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Abstract Enhancers are positive DNA regulatory se-

quences controlling temporal and tissue-specific gene

expression. These elements act independently of their ori-

entation and distance relative to the promoters of target

genes. Enhancers act through a variety of transcription

factors that ensure their correct match with target pro-

moters and consequent gene activation. There is a growing

body of evidence on association of enhancers with tran-

scription factors, co-activators, histone chromatin marks,

and lncRNAs. Alterations in enhancers lead to misregula-

tion of gene expression, causing a number of human

diseases. In this review, we focus on the common charac-

teristics of enhancers required for transcription stimulation.

Keywords Chromatin loop � Gene regulation �
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Introduction

Cells establish individual patterns of gene expression dur-

ing differentiation and development. The spatiotemporal

control of transcription by RNA polymerase II (RNAPII)

depends on enhancers, DNA regulatory elements that ac-

tivate gene transcription [1, 2]. The first known enhancer

was identified in 1981 [3, 4] in the SV40 virus genome, but

subsequently such sequences have been found to be

widespread among higher eukaryotes.

Enhancers are modular elements that lack stereotyped

sequence composition and are located at a distance from

transcription start sites of genes. The distance from an

enhancer to its target promoter can vary from a few kb to

1 Mb. For example, this distance in human CD4? T cells

is *50 kb [5]. Enhancers can be located in intra- and in-

tergenic regions, introns, and even exons of genes [6, 7].

Enhancers usually activate transcription independently of

their orientation and position relative to the target gene.

Multiple enhancers can control the activity of a certain

gene or group of genes [8, 9].

Enhancers are usually several hundred base pairs long

and contain clusters of different 4- to 8-bp degenerate DNA

sequences that are recognized by multiple transcription

factors [10]. As a consequence of transcription factors

binding to the enhancer DNA, these elements are charac-

terized by low nucleosome occupancy and could be

detected by their hypersensitivity to DNaseI [11–13]. Nu-

cleosome destabilization at enhancers is facilitated by the

presence of a highly dynamic H3.3/H2A.Z combination of

histone variants [14–16] that were shown to form less

stable contacts with DNA [17].

Binding of transcription factors to enhancers leads to a

subsequent activation of transcription by recruitment of co-

activators, releasing RNAPII pausing and stimulation of

elongation. The activity of each enhancer is restricted to a

definite spatiotemporal window by a specific set of DNA-

binding transcription factors that control their specificity to

promoters [10, 18–20]; by enhancer-blocking elements

named insulators [21–24] and by chromosome separators
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termed TADs (Topologically Associated Domains) bound-

aries [25, 26].

In recent years, our knowledge of enhancers and their

features has greatly expanded due to application of genome-

wide technologies. Different features of enhancers, includ-

ing transcription factors, co-factors, histone marks, were

mapped throughout the genomes and used to predict novel

enhancers [27, 28]. These data have changed our views on

the prevalence of enhancers. For example, it has been pre-

dicted that the human genome contains approximately one

million enhancers [29, 30]. Notwithstanding this progress,

there are a lot of gaps and challenges in identification of

features significant for enhancer activity.

In the present review, we summarize common features

of enhancers that are important for stimulation of tran-

scription: basic steps of enhancer–protein complex

formation, factors essential for the interaction of enhancer

with the promoter, enhancer-associated histone modifica-

tions, and implications of lncRNAs in enhancer activity.

We discuss the recent studies that provide evidence for the

relationship between mutations in enhancers and various

human diseases.

Principles of enhancer-dependent transcription

Enhancers act through protein factors that are assembled on

their DNA. At the first step of enhancer complex forma-

tion, so-called pioneer factors are recruited (Fig. 1a, b) [31,

32]. These factors control the accessibility of enhancer

DNA by displacing nucleosomes and opening chromatin

locally at inactive enhancers, thereby facilitating the

binding of developmentally regulated transcription factors

[10, 32, 33]. The recruitment of pioneer factors is accom-

panied by DNA demethylation [34–36] and can be

followed by active histone modification [37, 38]. However,

the binding of pioneer factor is usually insufficient to allow

enhancers to stimulate transcription [36, 37, 39, 40]. Then a

set of developmentally regulated transcription factors,

whose activity is restricted to certain spatiotemporal win-

dows, bind to each enhancer sequence in a specific pattern,

usually in cooperation with each other. Several transcrip-

tion factors may compete for the binding to the same or

partially overlapping binding sites.

The binding of developmentally regulated factors

(Fig. 1c) is followed by the recruitment of co-activators

(Fig. 1d) that lack the DNA-binding capacity, resulting in

the formation of an active enhancer complex. These co-

activators can mediate contacts between enhancers and

general transcription factors at the promoters and/or func-

tion as chromatin remodelers (Fig. 1e).

Mediator is a large multiprotein co-activator complex

conserved from yeast to humans. In mammals, Mediator

consists of about 30 polypeptides (named MED1–MED31),

CDK8, and cyclin C [41]. Mediator subunits associate with

enhancers and active promoters; knockdown of Mediator

subunits reduces the transcription of enhancer-controlled

genes [42–45]. Mediator interacts with transcription fac-

tors, including general transcription factors bound to

promoters, as well as with RNAPII and elongation factors

[46, 47]. Mediator transfers the activating signal from en-

hancer to promoter, stimulating preinitiation complex

assembly, activating paused RNAPII, and regulating tran-

scription elongation [48, 49].

As shown recently, Mediator occupies in murine ESC

large enhancer domains, or super-enhancers that have an

average size of about 8.5 kb, and are enriched in the key

transcription factors (master regulators) Oct4, Sox2,

Nanog, Klf4, and Esrrb that control the pluripotent state of

ESC cells [45]. A significant proportion of human super-

enhancers and their target genes are tissue- and cell type-

specific [50]. Several super-enhancers correspond to pre-

viously identified locus control regions (LCRs): a long cis-

regulatory elements consisting of multiple functional en-

hancers [50].

Other common enhancer co-activators include two his-

tone acetyltransferases: the CREB-binding protein (CBP)

and the related E1A-interacting 300-kDa protein p300 [51,

52]. In mammals, these proteins are paralogs that have

more than 90 % sequence identity in the HAT domain [53];

therefore, they are often referred to as p300/CBP. The

majority of p300/CBP-bound genome regions overlap [54,

55] and tend to localize to active enhancers and promoters

[56–59]. Drosophila has only the CBP homologue (named

dCBP, or nejire), which also binds to active enhancers and

promoters [60, 61]. Several studies suggest that the p300/

CBP enrichment on DNA accurately predicts enhancers

[56–59, 62, 63].

The p300/CBP protein has at least 400 interacting pro-

tein partners. The lysine 27 of histone 3 is one of its main

targets in vivo [64, 65]. Genome-wide studies have shown

that active enhancers associate with histone 3 acetylated at

lysine 27 (H3K27ac) [62, 66, 67]. Similar to p300/CBP,

H3K27ac marks both enhancers and active promoters [16].

In addition to histones, p300/CBP acetylates more than 70

non-histone proteins [53], including GATA3/4 [68, 69] and

PU.1 [70] enhancer pioneer factors.

Recently, Krebs et al. [71] reported the association of an

ATAC histone acetyltransferase complex with enhancers

and promoters in two human cell lines. Furthermore, the

ATAC complex was found to bind to a group of enhancers

deprived of p300/CBP. This is evidence of a novel class of

p300/CBP-independent enhancers that waits to be studied.

Current models suggest that the activity of histone

acetyltransferases and ATP-dependent chromatin remod-

elers reduces the affinity of histones to enhancer DNAs and
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leads to chromatin decompaction, facilitating the binding

of transcription factors. However, several studies indicate

that acetylation of non-histone proteins may also be im-

portant for enhancer-dependent activation of transcription

[68, 69].

Long-distance contacts between enhancers

and promoters

A critical step required for enhancer-dependent transcrip-

tion is the establishment of functional contacts between

enhancers and target promoters. The dominant ‘‘looping’’

model suggests that active enhancers form direct physical

contacts with promoters, while the intervening DNA is

looped out (Fig. 1e). Data obtained by 3C and derivative

technologies support this model [2, 19, 72, 73]. The first 3C

study in mammals was performed on the b-globin LCR

located 40–60 kb away from the globin genes [74]. Inter-

actions between LCR and the target promoter were

observed in fetal liver cells expressing b-globin but not in

brain cells, in which b-globin gene is inactive, suggesting

that enhancer–promoter interactions are important for

promoter stimulation.

To date, the existence of enhancer–promoter loops has

been confirmed for various enhancers [23, 72, 75–77].

Moreover, enhancer–promoter interactions have proved to

differ between cell types and correlate with target gene

transcription [78, 79]. There is some evidence that en-

hancer–promoter contacts are not constant but can be

established prior to gene activation.

In particular, GR [80], FOXO3 [81] and TNFa [82] de-

pendent enhancers interact with their target promoters prior

to signaling. Likewise, long-range interactions involving

Oct4 enhancer are established only in a subpopulation of

cells prior to activation of Oct4 gene [83]. Specialized

proteins might be responsible for the establishment of en-

hancer–promoter contacts prior to activation. Insulator

proteins binding to the promoter regions are possible can-

didates for this role [84].

The physical contacts between the enhancer and pro-

moter are sensitive to the loss of several DNA-binding

transcription factors. For example, EKLF and GATA-1 are

sufficient for the establishment of the enhancer–promoter

contact at the b-globin locus [85, 86], and Oct4 factor is

required for the enhancer–promoter contact at the Nanog

locus [87].

The enhancer–promoter loops are further controlled by

co-factors such as Mediator and cohesin complexes. The

cohesin complex is composed of four core subunits: Sm-

c1(A/B), Smc3, Scc1, and Scc3 (SA1/SA2) [88, 89]. The

long coiled-coil polypeptides Smc1(A/B) and Smc3

Fig. 1 Crucial steps of

enhancer complex formation

and long-range interaction of

enhancer with promoter.

Condensed chromatin at

inactive enhancers opens up

upon recruitment of pioneer

factors (PFs) capable to displace

nucleosomes. PFs facilitate the

binding of developmentally

regulated transcription factors

(TFs) to the enhancer DNA, and

they, in turn, recruit co-

activators of transcription. The

Mediator complex binds to

transcription factors at

enhancers and to general

transcription factors, RNAPII at

promoters, and links the

enhancer and promoter together.

The cohesin complex supports

enhancer–promoter contact,

forming a ring-like structure

around DNA
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interact with each other through the hinge domain and are

additionally connected through the Scc1 subunit, forming a

ring-like structure around DNA, and Scc3 (SA1/SA2) links

to the central part of Scc1 [88, 89].

Cohesin acts synergistically with Mediator: these com-

plexes could be co-purified [42, 90, 91]. Cohesin is enriched

at Mediator-bound enhancers and promoters [42, 50, 92],

and, as in the case of Mediator, knockdown of cohesin re-

duces the transcription of the enhancer-controlled genes

[42]. Depletion of cohesin influences the RNAPII occu-

pancy at predicted enhancers and promoters [93]. Depletion

of Mediator [42, 43, 94] and cohesin subunits [42, 91, 94–

96] results in a decreased frequency of interaction between

enhancers and promoters, suggesting their direct contribu-

tion to enhancer–promoter communication.

Mediator proteins may mediate contacts between en-

hancer- and promoter-bound transcription factors, while

cohesin supports chromatin looping by forming a ring-like

structure around the interacting elements [42].

Histone marks and enhancers

Histones are subject to covalent modifications (such as

acetylation, methylation, phosphorylation and ubiquitina-

tion) that occur mainly at their N-terminal tails and may

correlate with the transcriptional status of genes. The ex-

istence of distinct histone modifications provided a basis

for the ‘histone code’ hypothesis, according to which

specific histone modification patterns affect binding of

proteins to chromatin and determine the active and inactive

regions of the genome [97]. For example, H3K27ac (see

above) is associated with active gene transcription sites

[62, 66, 67], and histone H3 mono-, di-, or trimethylated at

lysine 4 (H3K4Me1, H3K4me2, and H3K4Me3, respec-

tively) marks active chromatin [14, 16, 56, 98, 99].

The results of most studies suggest that both active en-

hancers and promoters are marked by nucleosomes containing

H3K4me2 [14, 56, 100], while data concerning the distribu-

tion of H3K4Me1 and H3K4Me3 between active enhancers

and promoters are contradictory. Some authors report that in

human cells (e.g., HeLa, K562, and GM06990) H3K4Me1 is a

hallmark of active enhancers, while H3K4Me3 is associated

with active promoters [56, 62, 98, 99]. Indeed, the DNA se-

quences predicted as enhancers by enrichment of H3K4me1

and p300 and depletion of H3K4me3 gives over 75 % of

positives in a functional test [62, 101].

Other researchers were not able to detect any significant

difference between the presence of H3K4Me3 and H3K4Me1

at active enhancers and promoters in human CD4? T cells

[14, 16]. Moreover, Pekowska et al. [102] reported that

H3K4me3 is enriched at active enhancers, while H3K4me1 is

distributed independently of enhancer activity. The level of

H3K4me3 at enhancers is lower than at promoters. Likewise,

experiments with Drosophila embryos have shown that

H3K4me1 modification takes place regardless of the func-

tional activity of mesodermal enhancers [103].

The supposed enhancer-specific histone modifications

may involve a limited recruitment of specific methyltrans-

ferases to enhancers. Therefore, additional information can

be extracted from the distribution of methyltransferase pro-

teins. For example, mammalianMLL3/MLL4 proteins—the

main regulators of H3K4me1 [104]—are enriched at en-

hancer regions [104–106]. Similar results have been

obtained in Drosophila: Trr (a homologue of mammalian

MML3/MML4) and Trx, which are responsible for bulk

H3K4me1 [105, 107], are associated with enhancers and co-

localize with H3K4me1 and dCBP [107]. However, the

distribution of themain H3K4 trimethylases Set1a and Set1b

(dSet1) proteins [108–111] relative to enhancers has not yet

been analyzed.

To date, the analysis of alternative histone modifications

in mammals and Drosophila has failed to reveal their

correlation with the majority of enhancers, suggesting that

enhancers are heterogeneous [16, 28, 103]. It has also been

found that over 20 % of human enhancers are associated

with acetylation of histone H3 lysine 18 (H3K18Ac)

chromatin hallmark [16]; in Drosophila, enhancers also

tend to associate with H3K18Ac [112]; and trimethylated

histone H3 lysine 79 (H3K79me3) marks about 15 % of

intergenic enhancers [103].

Thus, currently available information about the rela-

tionship between histone modifications and enhancer

activity is rather limited. The analysis of additional histone

marks and an accurate comparison of different signatures

in individual cell types are necessary to capture a complete

picture of active enhancers.

Long non-coding RNAs and enhancers

Early evidence that transcription could be associated with

enhancers came from studies of the human beta-globin

locus where a non-coding RNA (ncRNA) is transcribed

from the HS2 enhancer within the LCR [113] only in cells

where enhancer is active [114, 115]. This ncRNA is tran-

scribed mainly in one direction and from multiple sites

of the enhancer [116]. The generated ncRNA were

polyadenylated and spliced; however it did not appear to

contain the normal cap-structure at 50-ends [117]. HS2 was

found to be associated with RNAPII [118] that seems to be

bound to enhancer independently of the promoter-bound

RNAPII [118, 119].

Further systematic analysis indicated that a major por-

tion of the genome is being transcribed and that the bulk of

genome transcripts account for long ([200 bp) non-
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protein-coding RNAs (lncRNAs) [120–123], which can

have a positive or negative effect on gene transcription

[124].

LncRNAs originating from enhancers were named en-

hancer RNAs (eRNAs) (Fig. 2). Based on the genome-

wide studies, they are *0.5- to 5-kb ncRNAs derived from

DNA regions that share enhancer-associated features [57,

120, 125–128]. The eRNAs could be transcribed uni- or

bidirectionally; they may contain or lack poly(A) tails [57,

120, 125–127, 129, 130].

For instance, Kim and colleagues [57] have found in

mouse neuronal cells *12,000 of CBP-bound regions en-

riched in H3K4Me1 and located distally from known TSSs

of protein-coding genes. Among these regions, 25 % re-

cruited RNAPII, and 16.7 % were transcribed, resulting in

the production of RNAs with a length of\2 kb. Most of

transcripts identified in this study were transcribed bidi-

rectionally and were non-poly(A)? [57].

Several studies have revealed eRNAs derived from ex-

tragenic RNAPII bound sites [125, 127] and from activator

binding sites: estrogen receptor [126, 130], p53 [131], and

MYOD1 [132].

Orom et al. [128] performed a search of enhancer-as-

sociated transcripts based on the functional test. They

selected &0.1- to 9-kb lncRNAs from intergenic regions

whose knockdown by siRNAs resulted in down-regulation

of nearby protein-coding genes. The selected transcripts

were predominantly spliced and poly(A)?. Unlike in the

majority of eRNAs, H3K4me3 was present at their 50-ends,
and H3K36me3 marked their bodies [128]. Based on this

difference, the authors classified them into a distinct group

of lncRNAs, named ncRNA-a (ncRNA-activating). How-

ever, it is difficult to discriminate some of them from

unidirectionally transcribed and poly(A)? eRNAs. Indeed,

due to nonexclusive conditions of search for eRNAs and

ncRNA-a, transcripts of both groups may overlap.

A number of studies indicate a positive role of eRNAs in

the enhancer function. For example, transcription of

eRNAs positively correlates with the expression of nearby

genes [57, 125, 133, 134], and targeted degradation of a

major part of eRNAs leads to reduction of the expression of

nearby protein-coding genes, as in the case of ncRNA-a

[131–133, 135, 136]. Furthermore, enhancer activation

upon stimulation correlates with eRNA production

Fig. 2 The hypothesized

positive role of eRNAs in the

activity of transcribed

enhancers. Enhancer activation

by developmentally regulated

transcription factors leads to

RNAPII recruitment and to

production of eRNAs that help

to recruit co-activators and

facilitate enhancer–promoter

loop formation
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[136, 137]. The expression of eRNAs enhances transcrip-

tion of the reporter gene in an RNA tethering assay [131,

136]. However, the selected eRNAs were ineffective in

trans-stimulation experiments [136].

The role of eRNAs in enhancer–promoter loop forma-

tion is unclear. The eRNAs level was found to be higher at

enhancers that interact with promoters [78, 136, 138].

However, looping between enhancers and target genes re-

mained intact after inhibition of eRNA transcription [126].

The establishment of enhancer–promoter contact prior to

eRNAs synthesis was further supported by the fact that

eRNAs were lacking at the enhancer of arc gene in case of

promoter deletion [57]. However, ncRNA-a depletion by

siRNA reduced chromosomal looping between the ncRNA-

a expressing region and the target gene loci. Furthermore,

the tested ncRNA-as were found to associate with Mediator

implicated in the loop formation [43], and several authors

reported association of lncRNAs with enhancer-bound ac-

tivators [139–141].

Recent studies suggest that transcription of long non-

coding RNAs through enhancer-containing regulatory re-

gions correlates with decrease in target gene transcription.

For example, Gummalla et al. [142] reported that the 90-kb

iab-8 ncRNA is transcribed through the regulatory region

of the abd-A gene and participate in its repression in

Drosophila. The authors propose that this repression is

established in two ways: (1) the iab-8 precursor produces a

micro-RNA, which targets the abdominal-A mRNA, and

(2) iab-8 transcription directly interferes with the expres-

sion of abdominal-A, which lies just downstream of the

iab-8 ncRNA poly(A) site [142]. In a previous study,

Petruk et al. [143] found that lncRNA transcribed through

an enhancer-containing regulatory region interferes with

the Ubx gene promoter. However, likewise interfering with

gene promoter these transcripts can directly affect en-

hancers located in transcribed regulatory regions.

Using an assay in transgenic lines, we found that tran-

scription leads to suppression of enhancers from the

regulatory regions of yellow and white genes [144]. Tran-

scription through the enhancer of the white gene resulted in

dislodging of Zeste, a protein important for enhancer–

promoter communication, suggesting a role for the

mechanism of ‘transcriptional interference’ (Fig. 3b). This

mechanism probably acts on intergenic enhancers and

controls their maximum activity by a negative feedback

loop, with excessive activation of transcription inhibiting

the enhancer activity. Similar positive enhancer-associated

transcription from one enhancer can negatively affect the

activity of nearby enhancers that should be inactive in a

given tissue or a group of cells.

Enhancer inactivation by lncRNAs can possibly involve

the recruitment of Polycomb group repressors (Fig. 3c)

[145]. For example, over 20 % of lincRNAs expressed in

various cell types are bound by the PRC2 Polycomb group

complex [146].

More information comes from studies on enhancers in

human embryonic stem cells (hESCs) [66, 147]. Active

enhancers in hESCs cells show canonical enrichment in

H3K4me1 and H3K27ac histone modifications and asso-

ciate with the p300 protein [66, 147]. The authors identified

a class of ‘‘poised enhancers’’ that have features of both

active and inactive chromatin but are linked to inactive

genes. Being also enriched in H3K4me1 and p300, they are

distinguished by the absence of H3K27ac and enrichment

in H3K27me3 [66, 147] and are bound by Polycomb group

repressors [148]. Analysis of PcG and other repressor

proteins for association with inactive enhancers and link-

age to ongoing transcription at enhancers may provide new

insights into enhancer function.

Diseases and enhancers

Great efforts are made to understand the genetic basis of

human diseases. In addition to mutations in the coding part

of genes, disruption of gene regulatory regions is a major

type of disease-associated changes in DNA. Below, we

briefly consider only a few examples of enhancer-related

diseases.

The first evidence in humans comes from studies of the

b-globin locus linked to b-thalassemia, a transfusion-de-

pendent anemia. Several types of thalassemia are

characterized by hematological symptoms observed in the

absence of b-globin protein, although the b-globin gene in

the patients is intact [149–151]. These thalassemias are

associated with deletions of DNA regulatory regions. For

example, patients with Dutch (cdb�) thalassemia have a

100-kb deletion that removes the LCR and almost all se-

quences upstream of the b-globin gene [151]. A deletion of

*30 kb found in the Hispanic db-thalassemia likewise

removes the LCR and affects b-globin gene expression

[150].

Another example concerns limb abnormalities in hu-

mans, mice, cats, and chickens with single-point mutations

in ZRS, a highly conserved &800-bp limb-specific en-

hancer located 1 Mb from the target sonic hedgehog (SHH)

gene. These mutations affect long-range SHH signaling,

which plays a central role in patterning numerous embry-

onic tissues [152].

Hirschsprung (HSCR) disease is a complex genetic

disorder attributed to a failure of the enteric neural crest

cells to form ganglia in the hindgut. The risk for HSCR is

associated with single-nucleotide polymorphism (SNP) in

the RET enhancer [153, 154].

Van Buchem (VB) disease is an autosomal skeletal

dysplasia characterized by bone overgrowth. This disease
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is associated with a 52-kb deletion in the regulatory region

35 kb downstream of the SOST gene [155, 156]. The af-

fected region normally contains the ECR5 enhancer [157],

deletion of which results in the phenotypes observed in VB

disease [158].

Facioscapulohumeral muscular dystrophy (FSHD) is a

dominant neuromuscular disease with a prevalence of 1 in

20,000, which leads to weakness and atrophy of specific

groups of muscles in the face, shoulder girdle, and lower

extremities [159]. FSHD is associated with the subtelom-

eric region 4q35 containing an array of 3.3-kb-long

macrosatellite repeats (D4Z4) [160]. The length of this ar-

ray varies from 35 to 300 kb in healthy subjects but is

consistently lower than 35 kb in FSHD patients [161]. Each

D4Z4 repeat contains a potent transcriptional enhancer

[162–164], an open reading frame for the double homeobox

gene DUX4 [165, 166], and a number of regulatory ele-

ments (for review, see [167]). The maintenance of

pathological FSHD phenotype is due to the expression of

D4Z4-proximal genes that include DUX4, DUX4c, FRG1,

FRG2, and ANT1. All these genes are upregulated in FSHD

(for review, see [167, 168]). The D4Z4 enhancer interacts

with the Krüppel-like transcription factor 15 (KLF15) in

FSHD patients, thereby activating the DUX4c and FRG2

genes [169]. Recent studies indicate that lncRNA and

miRNA are also implicated in transcriptional regulation in

FSHD [170, 171].

Aniridia is a panocular malformation associated with

haploinsufficiency of PAX6 transcription factor. As shown

by Bhatia et al. [172], aniridia can be caused by point

mutation in the conserved SIMO enhancer located 150 kb

from PAX6 gene. Another disease causing blindness,

nonsyndromic congenital retinal nonattachment (NCRNA),

is linked to a deletion of an enhancer 20 kb upstream from

the ATOH7 transcription factor gene that is required for

retinal ganglion cell and optic nerve development [173].

Alterations in enhancer-containing regulatory regions

are also responsible for other development disorders such

as Leri–Weill dyschondrosteosis syndrome [174], Axen-

feld–Rieger syndrome (ARS) [175], coronary artery

disease [176], prostate cancer [177], and MonoMAC syn-

drome [178].

Many lymphomas, including Bukitt lymphoma (BL),

mantle cell lymphoma and follicular lymphoma are caused by

translocations that position a strong immunoglobulin heavy

chain l enhancer in a relative proximity (100–1000 kbp) to

Fig. 3 The potential

mechanisms of enhancer

inactivation by lncRNAs.

Transcription through the

enhancer from upstream

promoter leads to dislodging of

the enhancer-bound protein

complex from DNA or/and to

the recruitment of repressor

proteins onto DNA, resulting in

enhancer inactivation
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proto-oncogenes c-myc, Cyclin D1 (CCNDD1) or bcl2, re-

spectively [179].Thel enhancer is thought to directly activate
the proto-oncogenes [180], although this notion has been

challenged in a recent study, where the authors show that

activation of CCND1 and CMYC is accomplished by prox-

imal nucleolin-dependent enhancers, following the

relocalization of the translocated regions to the proximity of

the nucleolus [181]. BL is linked to two human viruses, Ep-

stein–Barr’s virus and human immunodeficiency virus [182],

while the role of viral enhancers in BL is not known yet; the

mutations in the murine Moloney murine leukemia virus en-

hancer were shown to affect cancer development in mice

[183].

Globally, genome-wide association studies (GWAS)

localize the majority of disease-associated SNPs to non-

coding sequences [29, 184, 185], particularly to enhancers

[185–188]. The enhancer-associated SNPs are linked to

cancer, diabetes, rheumatoid arthritis, systemic lupus ery-

thematosus, multiple sclerosis, Crohn’s disease, celiac

disease, Alzheimer’s disease, etc. [50, 186, 189, 190]. The

above examples are only a small part of long list of en-

hancer-associated diseases. The relationships between

changes in lncRNAs transcription and diseases are also

currently under a careful study [191].

Individual genome-wide sequencing and analysis of

enhancer-associated SNPs will certainly become an inte-

gral part of tests for timely detection of malformations and

other abnormalities.

Conclusions and outlook

Genome-wide studies indicate that enhancers are enriched

in Mediator and cohesin complexes. A significant propor-

tion of enhancers associate with p300/CBP, ATAC,

eRNAs, RNAPII, and active histone marks H3K4me,

H3K27Ac, H3K18Ac, and H3K79me3.

However, enhancers show an extreme variability in

their DNA-binding transcription factors and most of the

known enhancer features are not necessarily required for

enhancer activity. Such variability appears to be sig-

nificant for the plasticity and accuracy of gene expression

control. At the same time, we suggest that there should be

some general principles and elegant mechanisms of en-

hancer-dependent gene activation. The mechanisms may

also vary depending on the chromosomal context and nu-

clear compartmentalization.

Many more questions need to be answered. How the

connection of cofactors with different combinations of

activators is achieved? How the collaboration between di-

verse cofactors is established? What positive signals are

translated from activators to promoter-bound factors: pro-

tein modifications, changes of protein conformation,

chromatin structure, etc.? What defines lncRNA to be

positive/negative? What restricts enhancer activity to cer-

tain cells? The answers to these questions will certainly

provide a deeper insight into the principles of enhancer

action and genetic control.
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