A, SP-B and SP-D may also be expressed by

Clara cells [17–19]. Mutation of the sp-b gene alone in-

hibits surfactant protein and phospholipid synthesis,

storage and function causing neonatal respiratory failure in

mice [20] and neonatal respiratory disease in humans [21].

Disruption of the murine sp-c gene is characterized by

severe lung damage—emphysema, epithelial cell dysplasia

and monocytic cell infiltration [22]—and is related to in-

terstitial lung disease in human [23]. SP-A and SP-D

primarily function in innate immunity [24], thus, being of

less importance for lung transition upon birth. However,

specific sp-a alleles are associated with increased risk for

respiratory distress in humans but not in mice [25–27].

Pulmonary vascular development

The cardiovascular system mediates gas transport and nu-

trition supply. Abnormal vascular development as

recognized for VEGF and HIF-1a deficient mice is em-

bryonically lethal [28–30]. During lung development, a

vascular plexus is present as soon as the first lung buds

arise from the foregut endoderm [31, 32]. The pulmonary

vascular plexus is part of the vascular system which con-

sists of arteries, veins and of the microvasculature. The

development of the functional vascular plexus can be

subdivided into two processes: vasculogenesis and angio-

genesis [33–35].

The term vasculogenesis describes the de novo forma-

tion of blood vessels out of endothelial precursor cells

(EPCs or angioblasts) that form blood islands and after-

wards differentiate into endothelial and hematopoietic cells

[36, 37]. In comparison to vasculogenesis, angiogenesis

describes the vessel formation from a pre-existing network

through vascular remodeling and expansion [38]. Thus,

angiogenesis is not only essential for the formation of a

mature vascular network out of a primitive vascular plexus

arising from vasculogenesis, but also for adult vascular

homeostasis, regeneration and adaption.

Hypoxia, the main trigger of late stage lung develop-

ment, is stimulating sprouting angiogenesis via VEGF and

other angiogenic factors [31]. During sprouting
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Fig. 2 Stages of lung development in human and mice
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angiogenesis endothelial cells functionally separate into tip

cells that sense VEGF (vascular endothelial growth factor),

thereby, directing the developing sprout towards hypoxic

areas; stalk cells that build up and elongate the new cap-

illary following the tip cell and phalanx cells that stay

tightly aligned to the parental vessel building the sprout

origin [34]. Finally, the newly formed vessels fuse and

build a functional network that gets covered by pericytes or

smooth muscle cells (mural cells) [39].

VEGF-A, also referred to as VEGF, is the key regulator of

angiogenesis [34]. VEGF belongs to a family that further

consists of VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-

F, PlGF-1 and P1GF-2 which are secreted proteins with

complementary and distinct functions [33]. VEGF mole-

cules activate the tyrosine kinase transmembrane receptors

VEGFR-1, VEGFR-2 and VEGFR-3 which are partially

specific for the different VEGF-variants [40]. The total loss

of VEGF caused embryonic lethality due to vascular failure.

Strikingly, already VEGF heterozygosity was lethal under-

lining the importance of VEGF in vascular development [28,

29]. Apart from its function in vascular guidance, VEGF has

been shown to promote endothelial viability, vessel en-

largement and branching in health and disease [41, 42].

The mechanisms of pulmonary vascular development

are still under debate. Based on histological sections and

transgenic mouse reporter lines, both vasculogenesis and

angiogenesis may contribute to the developing vasculature

in lung [43]. Yet, factors which regulate vascular devel-

opment in other organs also act in the lungs. For example,

overexpression of VEGF as well as the disruption of the

VEGF pathway leads to aberrantly formed airways [44–

46]. Conditional VEGF expression in distal and proximal

airway epithelial cells identified VEGF’s contribution to

proximal and distal pulmonary development [47, 48].

VEGF stimulation of whole lung culture caused increased

branching and gene expression including SP-C [49].

Likewise, VEGF is expressed in bronchial epithelium and

alveolar macrophages in humans [50], interstitial VEGF

concentrations in mice are strongly hypoxia dependent [51]

and HIF-2a expression is known to increase in the begin-

ning of the saccular stage [52]. Interestingly, even though

HIF-2a is known to be one major trigger for pulmonary

VEGF expression, in the conditional endothelial specific

HIF-2a mouse, minor lung vascular defects did not affect

Mendelian ratios of born mice [53]. Nevertheless, it has

recently been shown, that the HIF-2a/VEGF axis deter-

mines neonatal respiratory failure in Kelch-like ECT-2

interacting protein (KLEIP) deficient mice [54–57]. Yet,

the role of HIF-2a in lung development needs to be further

elucidated.

Interdependence of bronchiolar branching
and lung vascularization

Pulmonary branching pattern has extensively been studied

since the first description of the developing bronchial tree

in 1961 [58], and the three-dimensional branching pattern

has now been summarized by Metzger and colleagues [59].

Airway and vascular branching proceed interdepen-

dently in the lung [60]. The subsequent molecular

regulation is the result of epithelial–mesenchymal inter-

actions that is driven by the close proximity of the

vasculature and the airways within all branching

states/generations and the close proximity within the

alveolar-capillary unit that enables gas exchange. Thus, the

vascular plexus is initiated as soon as the first foregut in-

vaginations form and originates from vasculogenesis and

angiogenesis [32, 61]. Indeed, co-culturing experiments

predicted that the vascular plexus forms interdependent of

the developing epithelium showing that vascular cells fail

to proliferate in the absence of lung epithelium [61]. Just in

time, interventional in vivo studies using angiogenesis in-

hibitors against the VEGF pathway showed a reduced

alveolarization and lung hypoplasia [12]. Hence, an ex-

ogenous VEGF-A replacement therapy seemed promising

to treat the respiratory distress syndrome. However, con-

ditional activation of VEGF-A in murine bronchial

epithelial cells caused neonatal lethality due to epithelial

and endothelial failure and thus, conflicted with the idea of

VEGF therapy [47]. Yet, these experiments gave the first

evidence that during alveolar stage, vascular plexus for-

mation depends on pulmonary alveolarization and vice

versa.

Later on, the model was expanded by the finding that

pulmonary vascular development is rate limiting for pre-

natal epithelial branching and that the involved pulmonary

VEGF levels are strongly hypoxia dependent [51]. In ad-

dition, in vitro and in vivo transgenic experiments proved

the essential role of VEGF signaling in both, epithelial and

endothelial branching morphogenesis [48, 49, 62]. This is

supported by observational studies in mice that identified

differential VEGFR-2 regulation in endothelial and ep-

ithelial cells [63]. Furthermore, in vivo 3D experiments

provided information for a perfusion-independent deter-

mination of branching stereotypy of proximal lung airways

by blood vessels [64, 65]. Altogether, the mechanisms

underlying proximal vascular network formation are still

poorly understood, but point to a reciprocal interaction of

airway and vascular growth that coordinates lung devel-

opment. Predicted triggers of this cross-talk are hypoxia

and subsequently VEGF.
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Hypoxia and hypoxia-inducible factors in lung
development

The ability to sense and respond to acute and prolonged

changes in oxygen concentration is a fundamental re-

quirement to avoid hypoxia and ensure survival. The main

factors that act in hypoxic conditions are the hypoxia-in-

ducible factors (HIFs). HIF-1 and HIF-2 are a,b-
heterodimers composed of two basic helix-loop-helix

(bHLH) subunits of the PAS family (PER-period circadian

protein, ARNT-aryl-hydrocarbon-receptor nuclear translo-

cator, SIM-single minded protein)—HIF-a and HIF-b. The
HIF-dimer binds to transcriptional regulatory DNA se-

quences, known as hypoxia response elements (HREs)

[66]. Nowadays, three hif-a genes—hif-1a, hif-2a and hif-

3a—have been identified. Hif-1a and hif-2a possess a

similar functional structure with 48 % sequence homology,

including three hydroxylation sites, revealing that both are

oxygen regulated in a similar manner [67].

HIF-1a was first identified as a DNA-binding protein

bound to the erythropoietin (EPO) gene [68], but is

meanwhile known to be a highly conserved, ubiquitously

expressed and tightly regulated transcription factor that

under hypoxic conditions controls the expression of hun-

dreds of genes [16]. In contrast, HIF-2a—so far detected in

hepatocytes, cardiomyocytes, glial cells, type II pneumo-

cytes and vascular endothelial cells—exhibits a much more

tissue-specific restricted expression [69]. HIF-1a and HIF-

2a regulate distinct, but overlapping batteries of target

genes. One of the most prominent genes regulated by HIF-

1a and HIF-2a is vegf, the key regulator of angiogenesis

[70].

Global deficiency of HIF-1a resulted in a developmental

arrest at E8.0 and lethality by E11 [71] [72]. HIF-1b-/-

embryos are not viable beyond E10.5 [73]. Absence of

HIF-2a leads to only 12.5 % fetal lethality [74, 75]. In

comparison to the HIF-1a and HIF-1b knockout, in the

HIF-2a knockout model, the surviving embryos suffer from

impaired lung maturation which provokes neonatal leth-

ality of 50 % of the newborns [10]. This points to an

important role of HIF-2a in perinatal lung development;

yet, it should be mentioned that Hif-2a phenotypes in mice

may vary between different mouse strains [10, 73–76].

Lung development is driven by hypoxia [77]. During

lung development, both hypoxia-inducible transcription

factors HIF-1a and HIF-2a act as key regulators in ep-

ithelial, mesenchymal and vascular lung morphogenesis

[78, 79]. Herein, expression of HIF proteins underlies a

strict spatiotemporal regulation. While HIF-1a expression

dominates early lung development till the saccular stage

and decreases quickly after birth; HIF-2a up-regulation

starts at saccular stage and remains until adulthood [52].

Genetic loss-of-function models elucidate the importance

of HIF-2a but not HIF-1a in saccular stage lung develop-

ment [10, 78, 80]. Deletion of HIF-2a leads to impaired

lung development, reduced surfactant production, postnatal

respiratory distress and neonatal lethality [10] because it

controls type II pneumocyte maturation and thus surfactant

production and type I pneumocyte differentiation during

late stage lung development [80].

Elucidating the function of HIF-2a in pulmonary cap-

illary formation remained challenging due to the following

reasons. At first, capillary bleedings were observed for

HIF-2a deficient mice but the function of HIF-2a for en-

dothelial maturation and resulting bleedings remained

unclear [10]. Second, conditional endothelial HIF-2a de-

ficient mice displayed physiological lung maturation [53].

Third, a recent study proposed reduced embryonic HIF-2a
levels as a cause for respiratory failure after birth [54].

Finally, a function of HIF-2a for pulmonary vascular re-

modeling is likely because HIF-2a deficient mice display

defective vascular remodeling in the yolk sac [75] and HIF-

2a is a potent activator of VEGF transcription. Together, to

date, HIF-2a but not HIF-1a seems to specifically promote

late stage lung development but its function in context of

pulmonary vascular network formation and pneumocyte

maturation remains poorly understood.

Angiocrine signaling

The term ‘‘angiocrine’’ has recently been introduced by

Butler and colleagues [81] and describes the observation

that endothelial cells promote tumor growth by producing

stem and progenitor cell-active trophogens (Fig. 1). An-

giocrine signaling during organ development has already

been described 10 years before by Lammert and colleagues

[82] and has recently been reviewed [83]. It refers to a

series of experiments that propose endothelial cells to

control organ growth, morphogenesis and differentiation in

the pancreas, liver and kidney [82, 84–87]. Subsequently,

angiocrine signaling was linked to stem cell behavior in

haematopoiesis [88–91] and osteogenesis [92]. Recently,

angiocrine signaling was also observed during liver re-

generation [93–95], in the heart [96], during inflammatory

spinal cord injury [97], in the lung [54, 98] and in tumor

development and metastasis [99–102] (Fig. 1). In common,

all these findings suggest microvascular endothelial cells—

capillary endothelial cells and sinusoidal endothelial

cells—as a source of angiocrine factors that regulate organ

growth and organ regeneration. Today, the term angiocrine

factors refer to the entire set of paracrine factors secreted

by the endothelium that promote organ differentiation, re-

generation, tumor growth and metastasis (Fig. 1).
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Angiocrine signaling in embryonic lung
development

Recently, angiocrine signaling was linked to distal lung

development (Fig. 1). A study that aimed to identify the

molecular mechanisms involved in preterm birth showed

that loss of the Kelch-like ECT2-interacting protein

(KLEIP/KLHL20) causes neonatal respiratory failure

characterized by reduced ventilated airspace and reduced

septal thinning in neonatal KLEIP-/- lungs [54]. As a

consequence, half of the KLEIP-/- neonates die within the

first few hours after birth. KLEIP was identified to be se-

lectively expressed within lung capillaries and embryonic

KLEIP-/- lungs showed reduced surfactant proteins, HIF-

2a and VEGF expression. This led to the model that em-

bryonic surfactant production is at least partially triggered

by the endothelial derived factors HIF-2a and VEGF.

Moreover, reduced VEGF-levels in KLEIP-/- lungs led to

pulmonary endothelial apoptosis and subsequently to de-

generation of the initially intact microvascular network.

Remarkably, the lung phenotype in KLEIP-/- mice was

rescued by prenatal betamethasone application which in-

creased perinatal pulmonary HIF-2a expression and

normalized lung development [54]. Together, the data

showed that the pulmonary microvasculature contributes to

distal pulmonary maturation and that distal pulmonary

development is controlled by an epithelial–endothelial

cross-talk that is regulated by KLEIP and HIF-2a.

Angiocrine signaling in lung regeneration

Lung regeneration can be induced upon injury and disease;

yet, the underlying mechanisms are not well known. Two

major hypotheses suggest that stem or progenitor cell lin-

eages may contribute to lung regeneration. Alternatively,

upon injury or disease, lung epithelial cells start to prolif-

erate and replace lost cells [103]. Angiocrine signaling in

lung regeneration was investigated after H1N1 influenza

virus infection, clearly demonstrating a link between cap-

illary growth and alveolar regeneration from the

transformation-related protein 63 (p63) positive basal-like

stem cells [104]. In addition, another study showed that

lung stem cell differentiation is directed by lung endothe-

lial cells and is mediated by endothelial thrombospondin-1

[105]. The angiocrine triggers identified after pneu-

monectomy are VEGF and FGF that regulate expression of

the matrix metalloproteinase 14 (MMP14) in pulmonary

capillary endothelial cells which resulted in the unmasking

of extracellular epidermal growth factor (EGF)-like ecto-

domains that stimulated epithelial stem cell proliferation

(Fig. 1) [98, 106]. This is further demonstrated by the

observation that deficiency for MMP14 in endothelial cells

resulted in reduced alveolar expansion while endothelial

proliferation stayed unaltered. Thus, the proposed model

predicts an accumulation of epithelial cells induced by

endothelial-derived angiocrine factors (MMP14). This

caused reconstitution of physiologically functional alveo-

lar-capillary sacs. On the other hand, proliferation of

endothelial cells prompted by an epithelial feedback via

VEGFR-2 and FGF receptor 1 (FGFR-1) activation vas-

cularizes the regenerating lung tissue to restore the blood

supply and gas exchange function [98]. Recently, this

mechanism was further elucidated by showing that acti-

vated platelets release SDF-1 upon pneumonectomy and

activate pulmonary capillary endothelial cells via CXCR4

and CXCR7 leading to Akt/PKB phosphorylation. Subse-

quently, endothelial cells activate MMP14 which releases

HB-EGF (heparin-binding EGF-like growth factor) and

finally stimulates lung regeneration [107]. Another study

connects angiocrine pathways to endothelial Epoxye-

icosatrienoic acids (EETs) signaling in lung, liver and

kidney (Fig. 1). The study characterized mice that en-

dothelium specifically overexpressed EET producing

enzymes or soluble epoxide hydrolase (SEH) null mice

during keratectomy, pneumonectomy or nephrectomy.

Herein, unilateral pneumonectomies resulted in a 23 %

increase in contralateral lung growth in the EET overpro-

duction model compared with WT mice revealing EETs to

be of importance for regeneration. This is further supported

by the findings that administration of EET increased lung

regeneration, accelerated wound healing, stimulated

neonatal retinal vessel formation and tissue vascularization

[108].

Summary and clinical perspective

As summarized in this article, recent evidence in the lit-

erature suggests an important paracrine function of blood

vessels in the formation, regeneration and pathological

alterations of different organs, including lung, liver, pan-

creas, bones, hematopoietic system and heart (Fig. 1). In

these studies, blood vessel produced angiogenic molecules

have been identified which directly affect organ growth,

regeneration and tumor growth. Furthermore, some reports

already suggested clinically relevant drugs, such as be-

tamethasone, that increase expression of angiogenic factors

and subsequently compensate for developmental lung al-

terations [54]. Based on these observations two

experimental and translational strategies need to be further

developed. First: identification and characterization of so

far unknown angiogenic molecules that are produced by

vascular cells and that act on surrounding organs in de-

velopment and disease. In addition, it needs to be further

determined whether activation or inhibition of blood
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vessels derived angiocrine factors is able to improve organ

development and organ regeneration. Likewise, it is poorly

understood whether application of purified angiocrine

factors will improve organ development and regeneration

or whether application of endothelial (progenitor) cells

producing selected angiogenic factors are more beneficial.

Second: The availability and mechanisms of drugs that

may increase or decrease expression and activity of blood

vessel derived angiocrine factors need to be further tested

in development, regeneration and in malignancies to ex-

plore their potential to modulate these processes. Finally,

established anti-angiogenic therapies in the clinic should be

tested for their benefits or pitfalls in angiocrine-based or-

gan growth and organ regeneration.
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