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Abstract Acute lymphoblastic leukemia (ALL) is the

commonest childhood malignancy, accounting for

approximately 80 % of leukemia in the pediatric group,

and its etiology is unknown. This neoplasia is characterized

by male predominance, high-risk features and poor out-

come, mainly in recurrence patients and adults. In recent

years, advances in the success of childhood ALL treatment

were verified, and the rate of cure is over 80 % of indi-

viduals. However, there is a considerable scope for

improving therapeutic outcome in this neoplasia.

Improvements in ALL therapy might readily be achieved

by developing additional biomarkers that can predict and

refine prognosis in patients with ALL. In normal hemato-

poietic cells, cytokines provide the stimulus for

proliferation, survival, self-renewal, differentiation and

functional activation. Abnormalities of cytokines are

characteristic in all forms of leukemia, including ALL. The

stromal cell-derived factor-1 (SDF-1 or CXCL12) is a

member of the CXC chemokine family that binds to CXC

chemokine receptor 4 (CXCR4). The CXCL12/CXCR4

axis appears to play a role in dissemination of solid tumors

and hematopoietic diseases. Understanding the mecha-

nisms by which ALL cells are disseminated will provide

additional information to expand therapeutic approach.

Therefore, this review summarizes information relating to

ALL cell biology, focusing specifically in a cytokine

receptor important axis, CXCL12/CXCR4, that may have

implications for novel treatment strategies to improve life

expectancy of patients with this neoplasia.
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Introduction

Acute lymphoblastic leukemia (ALL) is characterized by

the monoclonal and/or oligoclonal proliferation of hema-

topoietic precursor cells of the lymphoid series within the

bone marrow (BM) [61]. It occurs in approximately 6,000

individuals per year and results in approximately 1,400

deaths annually in the United States [73]. In Brazil,

according to National Cancer Institute (INCA), leukemia

represents between 25 and 35 % of all cancer types, and

ALL is the most frequent in children aged from 0 to

14 years. Furthermore, INCA 2012 annual report estimates

5.050 new cases of leukemia in men and 4.320 in women

[32].

Following lymphocyte profile, two subtypes of ALL

malignant cells may be involved, T cell (T-ALL) and B cell

(B-ALL) [57]. T-ALL accounts for 15 % of ALL, and it is

identified by male predominance, high-risk features

including high white blood cell (WBC) count, mediastinal

enlargement, generalized lymphadenopathy, central ner-

vous system involvement, and poor outcome [58, 62].

In T-ALL, T cell transformation is a multi-step process

in which different genetic alterations cooperate to alter the

normal mechanisms that control cell growth, proliferation,
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survival, and differentiation during thymocyte develop-

ment. Particularly, deletions of the CDKN2A locus in

chromosome 9p21, which encompasses the p16/INK4A and

p14/ARF suppressor genes, are present in more than 70 %

of all T-ALL cases [22, 30]. Moreover, constitutive acti-

vation of NOTCH1 signaling comprises the core of the

oncogenic program in the pathogenesis of T-ALL [87],

cooperating with loss of p16/INK4A and p14/ARF in T cell

transformation [82].

T-ALL is more aggressive than B-ALL, and limited

therapeutic options are available for patients with primary

resistant or relapsed disease, highlighting the urgency for

treatment stratification protocols and identification of more

effective antileukemic drugs [63]. This imperative was

further supported by studies of the long-term effects of

intensified chemotherapy in T-ALL survivors, which

showed that improvements of leukemia-free survival have

been achieved in parallel with significant increases in rates

of acute and chronic life-threatening and debilitating tox-

icities [3].

B-ALL, especially B-cell precursor (BCP)-ALL, is the

major form of the disease, accounting for approximately

85 % of all pediatric ALL [31]. Perturbation of B-cell

differentiation in the BM must lead to B-ALL develop-

ment, considering that its microenvironment provides a

variety of cytokines, chemokines, growth factors and

adhesion molecules that coordinately regulate B-cell

development [35].

Most childhood cases of B-ALL may be subclassified by

the presence of either gross or submicroscopic genetic

alterations, such as aneuploidy or recurring gross chro-

mosomal rearrangement, which are frequent in

approximately 75 % of B-ALL cases [27, 63]. These

rearrangements commonly perturb genes encoding regula-

tors of hematopoiesis, tumor suppressors, oncogenes, or

tyrosine kinases, but commonly it requires additional

genetic hits to establish the full leukemic phenotype.

A number of chromosomal rearrangements are common

in B-ALL and are critical events in leukemogenesis. Hy-

perdiploidy is one of the most frequent alterations in

childhood ALL and is associated with favorable outcome

[28]. At least five extra chromosomes are presently asso-

ciated; however, the biologic basis of the acquisition of

multiple chromosomal gains is poorly understood. Con-

versely, hypodiploidy, with fewer than 44 chromosomes, is

associated with dismal prognosis [52].

Studies have identified new subtypes of ALL, and

uncovered recurring submicroscopic genetic alterations in

known ALL subtypes. These include loss-of-function

mutations involving genes regulating lymphoid develop-

ment that contribute to the arrest in maturation

characteristic of B-ALL, mutations that inactivate tumor

suppressor and cell cycle regulatory proteins, and

mutations that drive cytokine receptor and/or kinase sig-

naling. Concomitant lesions disrupting hematopoietic

development and tumor suppression as well as driving

signaling and proliferation are hallmarks of many ALL

subtypes.

Importantly, several of these alterations are associated

with specific subtypes of ALL defined by chromosomal

alterations and different treatment outcome [51]. The

translocations t(9; 22), expressing chimeric protein BCR-

ABL, and t(4; 11), codifying MLL-AF4 protein, are related

to poor prognosis. Patients with chromosomal alteration

t(1; 19), related to E2A-PBX1 fusion protein, and t(12; 21),

characterizing TEL-AML1, have a good treatment outcome

[72, 75]. Contrariwise, T-ALL are derived from precursor

T cells in the thymus, and infrequent but recurrent trans-

locations lead to the overexpression of the transcription

factors LYL1, HOX11, HOX11L2, and TAL1 [75]. Using

gene expression profiling, Yeoh et al. [89] identified

molecular markers to distinguish T-ALL subtypes with

increased risk of relapse. In addition, they indicated that

contemporary risk stratification fails to identify many

patients who are at high risk of drug-induced toxicities or

marrow relapse.

In the last years, advances of childhood ALL treatment

have been achieved, with over 80 % of individuals cured

[63]. This rate is supported by the accurate assignment of

individual leukemia subtypes, in which genetic alterations

figure primarily in most classification schemes [89].

However, a poor prognosis is still expected for a group of

patients with various risk factors, such as central nervous

system involvement, and those with ALL relapses. Einsi-

edel et al. [21] have demonstrated that more than one-third

of patients may be cured from recurrent ALL with second

complete remissions lasting more than 10 years. They also

concluded that immunophenotype and time point of relapse

are important prognostic factors that allow adapting more

precisely treatment intensity to individual prognosis.

Despite the success in cure and survival rates, there is

still scope for improvements, since ALL treatment is more

likely to cause short- and long-term side effects, and some

patients may experience relapse. Furthermore, studies

about leukemic cells and niche correlation highlight the

importance of therapeutically targeting the BM microen-

vironment [33].

In normal hematopoietic cells, cytokines provide the

stimulus for proliferation, survival, self-renewal, differen-

tiation and functional activation. Abnormalities of cytokine

and growth factor signaling pathways are characteristic of

all forms of leukemia: lymphoid and myeloid, acute and

chronic. These pathways are usurped to sub serve critical

parts of the malignant program in leukemic cells [81].

The stromal cell-derived factor-1 (SDF-1 or CXCL12) is

a member of the CXC chemokine family that counteracts
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with its cognate receptors CXC chemokine receptor 4

(CXCR4), widely expressed in numerous tissues, including

immature osteoblasts and endothelial cells within BM,

epithelial cells in many organs, central nervous system and

hematopoietic cells, to stimulate physiological processes

[13]. CXCL12/CXCR4 signaling is essential in maintain-

ing the progenitor hematopoietic cell pool, and also

regulates hematopoietic stem cells attachment within the

bone marrow niche [80].

Ayala et al. [1] outlined that a high expression of

CXCR4 by leukemic blasts and activation of the CXCL12/

CXCR4 axis is involved in leukemia progression and dis-

ruption of normal hematopoiesis. Moreover, in this

particular, leukemia-associated bone microenvironment

markers could be used as prognostic or predictive indica-

tors of ALL progression and/or treatment outcome.

Since chemokines and their receptors have been impli-

cated in the pathogenesis of many diseases, including

cancer risk and disease progression, this work reviewed the

CXCL12/CXCR4 axis in the pathogenesis of ALL and its

role as a possible therapeutic target.

Chemokine CXCL12 and its receptor CXCR4

CXCL12 monomer proteins are expressed in all human

cells, except in blood cells. To date, at least six CXCL12

splicing variants were described named a, b, c, d, e and /,

and the former is the most abundant and smallest, con-

sisting of three exons instead of four, as others do.

However, CXCL12b is twice as potent in the blood,

exhibiting very similar activity to CXCL12a [34].

The proteolytical degradation process of both ends

regulates CXCL12 constitutive expression [15]. Degrada-

tion of N-terminus occurs in the blood and the tissues,

abolishing chemokine activity and reducing its affinity to

the receptor. It is splicing variant-dependent and occurs

slowly. Contrariwise, C-terminus proteolysis is rapid,

splicing variant-dependent, and does not cease CXCL12,

but reduces its activity, occurring specifically in the blood

[34].

CXCL12 plays an important role in migration of pro-

genitor and leukemic cells to the BM [66]. Its expression

by endothelial cells along with endosteum regions of BM

mediates not only homing and retention of progenitor cells,

but is important for their trans-endothelium migration

through the expression of E-selectin [54].

ALL arises from malignant transformation of lympho-

cytes, undoubtedly in a single BM site; however, the spread

to essentially all BM cavities, resulting in extensive dis-

ease, may have occurred by the time of diagnosis. In

addition, ALL cells also infiltrate the liver, spleen, lymph

nodes, and central nervous system [14]. Chemokines and

theirs receptors, in which CXCL12/CXCR4 axis is sup-

posedly involved, tightly regulate this migration process.

Indeed Tokoyoda et al. [79] demonstrated the B lympho-

cyte location and movement between specific niches within

BM during development is maintained by CXCL12 inter-

actions in that niche.

CXCL12 may contribute to leukemic marrow infiltration

by increased CXCR4 expression and migratory response in

BM-derived blasts compared with circulating cells [48]. In

fact, CXCR4 is one of several chemokine receptors defined

by their ability to induce cell migration toward a chemo-

tactic cytokine gradient. This receptor has been

investigated in breast cancer pathogenesis [20, 56], and

several reports have addressed the expression and biolog-

ical role of CXCR4 at different stages of B-cell

development in normal and malignant hematopoiesis.

In immature B cells, CXCL12 stimulus induces activa-

tion of small GTP-binding protein (GTPases) such as Ras-

related C3 botulinum toxin substrate 1 (Rac1) [59], leading

to co-location of CXCR4 and small GTPase Rac1 into

membrane lipid rafts, which is necessary for cell migration

in response to a CXCL12 gradient [88]. Freret et al. [23]

demonstrated that inactivation of Rac1 can interfere with

the mechanisms involved in receptor internalization mod-

ulating the chemotactic response to CXCL12 by regulating

internalization of CXCR4, and thus, it might play a role in

B-ALL cell dissemination.

Shen et al. [70] and Spiegel et al. [74] have demon-

strated that down regulation of CXCR4 following exposure

to high doses of CXCL12 results in significant inhibition of

ALL cell homing to the BM. However, stromal cells also

secrete fibronectin, a component of the extracellular matrix

that enhances CXCL12-induced migration of ALL cells

without influencing CXCR4 expression [67].

The role for CXCL12/CXCR4 axis in the infiltration of

extramedullary sites, which commonly expresses signifi-

cant levels of CXCL12 [50] is supported by the association

between high expression of CXCR4 by ALL cells and

extramedullary organ invasiveness [14], and inhibition of

extramedullary disease by treatment with CXCR4 antago-

nists [37]. So, binding of CXCL12/CXCR4 is one of the

key interactions between human ALL cells and BM stroma,

and high expression of the chemokine receptor CXCR4 is

of predictive value for early relapse in ALL childhood [68].

Pediatric patients who had B-ALL and high CXCR4

expression had significantly more prominent liver or spleen

infiltration compared with patients who had low CXCR4

expression [14]. Kato et al. [39] verified that hepatomegaly

in ALL patients are not only due to random infiltration but

rather, the result of CXCL12/CXCR4 axis-dependent

migration and expansion of leukemic cells in the hepatic

niche. These data indicate that this axis stimulates not only

migration but in addition, proliferation of ALL leukemic
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cells in vivo and in vitro, further, targeting the extrame-

dullar microenvironment components to prevent recurrence

from minimal residual disease.

Besides its crucial role in migration, there are reports

indicating that CXCL12 may play a role in the pathogen-

esis of malignant tumors [17, 19], including leukemia [18,

55]. In this context, the primary role of CXCL12 seems to

be facilitating metastasis or mobilizing tumor cell, and

perhaps the establishment of cancer stem-like cell within

the tumor microenvironment, where high levels of

CXCL12 recruit a highly tumorigenic population of tumor

cells, promoting cell survival, proliferation, angiogenesis,

and metastasis.

Our research group have evaluated polymorphic muta-

tions and gene expression of CXCL12 and CXCR4, aiming

to elucidate their roles in the pathogenesis of cancer, with a

focus on hematological diseases. de Oliveira et al. [18]

verified that CXCL12 polymorphic alleles have implica-

tions in CML pathogenesis. de Oliveira et al. [19] studied

the same SNP (rs1801157) in CXCL12 gene, although in

Hodgkin’s (HL) and non-Hodgkin’s lymphoma (NHL),

suggesting that this genetic variant may have important

implications in this neoplasia subtype. de Oliveira Cavassin

et al. [17] compared the same allelic variant between

patients with lymphoid leukemias and lymphomas and

indicated that Brazilian lymphoma patients are more likely

to carry the polymorphic allele for CXCL12 gene, indi-

cating a differential role for this gene in subgroups of

hematological diseases. Recently, de Lourdes Perim et al.

[16] verified the positive association for CXCL12

(rs1801157) and susceptibility to childhood ALL.

CXCL12/CXCR4 axis in ALL signaling

The molecular mechanism underlying CXCL12/CXCR4

signaling has been investigated extensively and revealed

that multiple molecules are activated upon CXCL12

stimulation [74]. Firstly, the activation pathway of

CXCL12/CXCR4 initiates after ligand CXCL12 sensitizing

CXCR4, inducing receptor internalization and promoting

an increase of cytoplasmic calcium store and mobilization

levels.

The interaction with CXCR4 occurs between its 8 first

amino acids residues in the N-terminus: the first two take

part in receptor activation while further six are involved in

the binding of the chemokine to the receptor. On the cell

surface, CXCL12 binding to CXCR4 must be stabilized

through the interaction with glycoseaminoglycans (GAGs),

such as heparin sulfate, and this is responsible for leuko-

cyte accumulation and prevention of CXCL12 proteolytic

degradation [34]. Furthermore, association to GAGs can

induce CXCL12 oligomerization, which in turn, promotes

CXCR4 oligomerization, enhancing its activation function

[10].

CXCR4 is a G-protein coupled receptor, which is

composed by an intracellular heterotrimer of Ga, Gb and

Gc subunits, bound to a guanine nucleotide GDP, in its

basal state. CXCL12 ligand binding activates the receptor,

and GDP is replaced by GTP, which in turn dissociates the

bc dimer. The Ga monomeric subunit can relay different

GPCR signal, depending on the type of a monomer present

and activated: Gai, Gas, Gaq and Ga12 [77].

Chemokine receptors are typically coupled Gai proteins

which act inhibiting adenyl cyclase, whereas Gas stimu-

lates adenyl cyclase [25]. Gai also stimulates kinase

activity of the Src family tyrosine-protein kinase c-Src,

binds to the catalytic domain, and changes the conforma-

tion of c-Src. In turn, c-Src phosphorylates the adaptor Shc,

recruiting GRB2 and activating the H-Ras/c-Raf-1/MEK1-

2/ERK1-2 pathway. This activated pathway increases the

transactivation ability of transcription factor Elk1 and

repressed STAT3 transcription factor [12, 43].

Contrariwise, activated CXCR4 enables the recruitment

of STAT3 by the phosphorylation of Janus quinase 2

(JAK2), activating the downstream pathway of Stats,

mitogen-activated protein kinase (MAPK) and phosphati-

dilynositol 3-kinase (PI3K)-Akt pathway [44]. In addition,

its signal induces the activation of protein kinase C and

phosphorylation of dual threonine and tyrosine recognition

kinase (MEK), extracellular signal-regulated kinase (ERK)

and components of focal adhesion complexes in many cell

types, including B-cell precursors [6, 24, 85].

Moreover, calcium flux has been used to determine

chemokine activity in cells. However, Gai does not pro-

mote this flux, but Gaq, suggesting that CXCR4 might hold

other Ga proteins [65]. In addition, Gbc subunit can trigger

phospholipase C (PLC) activation and formation of diac-

ylglycerol (DAG) and phosphatidilynositol 3 (IP3),

resulting in Ca2? mobilization from intracellular stores

[46].

Chemokines and their receptors are involved in cell

trafficking. Indeed, CXCL12-CXCR4 axis can mediate

chemotaxis of multiple cell types, including lymphocytes,

hematopoietic stem cells, endothelial and epithelial cells,

and cancer cells [2, 76]. This process is mediated by the

activation of PI3 kinase (PI3K) by both Ga and Gbc sub-

units, leading to phosphorylation of considerable adhesion

molecules, such as paxilin, focal adhesion kinase (FAK),

proline-rich kinase-2 (Pyk-2), Crk substrate p130Cas, Crk,

and Crk-L, Nck [85, 90].

Differences in the signaling mechanisms employed by

ALL cells and normal hematopoietic stem cells (HSC)

heightened the possibility of differential regulating traffic

of ALL cells and thereby providing novel therapeutic

applications. While both normal HSC and B cell

1718 A. de Lourdes Perim et al.

123



progenitors shared a dependence on PI3K signaling [41,

90], B-ALL leukemic cells demonstrated only a minor

involvement of this pathway, with dominant signaling

through mitogen-activated protein kinases (p38MAPK) [6,

38].

Zhang et al. [90] demonstrated that cytoplasmic tyrosine

kinase, JAK2, is involved in CXCR4 receptor-mediated

signaling through PI3K and seems to be required for

CXCL12-induced migration of hematopoietic progenitor

cells. These results suggest that JAK2 is required for the

tyrosine phosphorylation of multiple focal adhesion pro-

teins, and for cell migration in hematopoietic progenitor

cells.

The expression of CXCL12 imposes a survival potential

for hematopoietic cells due to activation of PI3K-AKT-

NFjB and MAPK pathways [5, 85]. In addition, it has also

been shown that signal transducer and activators (STATs)

are activated upon binding of CXCL12 to CXCR4 [40, 83].

Signalling through PI3K is likely necessary for

CXCL12-induced activation of very late antigen 4 (VLA-

4) and increased adhesion of cells to vascular cell adhesion

molecule 1 (VCAM-1) and fibronectin [70]. Moreover, it

has been shown that VLA-4 function is essential for BM

homing of B-ALL leukemic cells [70, 74].

The participation of MAPK pathway, through PKC or

Gai, signaling to Erk1/2, Ras-activated signaling pathway,

Src-related kinases (Src, Lyn, Fyn and Lck), T-cell acti-

vation molecule ZAP-70, and small GTPases have also

been implicated in lymphocyte migration [6, 46, 77],

suggesting that multiple signaling molecules might be

accessed to support CXCL12/CXCR4 activation. However,

the evidence of which of them are most important or which

pathway is essential for inducing homing or migration in

different ALL subtypes remains an unresolved issue.

Apparently, CXCL12/CXCR4 axis may not be directly

involved in T-ALL leukemic cells signaling. Nonetheless,

the analysis of the intracellular signaling profile of T-ALL

patients has revealed that activation targets of CXCL12/

CXCR4 signaling pathway, such as PI3K-Akt, MAPK and

JAK-STAT, are implicated in oncogenic processes [11].

Thus, it is reasonable that some ALL subsets would benefit

from strategic therapy concerning CXCL12/CXCR4 path-

way and its derivatives.

The CXCL12/CXCR4 axis as a potential therapeutic

target

The treatment of ALL is based on multidrug therapy with

adjustment for risk of disease recurrence. The administered

drugs include corticosteroids, metastasis inhibitors, aspar-

aginase, antraciclics, alkylating agents, antimetabolites,

and purine antagonist [4]. The remission induction therapy

for ALL patients should include a glucocorticoid, vincris-

tine, and asparaginase, not only because they are not

myelosuppressive, but also because their antileukemic

effects are different, and their mechanisms may act syn-

ergistically. Prednisone has been the most frequently used

glucocorticoid treatment at this stage. However, dexa-

methasone has better results in patients with T-ALL, and

appears to allow better control of the central nervous sys-

tem invasion [64].

Lack of efficacy in the current treatment can be partly

attributed to the fact that leukemia cells are protected by

their microenvironment. Leukemic cells residing in BM

niches are provided with favorable conditions for their

growth and survival [8, 53] and thereby escape from che-

motherapy-induced death [47]. In this context, several

studies suggested that chemokine analogues or antagonists

could be used in parallel with conventional therapies to

improve ALL treatment. For example, Buonamici et al. [9]

demonstrated that targeting the CCR7 receptor in T-ALL

could block their CNS dissemination.

Additionally to the evidence that BM stromal niche can

protect ALL cells against the cytotoxicity of chemothera-

peutic agents, it is also a possible source of relapse. Since

CXCL12/CXCR4 axis is a major determinant in the

crosstalk between leukemic cells and BM stroma, the

development of new drugs and approaches for the treat-

ment of relapse remain an important goal to improve cure

rates [60]. Kato et al. [39] showed that functions of the

niche are maintained by CXCL12/CXCR4 axis, proposing

a novel therapeutic approach targeting by inhibition of

these molecules. It was demonstrated that liver dissemi-

nation of leukemia is not due to nonselective infiltration,

but rather systematic invasion and proliferation of leuke-

mic cells in hepatic niche. These findings formed the basis

for therapeutic approaches that target extramedullary niche

by inhibiting CXCL12/CXCR4 axis.

Mowafi et al. [49] demonstrated that the addition of

recombinant CXCL12 increases proliferation of B-ALL

cells in culture and induces a decreased internalization of

CXCR4 receptor on the surface. However, this process

does not interfere in cell proliferation. They believed that

CXCL12 in childhood ALL deserves further study to

clarify both the role of this chemokine in the pathogenesis

of ALL and the possibility of modulating signaling directed

by CXCL12.

The CXCR4 could be a potential therapeutic target,

since it has been shown that this receptor neutralization

enhances apoptosis and decreases proliferation in an

experimental model of human non-Hodgkin’s lymphoma

(NHL) [7]. Konoplev et al. [42] concluded that the acti-

vated form of CXCR4 [26, 71] is directly related to

metastasis progression and provides independent prognos-

tic information in adult patients with ALL, independently

CXCL12/CXCR4 axis in the pathogenesis of ALL 1719
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of other prognostic parameters. This observation is poten-

tially important in both clinically and therapy as anti-

CXCR4 has currently been evaluated and can be added into

chemotherapy protocols designed for ALL patients. Hatse

et al. [29] showed that a small-molecule CXCR4 antago-

nist, bicyclam or AMD3100, inhibited CXCR4

internalization, the calcium influx and chemotaxis of ALL

cells. Kato et al. [39] developed a therapeutic model where

AMD3100 prevented repopulation of extramedullary ALL

cells after chemotherapy and dramatically improved over-

all survival in mice treated with AMD3100. They found

that without AMD3100 administration, some leukemia

cells remain in the portal region of liver after chemother-

apy, contributing to leukemia relapse.

CXCR4 antagonists have been used in combination with

chemotherapy in preclinical and clinical studies, which

have demonstrated that blocking CXCR4 may be a novel

promising approach. CXCR4 antagonists can theoretically

be more effective in remission patients, as part of main-

tenance therapy, to destroy the residual leukemia stem

cells. However, the biology of the residual leukemia stem

cells after chemotherapy is different, and the targeting

agents may be ineffective. Further studies that combine

CXCR4 antagonists with chemotherapy in patients in

complete remission are needed [77].

Some authors have proposed that CXCR4 could be a

potential therapeutic target (Table 1). In this context Juarez

et al. [36] demonstrated that polyphemusin II peptide

analogues T140, T134 and TC14012, and AMD 3100 are

potent inhibitors of CXCL12-mediated chemotaxis and BM

stromal-dependent proliferation of precursor B-ALL cells.

In other study, they examined the ability of CXCR4

antagonists to disrupt the interaction between precursor

B-ALL cells and their supportive niche in vivo, and found

that blocking CXCL12/CXCR4 interactions resulted in

rapid mobilization of leukemic cells into the peripheral

blood and in significant expansion reduction of precursor

B-ALL, in a mice model [37].

Although higher levels of CXCR4 expression have been

shown to correlate with poor patient survival, effective

drugs affecting cell surface CXCR4 expression are still

unknown. Matsumoto et al. [45] examined the effects of a

synthetic retinoid Am80 on CXCR4 expression of cultured

T-ALL cells. They observed that it inhibited surface

CXCR4 expression and CXCL12-induced chemotaxis by

the acceleration of CXCR4 internalization. Therefore,

Am80 may be an effective drug to inhibit the extramed-

ullary infiltration of T-ALL cells.

Disruption of ALL cell microenvironmental interaction

could be used to enhance the effectiveness of chemother-

apeutic agents due to loss of protection by the stroma. The

treatment with AMD3100 causes maintenance of leukemic

cells in peripheral blood for a longer time than normal

hematopoietic progenitors, prolonging exposure to che-

motherapeutic agents. Finally, AMD3100 increases the

proportion of cells in the circulation that are actively

cycling, a factor that is likely to increase sensitivity to cell

cycle dependent agents commonly used for ALL treatment,

such as vincristine [86].

Among other cytokines, IL-8 is highly expressed in

T-ALL cells refractory to chemotherapy. The involvement

of transcription factor NFjB is of particular interest as a key

molecule in the establishment of T-ALL and, consequently,

inhibiting agents are considered attractive candidates to

T-ALL treatment. The IL-8 could be one NFjB target gene

involved in the progression of T-ALL and the character-

ization of molecular mechanisms leading to IL-8

upregulation could be relevant to elucidate the development

of T-ALL and design new therapeutic strategies [69]. It was

demonstrated that NFjB and AP-1 transcription factors

activity are central to induced IL-8 expression. [84].

Parameswaran et al. [60] demonstrated that the survival

of mice bearing human and murine ALL cell lines could be

extended by the combination of a CXCR4 antagonist

AMD11070 and chemotherapy. It could represent an

additional target to conventional chemotherapy treatments,

without, however, replacing them. Within this context,

CXCR4 has emerged as a promising therapeutic target,

although further studies and consideration are required. In

some way, it is plausible that inhibiting CXCR4 would

result in mobilization of leukemic cells within circulation,

which could cooperate to extramedullary invasion.

Understanding the mechanisms by which ALL cells

disseminate may provide information to benefit developing

Table 1 Chemokine Receptor

CXCR4 as a Target in ALL

treatment

a Plerixafor� or MozobilTM

Drug Model Country Year References

AMD3100a Human and murine Belgium 2002 [29]

T140, T134, TC140012 and AMD3100a Human and murine Australia 2003 [36]

AMD3100a and TC140012 Human and murine Australia 2007 [37]

Am80 Human Japan 2010 [45]

AMD3100a Murine Japan 2011 [39]

AMD11070 (AMD070 or 070) Murine USA 2011 [60]

AMD 3100a Murine Australia 2013 [86]
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therapeutic strategies based on targeting the ALL cell

trafficking. Nevertheless, blocking CXCL12/CXCR4 axis

could represent an important mechanism on managing

therapeutic approaches in ALL.
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