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Abstract Enhanced glycolysis in cancer, called the

Warburg effect, is a well-known feature of cancer metab-

olism. Recent advances revealed that the Warburg effect is

coupled to many other cancer properties, including adap-

tation to hypoxia and low nutrients, immortalisation,

resistance to oxidative stress and apoptotic stimuli, and

elevated biomass synthesis. These linkages are mediated by

various oncogenic molecules and signals, such as c-Myc,

p53, and the insulin/Ras pathway. Furthermore, several

regulators of glycolysis have been recently identified as

oncogene candidates, including the hypoxia-inducible fac-

tor pathway, sirtuins, adenosine monophosphate-activated

kinase, glycolytic pyruvate kinase M2, phosphoglycerate

mutase, and oncometabolites. The interplay between gly-

colysis and oncogenic events will be the focus of this

review.

Keywords Warburg effect � Cancer � HIF-1 � Sirtuin �
Myc � PGAM

Introduction

As glycolysis is essential for energy production in almost

all mammalian cells, impaired glycolysis was assumed to

have a pathological effect in various human diseases,

including diabetes mellitus and muscle atrophy [1, 2].

Among the first descriptions of enhanced glycolysis in

diseased states was the Warburg effect, which was pro-

posed by Otto Warburg [3] after he observed that cancer

cells preferably covert glucose into lactate even in the

presence of oxygen. Indeed, enhanced glycolysis was

subsequently found to be a metabolic characteristic of

many cancers [3], and the upregulation of protein levels

and enzymatic activities of many glycolytic enzymes was

later confirmed [4, 5]. It was initially thought that

enhanced glycolysis may provide an energy boost to meet

the demands of the high proliferation rate of cancer cells.

However, energy generation via glycolysis is relatively

inefficient, as it generates only two ATP molecules per

glucose, whereas the TCA cycle in mitochondria gener-

ates 36 ATPs per glucose [6]. Thus, the reason for cancer

cells to favour enhanced glycolysis cannot be simply

explained by the efficiency of energy production. Recent

studies have revealed causal effects of enhanced glycol-

ysis on cancerous growth, including an increase in

biomass synthesis [7, 8] and radical scavenger activities

[9]. These additional aspects of the Warburg effect might
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partly explain the preference for enhanced glycolysis in

cancer.

Inhibition of the Warburg effect has been proposed as a

possible cancer therapy [6]; however, this strategy is

problematic as the glycolytic pathway is also required in

normal tissues. Thus, cancer therapies targeting the War-

burg effect must induce cancer-specific and localised

inhibition of glycolysis in order to minimise possible side

effects. An important step will be to determine how gly-

colysis is dysregulated in cancer, while strictly regulated in

healthy cells. In addition to their high proliferative capac-

ity, cancer cells exhibit several cytological hallmarks.

These include immortalisation, stress resistance mecha-

nisms such as evasion from apoptotic stimuli, survival

under nutrient-limited conditions, metastatic capacity, and

anchorage-independent growth [10]. It is possible that the

Warburg effect promotes these properties, which are

known to be associated with genetic alterations and mod-

ulations in signalling pathways [11, 12]. Any links between

the Warburg effect and oncogenic signalling pathways

would be of great interest as potential targets for anticancer

therapy [13, 14]. Here, we provide an overview of recent

advances in our understanding of glycolysis regulation in

cancer and the Warburg effect.

Cellular-context-dependent regulation of glycolysis

Glycolysis is a highly conserved metabolic process that

involves sequential reactions mediated by several glyco-

lytic enzymes. The sequences of the genes encoding these

enzymes and the intermediate metabolites in glycolysis are

highly conserved from bacteria to humans, implicating its

fundamental importance for all living cells. It has been well

established that phosphofructokinase (PFK) is the rate-

limiting enzyme for the glycolytic pathway owing to its

allosteric regulation, and this has been shown not only in

bacteria and yeast, but also in cancerous cells and muscle

cells in vitro [15, 16].

The regulation of glycolytic metabolism in mammalian

cells depends on many factors, including differentiation

status, growth conditions, and cellular environment

(availability of oxygen, nutrients, etc.) [17, 18]. For

example, normal cells might adapt to hypoxic conditions

by enhancing anaerobic glycolysis and limiting energy

demands. However, cancer cells continue growing even

under hypoxic conditions in vivo, and this might require a

maladaptive metabolic shift [19]. Thus, the fine tunings of

glycolysis observed in normal cells are dysregulated in

cancer cells to support their demand for excess glycolysis

(Fig. 1). Indeed, recent studies have revealed that in

addition to PFK, several glycolytic enzymes play key roles

in establishing the Warburg effect in cancer.

Transport of glucose across the plasma membrane is the

first rate-limiting step for glucose metabolism, which is

mediated by GLUT proteins. Among them, GLUT1,

GLUT3 and GLUT12 have been reported to be upregulated

in some cancers [20]. Hexokinase (HK) mediates the crit-

ical first step of glycolysis; generation of glucose-6-

phosphate (G-6-P) via phosphate transfer from ATP.

Mammalian four isoforms of HK are designated as HK-1 to

HK-4. Their intracellular localizations are variable; HK-1

and HK-2 mainly on the outer membrane of mitochondria,

HK-3 in a perinuclear regions, and HK-4 in the cytosol.

Their tissue distributions are also various. For example,

HK-4, known as glucokinase, is mainly expressed in liver

and pancreas. However, in cancer cells, HK-2 is predom-

inantly overexpressed for following reasons. HK-1, -2, and

-3 shows over 200-fold lower Km for glucose compared to

that of HK-4. Moreover, HK-2 has two functionally active

kinase domains, while others not. HK-2 binds to voltage-

dependent anion channels (VDACs), to smoothly access to

mitochondria-generated ATP. VDAC-bound HK-2 is also

insensitive to feedback inhibition of G-6-P as its product.

Thus, HK-2 is more efficient to restore highly glycolytic

flux than others. Moreover, the interaction between HK-2

and VDACs is critical to prevent apoptosis by proapoptotic

factors, Bax and Bad, in tumours [21–23]. Interestingly,

Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) is

also known to interact with VDACs [24].

The other key glycolytic enzyme is pyruvate kinase

(PK), which converts phosphoenolpyruvate (PEP) into

pyruvate in the final step of glycolysis. PKM1 and PKM2

are alternatively spliced isoforms of PK that differ in

sequence by only 22 amino acids. PKM1 is expressed in

normal adult tissues, while PKM2 is also detected in many

tumours and embryonic tissues. Although there are some

controversies regarding whether PKM2 is absolutely

required for tumourigenesis in vivo [25, 26], PKM2 is

designated as the oncogenic isoform of PK, not only

because of its expression profile, but also because of its

multifaceted functions in tumourigenesis [25]. The most

striking evidence of PMK2 involvement in tumourigenesis

is that the dimeric form of PKM2 also functions as a

protein kinase that targets the tumourigenesis-associated

factors STAT3 [27], b-catenin [28], histone H3 [29], BUB3

checkpoint protein [30], NF-jB p65 [31], OCT-4, CD44 (a

cancer stem cell marker) [32], and HIF-1 [33]. These

findings suggest that the regulation of PKM2 could be

essential for cancer cell proliferation.

Interestingly, other glycolytic enzymes are involved in

establishing the Warburg effect during the process of im-

mortalisation and transformation. Normal primary cells

cultured in vitro suffer irreversible cell cycle arrest, called

senescence, which is induced by telomeric erosion or

by stresses such as oxidative stress, DNA damage, and
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oncogenic insult [34–36]. The latter is designated stress-

induced senescence, which is often bypassed by cell im-

mortalising events in vitro, such as the activation of some

oncogenes and the ablation of tumour suppressor genes

[27]. In vivo, cellular senescence forms a protective barrier

against immortalisation [37]. During the senescence pro-

cess, glycolysis declines in human and mouse primary

cells, while cancerous cells maintain the Warburg effect

even under standard tissue culture conditions (i.e. 20 %

oxygen) [19]. Recent studies have uncovered roles for

glycolytic enzymes in the bypass of senescence in cancer

cells.

Phosphoglycerate mutase (PGAM) was reported to be an

immortalising factor in mouse fibroblasts via its radical

scavenging effects [9, 38]. This finding is supported by the

notion that PGAM activation suppresses mitochondrial

respiration in vivo and in vitro [38, 39], followed by

decreased generation of reactive oxygen species (ROS).

Moreover, 2-phosphoglycerate, the metabolic product of

PGAM, also activates the pentose phosphate pathway,

whose product, NADPH, is essential for maintaining

reducing power [8]. Hexokinase 2 (HK2) was also identi-

fied as a senescence-bypassing gene [11]. HK2-expressing

cells show activation of the hexosamine biosynthetic

pathway (HBP), which branches from glycolysis. The HBP

affects many cellular processes through protein modifica-

tion, as it further branches into N-linked glycosylation and

O-linked N-acetylglucosamine (O-GlcNAc) [40]. More-

over, the ectopic expression of the glucose transporter

GLUT3 renders nonmalignant breast cells susceptible to

experimental transformation under 3-D culture conditions,

and this occurs via HBP activation coupled with the

Warburg effect [12]. These phenotypic conversions are

accompanied by the activation of some oncogenic signal-

ling factors (EGFR, AKT, MEK, and b1 integrin) [12].

Thus, the activation of different glycolytic enzymes affects

various metabolic and biological pathways, whose outcome

similarly promotes the proliferation of cancer cells under

Warburg effect conditions. These findings indicate that

investigation of the complex relationship between glyco-

lytic regulation and cancer metabolism is essential for

understanding the Warburg effect.

Adaptation to hypoxia and transcriptional regulation

of glycolytic enzymes

It is quite possible that the Warburg effect is the conse-

quence of cellular adaptation to the hypoxic environment

encountered by cancer cells, particularly inside the core of

solid tumours outgrowing the oxygenating capacity of

neovasculatures [41]. However, the molecular mechanism

of the Warburg effect was unclear until breakthrough

experiments on the transcriptional regulation of glycolysis,

which led to the discovery of hypoxia-inducible tran-

scription factor 1 (HIF-1). HIF-1 was identified by DNA

affinity chromatography from large-scale cultures of HeLa

cells based on its ability to bind to the hypoxia response

element DNA sequence [42]. Subsequently, the functional

homologue HIF-2 was identified, and was found to have

targets that overlapped with those of HIF-1 in addition to

its own distinct target genes [43–45]. HIF-1 is required to

upregulate many glycolytic enzymes under hypoxic con-

ditions [46]. In addition, pyruvate dehydrogenase kinase 1

is also upregulated directly by HIF-1, leading to the inhi-

bition of pyruvate entry into the TCA cycle (Fig. 1) [47,

48]. HIF-1 also regulates MCT4 (monocarboxylate trans-

porter), which is critical to prevent the intracellular lactic

acidification in tumours [49]. While intracellular lactic

accumulation provokes apoptosis in cells, exported lactate

might protect tumours from attack by immune systems

[22].

The accumulation of HIF-1 or HIF-2 has been observed

in many cancer cells, and is associated with poor prognosis

of patients [50]. However, several lines of evidence suggest

that the Warburg effect cannot be simply explained as an

adaptation to hypoxic conditions in vivo. First, cancer cells

maintain a high level of glycolysis even in tissue culture

conditions under normoxia (20 % oxygen) [51]. Second,

the ectopic expression of HIF-1 causes cell cycle arrest in

some cell lines [52]. Third, PGAM is not upregulated by

HIF-1 during hypoxia [46]. Fourth, HIF-1 knockdown

hardly affects the mRNA profiles of glycolytic enzymes in

some cells [12]. Fifth, recent work suggests that HIF-1 is

also regulated by stimuli other than hypoxia [17]. Thus, the

intriguing correlation between the Warburg effect and HIF-

1 could be affected by the interplay between multiple

factors in addition to hypoxia. In this context, it is note-

worthy that the transcription factors STAT3 and NF-jB
also regulate the transcription of glycolytic enzymes in

cooperation with HIF-1 [53, 54], while ETS-1 cooperates

with HIF-2 [55, 56].

Several other transcription factors are also involved in

glycolytic regulation. Hepatocyte nuclear factor 1b (HNF-

1b) is a homeodomain transcription factor that plays a

critical role in pancreatic development, including the

differentiation of pancreatic endocrine cells. HNF-1b
mutations have been clinically reported in many cases of

diabetes mellitus [57]. Recently, HNF-1b was reported to

regulate the Warburg effect in ovarian cancer. Knock-

down of HNF-1b in an ovarian clear cell carcinoma

(OCCC) cell line downregulated the mRNA levels of

many glycolytic enzymes, including HK, GPI, PFK,

ALDO, TPI, PGK, PGAM, ENO, and LDH, leading to a

reduction in glycolytic flux [58]. Interestingly, ablation of

HNF-1b causes OCCC cells to proliferate more rapidly
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with a reduced glycolytic rate. As OCCC is known to

show slow progression but a poorer prognosis than other

types of ovarian cancers [59], the Warburg effect in

ovarian cancer might be associated with characteristics

other than its proliferative potential. AD4BP/SF-1

(NR5A1), a steroidogenic tissue-specific nuclear receptor,

was also recently reported as a transcriptional regulator of

glycolysis [60]. Direct regulation of many glycolytic

enzymes by AD4BP/SF-1 was clearly shown using a

knockdown assay and CHIP analysis; these enzymes

included HK, GPI, PFK, ALDO, TPI, GAPDH, PGK,

PGAM, ENO, PKM2, and LDH. It would interesting to

see whether AD4BP/SF-1 is also involved in tumouri-

genesis in relevant tissues [60]. Furthermore, the

transcription factors specificity protein 1 (SP1) and SP3

induce PKM, enolase, and aldolase [61, 62], while per-

oxisome proliferator-activated receptor c (PPAR c)

activates PKM and HK2 during hepatic tumourigenesis

[63]. Additionally, microRNAs have been reported to be

involved in glycolytic regulation; the details of this reg-

ulation have been described in other reviews [64, 65].

Although glycolytic regulation by HIF-1 and/or other

transcription factors could also be required for normal

cells under hypoxia or other conditions, these factors are

known to be involved in oncogenic events, and their

signalling in cancer cells maintains the Warburg effect, as

discussed in ‘‘Classical oncogenic signals and glycolysis’’.

Classical oncogenic signals and glycolysis

It is known that several major oncogenic events constitute

oncogenesis in vivo, including the activation of oncogenes

(Ras, Myc, etc.) and inactivation of tumour suppressor

Fig. 1 Network of transcriptional and posttranscriptional regulation

of glycolysis relevant to tumourigenesis. Classical oncogenic factors

are indicated by green circles, while other signalling molecules are

shown in blue. HIF-1 is indicated in red, and the metabolic sensor

AMPK and sirtuins are shown in orange. The arrow indicates a

positive effect, while the others are inhibitory effects. Pathways

branching from glycolysis are described in the grey box, and some

essential metabolites are in purple. See the text for additional

mechanistic details and abbreviation definitions
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genes (p53, Rb, Ink4, etc.) [66]. These classical oncogenic

signals are also required for the regulation of the Warburg

effect (Fig. 1).

It has been suggested that several growth factors,

including insulin, IGF-1, and IGF-2, stimulate glycolysis

via the phosphatidylinositol-3-kinase (PI3K)/protein kinase

B (AKT, also known as survival kinase)/mammalian target

of rapamycin (mTOR) kinase pathway or the Ras/Raf/ERK

pathway in cancer cells [67, 68]. The former pathway

phosphorylates 4E-BP1, resulting in enhanced translation

of HIF-1 mRNA [69]. AKT kinase also promotes the

translocation of the glucose transporter GLUT4 to the

plasma membrane via phosphorylation of its target AS160

(AKT substrate of 160 kDa), a GTPase-activating protein

of the small G protein Rab family [70]. Moreover, the

ectopic expression of AKT kinase upregulates glycolysis in

leukemic cells [71]. Oncogenic mutations in Ras and its

downstream pathway are commonly observed in clinical

and experimental tumourigenesis. Ras/Raf kinases activate

the MAP kinases ERK1 and ERK2, and this is followed by

the activation of MAP kinase-interacting kinases MNK1

and MNK2. Subsequently, MNK1 phosphorylates eIF-4E

and promotes the translation of HIF-1. Furthermore, the

Ras and insulin signalling pathways activate another small

G protein, RAC1/CDC42, and its associated kinase, p21-

activated protein kinase (PAK) [72, 73]. Although PAK is

known to be involved in many tumourigenic processes,

including cell motility, cytoskeleton reorganisation, apop-

tosis, and metastasis [74], its role in the Warburg effect is

rather complicated. PAK directly phosphorylates and

downregulates the glycolytic enzyme PGAM [75], while it

facilitates insulin-stimulated GLUT4 translocation via

actin remodelling [76]. These opposing roles of PAK in

glycolysis are expected to be a topic of further

investigation.

In early studies, Hunter et al. [77] pointed out the

intriguing correlation between oncogenic kinases and gly-

colytic enzymes (Enolase, LDH, PGAM). More recently,

PGAM was also reported to be regulated by oncogenic

kinases [78], and the glycolytic enzyme PKM2 was found

to be regulated by the oncogenic tyrosine kinases BCR-

ABL, FGFR1, FLT3-ITD, and JAK2 [79]. Thus, phos-

phorylation is integral to the regulation of the Warburg

effect. The counteracting activity of phosphatases might

also be involved, as might other posttranscriptional

modifications.

The function of HIF-1 is largely affected by two major

cancer-related transcriptional regulators (c-MYC and p53)

[80]. The Warburg effect is also induced by c-MYC acti-

vation or p53 inactivation, and this is associated with the

senescence-bypassing ability of cancer cells [81, 82].

Several cancers frequently harbour oncogenic mutations

or amplification of c-Myc, which directly affects the

expression of several glycolytic enzymes including HK,

PFK, TPI, GAPDH, ENO, and LDH [83, 84]. Moreover,

c-MYC enhances the alternative splicing of PKM2 rather

than PKM1 via upregulation of the RNA-binding proteins

hnRNPA1, hnRNPA2, and hnRNPI [85, 86]. The tumour

suppressor p53 also has several effects on glycolysis-rela-

ted factors. For example, the inactivation of tumour

suppressor p53 upregulates GLUT3 via NF-jB activation,

and activates HK [82, 87]. Moreover, TP53-induced gly-

colysis and apoptosis regulator (TIGAR) is another

glycolytic target of p53 [88]. The TIGAR protein shows

a weak similarity to the bifunctional enzyme 6-phos-

phofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/

FBPase-2), but lacks the kinase domain. While fructose-

2,6-bisphosphate, generated by PFK-2, is known as the

most potent allosteric effector of PFK, the accumulation of

fructose-6-phosphate generated by FBPase-2 or TIGAR

inhibits PFK. Thus, the ectopic expression of TIGAR

inhibits glycolysis but enhances the prosurvival ability of

some cancer cells (U2OS and H1299), as TIGAR increases

PPP activity, leading to increased reducing power and

decreased ROS in cells. In this setting, p53 attenuates the

Warburg effect to protect cancer cells from ROS-induced

apoptosis.

While the knockdown of p53 mainly upregulates tran-

scription of glycolytic enzymes or glycolytic flux in cancer

cells [89], there is one exception; the glycolytic enzyme

PGAM is positively regulated by p53 in muscle cells [90].

It is noteworthy that PGAM is also exempt from the reg-

ulation of glycolytic enzymes by other transcription

factors, including HIF-1 and c-MYC. Thus, it is still not

clear how the transcriptional regulation of PGAM is linked

to the Warburg effect, although recent works have sug-

gested that PGAM is subject to a high degree of

posttranscriptional regulation. It was recently discovered

that PGAM is posttranscriptionally regulated by the ubiq-

uitin/proteasome pathway in primary cells under

senescence-inducing stress, DNA damage, or oncogenic

stress [91]. Proteolysis is an irreversible reaction that

constitutes a regulatory mechanism for many cellular pro-

cesses. Ubiquitination requires a substrate-specific E3

ubiquitin ligase and a substrate-nonspecific E1 ubiquitin-

activating enzyme and E2 ubiquitin-conjugating enzyme

[92]. Ubiquitinated proteins are degraded by proteasome

pathway, unless ubiquitination is reversed by a deubiqu-

itinase. Generally, ubiquitination requires an advance

modification of the substrate (e.g. phosphorylation, acety-

lation). The RING finger protein MDM2, a transcriptional

target of p53, is the ubiquitin ligase for PGAM, while

PAK1 works as a priming kinase by facilitating the inter-

action between PGAM and MDM2 under stress [91].

MDM2 has been perceived as an oncogene, because

MDM2 also ubiquitinates the tumour suppressor p53 [93,

Regulation of the Warburg effect in cancer 1885
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94]. Indeed, in certain cancers, gene amplification of

MDM2 is observed [95, 96]; however, in contrast, MDM2

has also been reported to be a tumour suppressor [97, 98].

Thus, MDM2 may have opposing effects on the two dif-

ferent substrates, p53 and PGAM, in a cellular-context

dependent manner. Under senescence-inducing stress,

PGAM is degraded by the p53/MDM2 axis, whereas in the

presence of some oncogenic signals, such as Ras-G12V

and MDM2-M459I, PGAM is stabilised while p53 is

impaired. In conclusion, p53 may regulate glycolysis

directly by its transcriptional role or posttranscriptionally

via its target MDM2 [91].

New regulators for glycolysis and their oncogenic

involvement

Besides hypoxia, low nutrient or low glucose conditions

constitute critical metabolic stresses against rapidly grow-

ing solid tumours in vivo [19]. Recent advances in aging

research have uncovered how adaption to low glucose

modulates organismal longevity. Calorie restriction (CR) is

a popular aging model proposed by McCay and Crowell in

1934 [99]. It has been well established that CR activates

two crucial posttranscriptional regulators: adenosine

monophosphate-activated kinase (AMPK) and sirtuins.

AMPK is activated by an increase in the AMP/ATP ratio,

while sirtuin is an NAD?-dependent deacetylase that is

activated by the accumulation of nicotinamide adenine

dinucleotide (NAD), a by-product of activated respiration

during CR. Both molecules form an essential physiological

energy sensor to regulate energy balance in vivo and

in vitro [100]. Moreover, activation of mTOR signalling is

also tightly linked to metabolic stress (starvation of amino

acid or glucose) or hypoxia [101].

The core of mTOR signalling is mediated by mTORC

(mTOR complex) kinase, which is activated by GTP-bound

Rheb small G protein. TSC1/TSC2, the tuberous sclerosis

complex (TSC) tumour suppressors, are GTPase-activating

protein (GAP) for Rheb. TSC1/TSC2 is targeted by several

kinases, AMPK, Akt kinase, ERK, and so on, as mTORC

activation is essentially required for protein synthesis,

autophagy, lipid synthesis and others. Interestingly,

mTORC1 also upregulates glycolysis via enhanced trans-

lation of HIF-1 mRNA. It is noteworthy that mTORC1 is

aberrantly activated in 40–90 % of ten most frequently

occurring cancers [102].

It is difficult to conclude whether AMPK behaves as an

oncogene by supporting cancer survival under metabolic

stress, or functions as a tumour suppressor by inhibiting

anabolic metabolism. Several lines of evidence support the

former model. AMPK is frequently amplified in human

cancers [18], and is activated by oncogenic Ras-G12V

[103]. AMPK directly activates the 6-phosphofructo-2-

kinase/fructose-2,6-bisphosphatase, PFKFB3, leading to an

increase in fructose-2,6-bisphosphate, which is an allosteric

effector of PFK. Moreover, AMPK-dependent degradation

of thioredoxin-interacting protein (TXNIP) enhances glu-

cose uptake by activating its binding partner GLUT1 [104].

In support of the tumour suppressor model, AMPK belongs

to the LKB1/mTOR tumour suppressor pathway; mutations

to components of this pathway are known to cause pre-

disposition to Peutz–Jeghers syndrome. Furthermore,

AMPK directly activates p53 under low glucose conditions

[105], and in a MYC-overexpressing state, AMPK ablation

increases HIF-1-coupled glycolysis [106]. Thus, AMPK

might augment or attenuate the Warburg effect in a cel-

lular-context-dependent manner.

Sirtuins are the mammalian homologues of the S. ce-

revisiae silent information regulator 2 (SIR2) gene, which

was initially identified as a pro-longevity gene under CR

conditions. The sirtuin protein family has seven members,

SIRT1-SIRT7, which share a central catalytic deacetylase

domain and have distinct structures in the N- and C-ter-

mini. Initially, histones were proposed as the target for

deacetylation by sirtuins [107]; however, recent studies

revealed that sirtuins deacetylate not only histones, but also

other metabolic regulators, including PGC-1, HIF-1, and

MYC [99, 108]. As cancer cells adapt to different forms of

metabolic stress, there has been keen interest as to whether

sirtuins also function as metabolic modulators in cancer.

Interestingly, many sirtuin knockout mice (SIRT2, SIRT3,

SIRT4 and SIRT6) display a cancer-prone phenotype [109–

112], while overexpression of the brain-specific SIRT1 and

SIRT6 extended organismal lifespan in mice [113, 114].

Although elevated expression of SIRT1 has been

observed in several cancers [115–117], opposing effects of

SIRT1 on HIF-1 and MYC have been reported [118, 119],

and it is not clear whether SIRT1 regulates the Warburg

effect positively or negatively. The link between SIRT6

and glycolysis is more clear, as enhanced glycolysis in

SIRT6 knockout conditions was observed both in vivo and

in vitro, consistent with its tumourigenic phenotype [112,

120]. Interestingly, several sirtuins (SIRT3, SIRT6, and

SIRT7) inactivate HIF-1 and suppress the Warburg effect

[120–122]. However, the inhibition of MYC by sirtuins

(SIRT4, SIRT6, and SIRT7) has little effect on its glyco-

lytic regulation [111, 112, 123], suggesting that unknown

accessory regulation is operating for the MYC-induced

Warburg effect. In addition, the deacetylase HDAC4 was

also found to regulate and promote HIF-1 stability in a

renal cancer cell line [124].

Glycolytic enzymes are also regulated by acetylation/

deacetylation. The acetylation of LDH-A is downregu-

lated in pancreatic cancer by SIRT2-mediated

deacetylation, leading to increased LDH-A enzymatic
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activity due to inhibition of protein degradation [125].

SIRT2 also regulates PGAM, although both negative and

positive regulation has been reported [126, 127], and

PGAM is also downregulated by SIRT1 [128]. Acetyla-

tion of GAPDH by PCAF increases its enzymatic activity

and promotes cell proliferation after glucose stimuli,

while GAPDH deacetylation by HDAC5 downregulates

its enzymatic activity [129]. The acetylation of PKM2 is

differently regulated by several different stimuli: glucose

facilitates Lys305 acetylation of PKM2, leading to auto-

phagic degradation [130], while oncogenic stimuli induce

Lys433 acetylation by p300, which activates PKM2

kinase activity [131].

Regulation by ubiquitination and metabolites

Glycolysis is also controlled and greatly affected by the

ubiquitin/proteasome system. While PGAM is degraded by

MDM2 under stress, the HIF-1 protein is very unstable

under normoxic conditions [42]. The E3 ubiquitin ligase

for HIF-1 is the von Hippel–Lindau (VHL) protein, whose

loss-of-function mutations are responsible for a renal can-

cer predisposition, termed VHL syndrome [132, 133],

which involves the accumulation of HIF protein [134]. The

competence of HIF-1 for ubiquitination is dependent upon

hydroxylation of its proline-402 and -564 residues, which

is induced under high oxygen conditions by the proyly-4-

hydroxylase domain (PHD) proteins PHD1, PHD2, and

PHD3 [135]. Hydroxylated HIF-1 binds more tightly to

VHL and is therefore ubiquitinated more readily [134]. As

PHD proteins are a subtype of dioxygenase, O2 and a-
ketoglutarate are utilised as substrates [17], and thus the

dioxygenase activity of PHD proteins is impaired by ROS

generated from dysfunctional mitochondria or from onco-

genic signalling [136]. However, the activation of MnSOD

by SIRT3-dependent deacetylation protects PHDs from

ROS-dependent inactivation and facilitates HIF-1 activity

[121, 137]. Together, these findings indicate that ubiquitin-

mediated proteolysis is a key regulator of the Warburg

effect.

Glycolytic regulation by metabolites has been well

studied, but remains an intense focus of investigation. It

has been well established that PFK1 is allosterically

inhibited by the metabolites, citrate, and ATP, and

allosterically activated by AMP and fructose 2,6-bis-

phosphate [16]. Thus, PFK is the rate-limiting step for

glycolysis in cells. Surprisingly, recent developments in

metabolomic analysis led to the identification of addi-

tional metabolites involved in glycolysis regulation. For

example, lactate, fumarate, and succinate have been

discovered to inhibit PHD activity under normoxic con-

ditions, leading to an increase in HIF-1 stability

[138–140]. It is noteworthy that a-ketoglutarate-dependent
dioxygenases, which are PHD proteins, are competitively

inhibited by another metabolite, 2-hydroxyglutarate (2-

HG), which has been designated as an oncometabolite

[141]. 2-HG is generated by oncogenic mutants of IDH1

and IDH2, which are observed frequently in gliomas and

acute myeloid leukaemia, while their normal counterparts

generate a-ketoglutarate (a-KG). Thus, in cancer cells

bearing IDH mutations, the accumulation of 2-HG would

disrupt the connection between environmental stress (oxy-

gen or ROS condition) and the stabilisation of HIF-1,

thereby causing constitutive activation of HIF-1.

PKM2 is also subject to metabolite-dependent regula-

tion, including allosteric activation by fructose-1,6-

bisphosphate, serine, and succinyl-5-aminoimidazole-4-

carboxamide-1-ribose-50-phosphate (SAICAR), which is

generated during de novo purine nucleotide biosynthesis.

Curiously, oncogenic PKM2 shows much less pyruvate

kinase activity than PKM1 [142], and PEP consequently

accumulates in PKM2-expressing cancer cells. In this set-

ting, phosphate from PEP is transferred to the catalytic

histidine His11 on another glycolytic enzyme, PGAM,

leading to a significant enhancement of PGAM activity

[143]. Subsequently, pyruvate is generated from PEP by

PGAM as an alternative glycolytic pathway in cancer cells

[143]. This connection between PKM2 and PGAM via

metabolites forms another positive feedback loop that

maintains the Warburg effect. These findings suggest the

possibility that as-yet-unknown metabolites could modu-

late the Warburg effect and potentially serve as anticancer

therapies in the future. Indeed, the plant metabolite AI-

CAR, which activates AMPK, has successfully been

developed as a drug for the treatment of diabetes [144].

Human aetiology disclosed the positive statistical link

between diabetes and several cancers (liver, pancreas,

colon, etc.) [145], while recent data suggest that AICAR

inhibits the proliferation of cancer in vitro [146]. Thus

AICAR could potentially be a candidate for anticancer

drug especially in diabetic cases.

In conclusion, the Warburg effect is not simply an

energy boost mechanism in cancer cells. Rather, glycol-

ysis in cancer is affected by several key factors,

including hypoxia, ROS, metabolic stress, senescence-

inducing stress, and growth factors. These factors are also

coupled with other properties of cancer through the

modulation of oncogenic signalling pathways. Further-

more, it is possible that oncogenic mutations or

oncometabolites may disrupt the tight connection

between glycolytic enzymes and their regulators, thereby

maintaining a constitutively high flux of glycolysis. Thus,

the Warburg effect connects many aspects of cancer to a

metabolic shift that results from genetic reprogramming

and oncogenic signalling.
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