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Abstract Laccases are part of the family of multicopper

oxidases (MCOs), which couple the oxidation of substrates

to the four electron reduction of O2 to H2O. MCOs contain

a minimum of four Cu’s divided into Type 1 (T1), Type 2

(T2), and binuclear Type 3 (T3) Cu sites that are distin-

guished based on unique spectroscopic features. Substrate

oxidation occurs near the T1, and electrons are transferred

approximately 13 Å through the protein via the Cys-His

pathway to the T2/T3 trinuclear copper cluster (TNC),

where dioxygen reduction occurs. This review outlines the

electron transfer (ET) process in laccases, and the mecha-

nism of O2 reduction as elucidated through spectroscopic,

kinetic, and computational data. Marcus theory is used to

describe the relevant factors which impact ET rates

including the driving force, reorganization energy, and

electronic coupling matrix element. Then, the mechanism

of O2 reaction is detailed with particular focus on the

intermediates formed during the two 2e- reduction steps.

The first 2e- step forms the peroxide intermediate, fol-

lowed by the second 2e- step to form the native

intermediate, which has been shown to be the catalytically

relevant fully oxidized form of the enzyme.
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Introduction

Laccases belong to a family of enzymes known as multi-

copper oxidases (MCOs), which oxidize a variety of

substrates while performing the four electron reduction of

dioxygen to water [1–4]. MCOs can be divided into two

broad categories: those with high substrate specificity, and

those with low substrate specificity. The first category

contains the metalloxidases such as Fet3p [5, 6] and

ceruloplasmin (Cp) [6, 7], which selectively oxidize iron in

yeast and mammals, respectively. Ascorbate oxidase [8]

and laccases [1–3] are examples of the latter category,

which oxidize a range of organic molecules to facilitate

processes such as lignin formation [9] or degradation [10],

and wound healing in plants [11]. Laccases are common in

fungi including in the polypore mushroom Trametes ver-

sicolor, and the white-rot fungus Pleurotus ostreatus [12],

and well known in a number of plants, in particular the

lacquer tree Rhus vernicifera [13–16]. The first bacterial

laccase was reported in the rhizospheric bacterium Azo-

spirillum lipoferum [17], and several others have since

been characterized [18, 19]. The most widely studied of

these prokaryotic laccases is the CotA laccase from

Bacillus subtilis, now technically classified as a bilirubin

oxidase (BOD) [20].

Structurally, MCOs contain at least four copper atoms,

which can be classified into three types based on their unique

spectroscopic features. In the oxidized state, the Type 1

copper (T1) exhibits an intense (e *5,000 M-1 cm-1)

absorption feature at *600 nm due to a S(Cys)p ? Cu(II)

charge transfer (CT) transition, and a small parallel hyperfine

coupling constant in EPR (Ak = 40–90 9 10-4 cm-1), both

resulting from the highly covalent nature of the Cu–S(Cys)

bond [21]. The Type 2 (T2) Cu(II) shows no significant

absorbance feature, but has a parallel hyperfine coupling
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constant similar to that of a typical tetragonal copper center

(Ak = 140–200 9 10-4 cm-1) [22, 23]. Binuclear Type 3

(T3) copper sites are EPR silent due to antiferromagnetic

(AF) coupling resulting from a bridging hydroxo ligand

between the coppers in the resting oxidized state. This

hydroxo bridge is also responsible for the intense absorbance

at 330 nm assigned to l2-OH ? T3Cu(II) CT transitions

[24]. Figure 1 shows the UV–Vis absorbance and EPR

spectra of the resting oxidized (RO) state in the MCOs as

described above.

Based on known crystal structures and sequence align-

ment, the ligation of the four copper centers is largely

conserved among MCOs. The T1 site is coordinated by a

minimum of two His and one Cys residues [25, 26]. In

many MCOs, a fourth ligand, Met, binds axially, resulting

in a four coordinate (4C) trigonally elongated tetrahedral

geometry as shown in Fig. 2a. This Cu–S(Met) bond is

substantially longer and weaker than the other three ligand

bonds to the T1 [27]. This structure appears in the redox

active T1 sites in Cp, and in plant laccases. Alternatively,

Fig. 2b shows the three coordinate (3C) trigonal planar

structure present in fungal laccases and Fet3p, which

results when a non-coordinating, hydrophobic residue, such

as Phe or Leu, is present in the protein in place of the axial

Met. The effects of these perturbations are discussed in Part

II. The T2 and binuclear T3 copper sites are arranged in a

trinuclear copper cluster (TNC) approximately 13 Å distant

from the T1 Cu. Type 1 sites are connected to the two T3

coppers of the TNC via a conserved His-Cys-His triad.

Figure 3 shows the crystal structure of the TNC from T.

versicolor laccase (TvL). Including the two His ligands

from the Cys-His bridge, there are a total of eight His

residues coordinated to the TNC coppers. The T3 Cu’s

each have three His ligands, and in the oxidized state, a

bridging l2-OH ligand resulting in approximately trigonal

bipyramidal geometry with an open equatorial coordination

position directed into the TNC. The T2 Cu(II) is ligated to

two His and one hydroxo ligand (external to the cluster) in

a square planar geometry, also with an open coordination

position directed into the TNC [28].

Additionally, there are two conserved second-sphere

carboxylate residues located close to the TNC. One car-

boxylate is situated on the side of the TNC closest to the

T2-T3b edge. Mutational studies have shown that this

moiety is required for catalytic activity [29]. Another

conserved carboxylate is situated below the T3 site. This

residue has been shown to play a key role in the proton-

ation of oxygen-derived products of catalysis [30],

described below.

The focus of this review is on understanding inter- and

intramolecular electron transfer (ET) properties of laccases,

and outlining the mechanism of O2 reaction. The first

section deals with electron transfer from the substrate to the

T1 Cu, and then from the T1 site to the TNC. The next

section describes the mechanism of O2 reduction through

the known spectroscopic intermediates, and describes the

role of the native intermediate (NI) in catalysis.

Electron transfer properties of the T1 copper

Type 1, or ‘‘blue copper,’’ sites are well known in bioin-

organic chemistry for their ET properties [21, 27, 31, 32].

In MCOs, substrate oxidation occurs at the T1, which then

rapidly transfers electrons through the Cys-His pathway to

the TNC [33, 34]. The first- and second-sphere residues

surrounding the T1 control both the intermolecular ET to

the T1 from the substrate, and the intramolecular ET from

the T1 to the TNC.

Semi-classical Marcus theory provides the description

of ET in metalloenzymes. The electron transfer rate con-

stant, kET, is given by the following equation [35]

kET ¼ KAS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p3

h2kkBT

s

HDAj j2exp
� DG

� þ k
� �2

4kkBT

 !

; ð1Þ

where KA is the equilibrium constant for the electron

donor–acceptor complex, S is a steric term to account for

Fig. 1 UV-Vis absorbance (a) and EPR spectra (b) of resting laccase.

Reprinted with permission from [3]. Copyright 2014 American

Chemical Society
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asymmetry in complex formation conducive to ET, k is the

reorganization energy, HDA is the electronic coupling

matrix element between the donor and acceptor, and DG� is

the free energy difference for electron transfer. For inter-

molecular ET from substrate to T1, the most obvious

parameters that influence kET are the reorganization energy,

k, and the electronic driving force, DG�.

The reorganization energy is the energy required for

ligand and solvent rearrangements between initial and final

states during ET. These inner- and outer-sphere contribu-

tions combine to give the total reorganization energy

(ki ? ko = ktotal) [35]. Inner-sphere reorganization ener-

gies are associated with changes in the first coordination

sphere of the metal atom, and outer-sphere reorganization

energies account for changes in the rest of the protein and

solvent rearrangements [36]. Crystallography and X-ray

absorption fine structure (EXAFS) data show only minimal

differences between oxidized and reduced structures of T1

sites in most MCOs. The changes seen upon oxidation are

primarily shortening ligand-Cu bonds, with very little

angular change. Significantly, the Jahn–Teller tetragonal

distortion associated with oxidation of most copper com-

plexes is not observed in blue copper sites. This is a result

of the ligands and the geometry at the T1, which split the

Cu 3dx2�y2 and 3dxy levels, eliminating the degeneracy

required for electron-nuclear coupling that would result in

this geometric distortion [27]. These data indicate that ki is

small for ET in blue copper sites, and indeed, inner-sphere

reorganization energies are calculated to be on the order of

0.5 eV [37, 38]. For comparison, the inner-sphere reorga-

nization energy of a representative copper tetrammine

complex is *1.4 eV [37]. There may, however, be con-

siderable contributions to the total reorganization energies

from the substrate (when the T1 accepts the electron), or

from the TNC (when the T1 donates the electron). These

contributions to ktotal would then contribute to kET through

Eq. 1. Changes in reorganization energies which arise from

the structural differences of reactive intermediates are

found to make relatively minor contributions to the chan-

ges in ET rates seen during the catalytic cycle of MCOs

(vide infra). We turn now to the free energy difference,

DG�, which derives from the reduction potentials of T1 Cu

sites.

Reduction potentials (E�) of blue copper sites in laccases

range from *400 to *800 mV versus NHE [13, 39–41].

Although many factors influence reduction potentials of

metal sites in proteins [42], one significant contribution in

MCOs is the presence or absence of an axial Met ligand.

Fig. 2 T1 sites of CotA from B.

subtilis with axial methionine

(a) and of laccase from T.

versicolor without the axial

methionine (b). PDB accession

numbers: 2X88 and 1GYC

Fig. 3 T2 and T3 Cu sites in MCOs. Labeled histidines H454 and

H452 connect T3a and T3b to the T1 Cu through the Cys-His bridge.

Also shown are conserved carboxylates D77 and D456. All residues

are numbered according to PDB:1GYC
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Plant laccases, which possess the Met ligand, often have

potentials on the low end of this range, while fungal lac-

cases, which lack an axial ligand, typically have higher

reduction potentials [43]. Evidence for the impact of axial

ligation on E� can be seen in two mutants of CotA in B.

subtilis. Wild type (WT) CotA has a reduction potential of

455 mV, but when the T1 axial ligand Met502 is replaced

with non-ligating Phe (M502F) or Leu (M502L), the

potentials of these mutants increase to 548 and 515 mV,

respectively [44]. Conversely, mutation of the axially non-

coordinating F463 residue to Met in T. villosa laccase

(TviL) decreases the reduction potential from 790 to

680 mV [45]. Clearly, the presence of the additional Cu–

S(Met) bond decreases the reduction potential of the T1

Cu, yet E� can differ substantially even among blue copper

proteins with identical ligand sets.

Comparisons of T1 centers over a range of copper

proteins have revealed that the strength of the Cu–S(Met)

bond can profoundly impact the electronic and geometric

structures of these sites. Decreasing the Cu–S(Met) bond

length results in weakening and lengthening of the Cu–

S(Cys) bond, accompanied by a tetragonal (i.e., Jahn–

Teller) distortion of the site, in which the Cu–S(Cys)-

S(Met) plane rotates into the Cu–N(His)-N(His) plane [46].

This ‘‘coupled distortion’’ describes the continuum of

geometries connecting blue copper sites to the so-called

green copper sites that possess the same 1Cys-2His-1Met

ligand motif seen in plant laccases, but differ in electronic

and geometric structure. The extremes of this coupled

distortion coordinate are the green T1 site in Achromo-

bacter cycloclastes nitrite reductase (NiR), which has a

strong Cu–S(Met) bond, and the blue T1 Cu in plant lac-

cases and plastocyanin, which have weak Cu–S(Met)

bonds (and, by extension, T1 sites in fungal laccases and

Fet3p, in which no axial ligand is present) [21, 27]. Effects

of this perturbation are manifested in spectroscopic chan-

ges including the S(Cys) ? Cu p and r CT bands

switching from intense p/weak r in blue sites to intense r/

weak p in green sites. Density functional theory (DFT)

calculations calibrated to spectroscopic data and spectros-

copy on NiR variants indicate that it is the strength of the

Cu–S(Met) bond that determines whether a site is blue

(weak) or green [strong Cu–S(Met) bond] [47]. This, in

turn, is a result of the protein backbone, which constrains

the Cu–S(Met) bond and enforces an active site structure at

a given point along the coupled distortion coordinate. A

protein constraint on active site ligation to enhance func-

tion is often referred to as the entatic, or rack state [48].

The axial Met constraint contributes to tuning the reduction

potential of the T1 as described below.

A demonstration of the importance of the protein

backbone comes from the T1 site in Rhodobacter sph-

aeroides NiR, in which the flexible nature of the

methionine-containing loop allows the axial Met bond to

the T1 to break at high temperatures. Breaking the Cu–

S(Met) bond is entropically favored, and this results in a

thermodynamic equilibrium between green sites (bound

Met) that predominate at low temperature and blue sites

(unbound Met) that are present at higher temperatures.

Temperature-dependent spectroscopic data in conjunction

with DFT calculations yielded Cu–S(Met) bond enthalpies

(DH) of 4.6 and *1 kcal/mol for the oxidized and reduced

sites, respectively. Thus, the presence of the Cu–S(Met)

bond stabilizes the oxidized state relative to the reduced

state [49]. Most T1 sites do not have flexibility in the

protein backbone and do not readily interconvert from blue

to green sites [50]. Keeping the ligand bound (i.e.,

opposing entropy) provides a mechanism (i.e., an ‘‘entatic

state’’) by which the Cu–S(Met) distance enforced by the

protein structure stabilizes the oxidized relative to the

reduced state to tune down the reduction potential of the T1

by several hundred millivolts.

It is important to emphasize here that the effect of the

axial ligand alone is not sufficient to explain the range of

reduction potentials exhibited across T1 Cu sites. Other

factors that contribute to E� differences among T1 Cu

centers include the hydrophobicity of nearby residues,

hydrogen bonding to the S(Cys), and electrostatic interac-

tions in the protein backbone [51, 52]. The effects on E�
due to hydrogen bonds and protein dipole interactions have

been investigated [53, 54]. Mutations of second-sphere

residues surrounding the T1 center in Pseudomonas aeru-

ginosa azurin resulted in significant changes in reduction

potential. These variants included removal of the hydrogen

bond to the S(Cys), as well as deletion or insertion of

carbonyl dipoles near the Cu–S(Cys) bond. Two types of

contributions to tuning E� were identified as follows:

covalent contributions, which change the covalency of the

Cu–S(Cys) bond, and non-local electrostatic contributions,

which serve only to change the relative energies of the

electrons in the redox active molecular orbital (RAMO).

Various spectroscopies and in-silico experiments were used

to quantify each contribution to the potential. Overall,

covalent contributions were found to account for a

*10 mV decrease in E� for each percent increase in sulfur

character of the RAMO. These covalent effects either

added to or opposed electrostatic contributions, which

consisted mainly of electron-dipole interactions [54]. This

study provides insight into how second-sphere residues

near the T1 Cu also play an important role in tuning the

reduction potential over several hundred millivolts.

We now consider the first two terms in the Marcus

equation, KA and S, which describe the interactions

between substrate and the protein in the vicinity of the T1

Cu. Increasing KA or S through favorable binding between

substrate and enzyme, and at the proper position for ET,

872 S. M. Jones, E. I. Solomon
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increases the electron transfer rate. This requires an

understanding of substrate binding in MCOs.

Phenols and amines are the natural substrates of laccases

[55], although some also oxidize inorganic ions [56–58].

The broad range of organic substrates capable of being

oxidized by laccases is a result of non-covalent binding

near the T1 His ligands for outer-sphere ET. A solved

crystal structure by Bertrand and coworkers [59] included

the substrate 2,5-xylidine hydrogen-bonded to TvL through

the carboxylate D206 and the Ne2 of H458, a first sphere

ligand to the T1 Cu. Although the orientation of the sub-

strate can differ, comparisons to other amino acid

sequences and crystal structures show that this solvent

exposed His binding site is common in laccases [60–63].

Kinetic studies on several laccases yielded Michaelis

constants (Km) which varied by substrate, but were similar

across the enzymes studied, suggesting similar substrate-

binding sites for these enzymes. Data also show that in

laccases an outer-sphere ET to the T1 is the rate-deter-

mining step in turnover [40, 64, 65]. This is in contrast to

metalloxidases, such as Fet3p, which have smaller Km

values due to favorable Fe(II)-binding sites at the carbox-

ylate residues E185 and D409 [66, 67]. These carboxylates

are then hydrogen-bonded to the His residues of the T1 site,

providing an efficient ET pathway in these metalloxidases.

Single and double mutations of each of these residues to

Ala change the coordination environment at the substrate,

decreasing the effectiveness of Fet3p as a metalloxidase

and turning on laccase-like activity [68, 69]. Another

interesting result of these mutational studies involves the

E185D mutant of Fet3p. This mutant exhibits the same T1

reduction potential as the WT enzyme and the same Km, yet

the electron transfer rate is an order of magnitude slower

than the WT. This is attributed to changes in the hydrogen-

bonding network that disrupts the ET pathway [68]. This

leads us to the next term in the Marcus equation: HDA.

The electronic coupling matrix element, HDA, is pri-

marily dependent on three factors: (1) the covalency of the

ligand–metal bond, (2) the anisotropy of the redox active

molecular orbital, and (3) the orbital overlap of the su-

perexchange pathway between donor and acceptor through

the protein [27]. For ET from the substrate to the T1 in

MCOs, the short distance between donor and acceptor

leads to minimal attenuation of the electronic coupling and

therefore a relatively large HDA. As noted above, the

E185D mutant of Fet3p shows that disrupting the super-

exchange pathway from the substrate to the T1 greatly

decreases HDA [68]. In laccases, the through bond pathway

from substrate to the T1 is shorter since the binding occurs

near a nitrogen of the histidine ligated directly to the T1,

suggesting a reasonable electronic coupling constant

despite the limited covalency of the Cu–N(His) bond. The

T1 site is well positioned, however, to rapidly transfer

electrons to the TNC due to the highly covalent Cu–S(Cys)

bond.

In laccases, the covalency and anisotropy in the ground

state, as well as the Cys-His superexchange pathway con-

tribute to a large HDA for intramolecular ET from the T1 to

the TNC. The RAMO, a Cu dx2�y2 orbital, contains a

substantial contribution from the S(Cys) pp orbital [70–72].

UV-visible absorption (UV-Vis), X-ray absorption (XAS),

circular dichroism (CD), and magnetic CD (MCD) spec-

troscopies explicitly quantify the ground state

wavefunction of the oxidized T1 site. This lowest unoc-

cupied beta molecular orbital (b-LUMO) is shown in

Fig. 4a. Through Cu L-edge and S K-edge XAS, it has

been determined that the RAMO of blue copper sites

contains *42 % Cu character, and *38 % S character

[73]. Compared to CuCl4
2-, a ‘‘normal’’ Cu complex with

61 % Cu character in the ground state [74], this represents

a substantial increase in covalency of the T1 Cu. Simul-

taneous fitting of the UV-Vis, and MCD spectra reveal a

strong S(Cys)pp ? Cu(II) ligand to metal charge transfer

(LMCT) transition and weak S(Cys)pr ? Cu(II) LMCT

[71]. This relationship is the inverse of normal copper and

green copper sites which have a strong pr LMCT and a

weak pp LMCT (vide supra). These data show that in blue

copper sites, the Cu–S(Cys) bond bisects the Cu dx2�y2

orbital of the copper, resulting in considerable overlap with

the S pp orbital. This highly covalent p-anisotropy of the

Cu–S(Cys) bond in the ground state of the oxidized Cu

activates the site for rapid intramolecular ET through the

Cys-His pathway to the TNC.

The Cys-His pathway provides a link through the pro-

tein backbone between the Cu–S(Cys) p bond at the T1 to

the Cu–N(His) r bond at the T3 site [21, 27, 75, 76]. There

is an additional hydrogen-bond overlap, shown in Fig. 4b,

c, which serves as an additional superexchange pathway

that also contributes to HDA in MCOs [75]. Numerous

studies have shown a strong interaction between the T1 and

TNC. Augustine and coworkers, working with Fet3p,

studied the effects of mutating the His ligands at the T3 Cu

sites to Cys and Gln. Resonance Raman (rR) spectroscopy

revealed that this weakened the bonds at the T3 Cu and

strengthened the T1 Cu–S(Cys) bond. A decreased reduc-

tion potential of the T1 sites in these mutants was attributed

to this increased donation of the S pp orbital to the Cu [77].

Changes in Cu–S(Cys) bonding were proposed to arise due

to a conformational change of the pathway, which would

result in changes to HDA.

A recent computational study by Hadt, et al. [75] on the

Cys-His pathway in NiRs and MCOs quantifies how the

anisotropy (p versus r overlap) and covalency (% S con-

tribution) of the T1 Cu–S(Cys) bond significantly changes

HDA. Models of the Cys-His pathway in NiRs and MCOs

were used to probe the differences between blue and green
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T1 sites. This study showed a direct correlation between

the covalency of the Cu–S(Cys) bond (% S character) and

HDA and that kET goes as (HDA)2 in non-adiabatic ET

(Eq. 1). Blue and green sites were also found to activate

different superexchange pathways in the same bridge,

which led to marked changes in HDA. In MCOs, the

hydrogen-bond pathway in Fig. 4b, in addition to the Cys-

His p to r pathway, results in large HDA’s from the blue T1

sites. If, instead, a green site existed in MCOs, HDA’s

would be small. Conversely, in NiRs, structural differences

in this same H-bond pathway result in larger HDA’s for

green relative to blue T1 sites [75]. It is worth noting that

additional, unstudied pathways exist in MCOs between the

T1 and the other Cu’s in the TNC that may lead to

additional constructive or destructive interferences for ET.

However, it is clear that the highly covalent, p-donor

bonding, blue copper site in laccases promotes rapid

intramolecular ET during the catalytic cycle.

The above discussion of electron transfer processes

described by Marcus theory as applied to blue copper sites

illustrates how rates of electron transfer depend sensitively

on several terms, and changes in the first and second-sphere

ligand environment can result in significant changes to the

relevant terms in the ET rate expression. Laccases are

highly tuned by nature to accept electrons from substrates,

and shuttle them to the TNC, where dioxygen is reduced. In

one of the most widely studied MCOs, RvL, intramolecular

ET must be fast given a maximal turnover rate of 560 s-1

[15], and kinetic data show that during turnover this elec-

tron transfer rate has a lower limit of 700 s-1 [78];

however, pulse radiolysis studies on the resting enzyme

give a rate of 1.1 s-1 [79]. This indicates that kET changes

during the course of the catalytic cycle, and suggests that it

is dependent on the state of the TNC. In fact, the resting

site as described by crystallography is not the catalytically

relevant fully oxidized form of the TNC. This will be

discussed in the following section, which explores the

mechanism of O2 reduction through the known spectro-

scopic intermediates.

O2 reduction mechanism

The mechanism of O2 reduction by MCOs has been

determined through a large body of spectroscopic, kinetic,

and computational studies of native enzymes, and mutated

or otherwise chemically altered derivatives. Investigations

have largely focused on the two most widely studied

MCOs, RvL and Fet3p, where selective perturbations of the

different copper sites stabilize certain reactive intermedi-

ates which can then be characterized spectroscopically.

Figure 5 shows an overview of the mechanism, which

begins with the fully reduced enzyme, followed by two 2e-

steps that reduce O2 to H2O. The catalytic cycle then

continues with the re-reduction of the fully oxidized

intermediate formed upon reduction of dioxygen rather

than reduction of the resting enzyme (vide infra).

The resting oxidized (RO) form of the enzyme (Fig. 5,

bottom left) has four oxidized coppers including a

hydroxide-bridged T3 center with the spectroscopic fea-

tures described above and shown in Fig. 1. The mechanism

begins when a suitable reductant donates four electrons to

reduce all four Cu(II) atoms to Cu(I). Electrons enter

through the T1 and are transferred to the TNC. In the

absence of a redox active T1 site, no reduction of the TNC

is observed upon addition of native substrates. However, in

these altered enzymes, the T2 and T3 sites can still be

Fig. 4 b-LUMO coupled into Cys-His pathway (a). Calculated spin

density of ground state wavefunction with H-bond pathway shown in

blue (b). p to r superexchange pathway from T1 Cu to TNC (c).

Reprinted with permission from [21]. Copyright 2006 American

Chemical Society
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reduced with smaller, inner-sphere reductants, and the

reduced TNC, even in the absence of the T1, will react with

and reduce O2. Elimination of T1 reactivity was accom-

plished either through site-selective mutation which

inhibits Cu loading at the T1, resulting in a T1 depleted

enzyme (T1D) [81], or through a derivative of tree laccase

in which the T1 Cu has been replaced by the redox inno-

cent Hg2? ion (T1Hg) [82, 83]. These derivatives have

been crucial to the elucidation of the mechanism of O2

reduction at the TNC, as described below.

Anaerobic reduction of resting laccases reveals com-

plex, pH-dependent reduction behavior for the four copper

sites. There remains some ambiguity in the exact steps

involved in Cu(II) reduction, but it is clear that formation

of a fully reduced TNC is required for O2 reaction (vide

infra). The Cu(II) sites are essentially fully reduced after

addition of *4 electron equivalents, although the order in

which each site becomes reduced varies among enzymes

and reaction conditions [13, 84–87]. The binuclear T3 Cu

site reduces as a two electron acceptor, which is supported

by the lack of a half-met [i.e., Cu(II)Cu(I)] T3 EPR signal

during reduction of the resting enzyme. The T2 is often the

last site to fully reduce during anaerobic titrations [13];

however, where clear data exist, all 4 Cu(II)s reduce at

approximately the same potential.

In T1D/T1Hg, the fully reduced TNC reacts with

dioxygen to form the peroxide intermediate (PI) with a

bimolecular rate constant of *2 9 106 M-1 s-1 [88, 89].

In the absorbance spectrum of PI, there are two CT bands

at 340 and 480 nm (Fig. 6). These two CT bands decom-

pose into four bands in CD. Also present in CD are several

ligand field (d ? d) transitions signaling the presence of

oxidized copper [88]; yet PI lacks of any paramagnetic

features in either EPR or MCD, indicating an S = 0 ground

Fig. 5 Mechanism of O2

reduction by MCOs. Red arrows

show steps in the catalytic

cycle. Black arrows show

reduction of resting enzyme to

enter catalytic cycle and decay

of the native intermediate which

terminates catalysis. Adapted

with permission from [80].

Copyright 2010 American

Chemical Society
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state. Furthermore, SQUID magnetic susceptibility studies

confirm that it is diamagnetic with strong AF coupling

between two Cu(II)s (-2 J [ 200 cm-1). Isotope ratio

mass spectrometry (IRMS) with 18O2 showed that PI

retains both oxygen atoms from the reaction with O2 [90].

It decays slowly to a species with an MCD spectrum

identical to the features of the native intermediate (NI, vide

infra), and subsequently to a species with an EPR spectrum

of an oxidized T2 Cu as in the resting form [19]. PI is

therefore a catalytically competent precursor to the NI,

which is discussed below. These findings lead to the

assignment of PI as a peroxide-level species, with peroxide

bridging two oxidized coppers of the TNC, leaving one

reduced.

Although they were originally considered the same, it is

important to note the distinction between the binuclear T3

center in the TNC and the binuclear Cu sites found in the

coupled binuclear Cu proteins hemocyanin (Hc) or tyrosi-

nase (Tyr). In Hc and Tyr, reduced copper sites reversibly

bind O2 to form a planar l-g2:g2 peroxo-bridged structure

(oxy Hc) [91], similar to the hypothetical T3 site shown in

Fig. 7a. Although both PI and oxy Hc exhibit antiferro-

magnetic coupling of two Cu(II)s, their distinct CT spectra

reveal a large geometric difference between these two

peroxide-bound species [92]. Moreover, when the T2 Cu of

RvL is selectively eliminated (T2D), the reduced T3 site is

unreactive toward O2 [92]. This reduced T3 site is still

capable of binding small molecules, but in contrast to Hc

and Tyr, exogenous ligands do not bridge the T3 Cu cen-

ters. The origin of these differences lies in the protein

architecture around the active sites. In reduced Hc (deoxy

Hc), the Cu(I)–Cu(I) distance is tightly constrained by the

protein to *4.2 Å, which destabilizes deoxy Hc and acti-

vates it for O2 binding. Reduced T3 sites in laccases

are more flexible with equilibrium Cu–Cu distances

of *6.5 Å, leading to less electrostatic repulsion and a

more stable reduced site, which explains its lack of O2

reactivity [93]. These data show that not only is the T3 site

in laccases different from the binuclear site in Hc, but also

that the presence of the T2 Cu is required for O2 reaction in

laccases leading to PI formation.

Mutational studies provide further insight into the

structure of the TNC of PI. T1D mutants of Fet3p,

expressed with either the T3a or T3b Cu sites (see Fig. 3

for labels) selectively deactivated due to a His to Gln T3

ligand mutation, showed that the T2 and T3b coppers are

electron donors in the first 2e- step of O2 reduction [80].

Other mutational studies involved transformation of the

conserved carboxylate D94 (D77 in Fig. 3) in Fet3p.

Enzymes with D94 transformed to Ala or Asn were unre-

active toward O2, yet the D94E mutant still formed PI upon

reaction with O2, showing that an anionic residue at this

position was required for reactivity [29]. Computational

models that include the negative charge arising from this

residue yielded the l3-1,1,2 peroxo bridging structure

shown in Fig. 7b [94]. Electronic structure calculations of

PI indicate that the negative charge of D94 lowers the

reduction potential of the T2 and T3b sites, allowing them

Fig. 6 a Absorbance spectra of the peroxy intermediate at different

times during its decay. Inset shows the decay at 340 nm. b Absorbance

difference spectra of the spectra in (a) relative to fully oxidized T1Hg

laccase. Reprinted with permission from [90]. Copyright 1996

American Chemical Society

Fig. 7 Optimized structures of the peroxy intermediate without

(a) and with (b) the D94 residue. Reprinted with permission from

[94]. Copyright 2007 American Chemical Society
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to donate the two electrons to O2. This results in a perox-

ide-bridged site that has good overlap of the O2�
2

pr*

HOMO with the dx2�y2 LUMOs on the T2 and T3b Cu(II)s,

consistent with the strong AF coupling observed in PI [94].

Thus, in contrast to the coupled binuclear Cu sites in Hc

and Tyr, the TNC is set up to bind O2 as peroxide bridging

all three Cu centers. This geometry is essential for the

reductive cleavage of the O–O bond.

The next step in the mechanism is the decay of PI

through O–O bond cleavage. In the absence of T1 Cu, PI

decay exhibits an 18O2 kinetic isotope effect (KIE) of 1.11

indicating that O–O cleavage is part of the rate-limiting

step [95]. Furthermore, at low pH, the rate is modestly

enhanced, and exhibits an inverse solvent kinetic isotope

effect (SKIE) of 0.89 in Fet3p. Increasing the pH slows the

decay rate and eliminates the SKIE. In Fet3p, when E487,

the carboxylate nearer the T3 Cu site (D456 in Fig. 3), is

mutated to Ala, the pH effect is eliminated. The E487D

mutant still exhibits a rate increase at low pH, but shows a

‘‘normal’’ SKIE of 2.0. Meanwhile, mutation of D94, the

carboxylate at the T2/T3b edge, to Glu changes the SKIE

to 2.3 [30]. All three mutations result in slower PI decay

rates, indicating that these carboxylates are critical for

proton transfers during the reductive cleavage of peroxide.

Similar findings were later reported in T1D CotA, in which

mutations of E498 (equivalent to D456 in Fig. 3) to Leu,

and D116 (D77 in Fig. 3) to Ala each slowed PI formation

and essentially halted PI decay. Similarly, the T1D-E498D

and T1D-D116E CotA mutants formed PI at similar rates

to WT, but exhibited significantly slower PI decay rates

[96, 97]. The model which explains these observations

involves two O–O cleavage reaction pathways: a proton-

unassisted pathway at high pH and a proton-assisted

pathway at low pH as shown in Fig. 8 [30, 94]. Both

pathways invoke proton donation to peroxide from E487

through the H-bond network to an oxygen atom bridging

the T3 Cu’s. This model also includes the effect of the D94

residue, which is responsible for deprotonating the water

bound to the reduced T2 upon its oxidation. The resulting

hydroxide lowers the reduction potential of the T2, facili-

tating electron transfer to the peroxide. Computation of the

potential energy surface for PI decay in the holo enzyme

begins with an additional electron, which would be donated

from the T1 Cu(I), to form a PI ? e- species. At low pH,

the proton is transferred first from E487 to the oxygen

bridging the T3 [O2 in Fig. 7(b)], followed by reductive

cleavage of the O–O bond. In accordance with the West-

heimer model, the inverse SKIE is attributed to a product-

like transition state in which the stronger O–H bond of the

l2-OH has formed and the weaker carboxylate O–H proton

donor bond is broken. At high pH, peroxide O–O bond

elongation occurs first, followed by proton transfer after the

transition state [30]. The activation energy for the former,

proton-assisted pathway is slightly lower compared to the

proton-unassisted pathway, which is consistent with the

limited rate increase at low pH. Both activation energies

are also in line with the experimental activation energy of

*3–5 kcal/mol [94].

Figure 9 shows the 2-D potential energy surface calcu-

lated for this conversion of PI to NI. Examining the orbital

contributions to the RAMOs during the reaction pathway

shows that the TNC is set up for this reaction with good

orbital overlap between the e- donating HOMOs on the T2

and T3a Cu’s (both reduced) and the LUMO, the O2�
2

r*

orbital. The T3b is already oxidized in forming PI, but in

the triangular topology of the TNC contributes to the

reaction by acting as a Lewis acid in lowering the energy of

the peroxide r* electron acceptor orbital [94]. A schematic

of this interaction is shown in Fig. 10. This overlap allows

for cleavage of the O–O bond with the concerted, two-

electron reduction of peroxide, a highly exothermic

process.

The formation of NI from PI (Fig. 5, bottom right) must

be rapid in holo laccases with reported second-order NI

formation rate constants of 0.7–5 lM-1s-1 [88, 98]. From

Cu K-edge XAS, all four coppers are oxidized in NI, with

characteristic absorbance features at 318, 330, 365, and

614 nm. NI exhibits an S = 1/2 ground state determined

through MCD with EPR g values of 2.15, 1.86, and 1.65 in

low temperature (\20 K) EPR [99]. Importantly, it has a

low lying excited state at *150 cm-1 observed in tem-

perature-dependent MCD and in the temperature-

dependent saturation behavior of the low g value EPR

signals [100]. NI must therefore have an all bridged tri-

nuclear Cu(II) cluster. EXAFS shows a Cu–Cu distance of

3.3 Å, which, through magneto-structural correlations,

gives an isotropic exchange coupling (-2 J) of 520 cm-1

from one pair of Cu(II)s. Inclusion of two more bridging

interactions closing the 3 Cu(II) triangle results in a con-

dition known as spin frustration in which all three spins

want to be, but cannot be AF coupled. This results in the

low lying excited state at 150 cm-1, which restricts the

range of possible values for the three exchange coupling

constants. These isotropic coupling constants for the other

two bridges were determined by evaluating the contribu-

tion from each Cu(II) to the ground and excited state C

terms in MCD. The resulting analysis yields exchange

coupling constants (-2 J) of 430 and 470 cm-1 for the

other two bridges [100]. This spin frustration also gives rise

to the g values below 2.0 due to a phenomenon known as

antisymmetric exchange [101]. This requires good ground

state to ground state exchange coupling between two

adjacent Cu(II)s, spin orbit coupling between the ground

and excited states on a single Cu(II), and exchange cou-

pling between this excited state and the ground state on the

adjacent Cu(II). The result is that in the EPR experiment,
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for fields perpendicular to the 3 Cu(II) plane, there is a non-

linear, field dependent mixing of the ground and a low

lying excited state that gives rise to g\ � 2, as shown in

Fig. 11 (right). Finally, analysis of the orbital contributions

to the pseudo-A terms in MCD (i.e., two C terms with

opposite signs) based on studies of structurally defined

relevant model complexes identified the structure of NI as a

l3-oxo bridged species with a l2-OH bridge between the

T3 Cu(II)s as shown in Fig. 12 [102]. Further protonation

of the l2-hydroxide bridge has not occurred as this would

result in a ferromagnetic ground state, which is not

observed experimentally [103]. Both oxygen atoms come

from O–O cleavage, and the l2-OH remains bound.

Although both NI and RO have fully oxidized TNCs,

they exhibit very different spectral properties and

Fig. 8 Schematic showing the

roles of carboxylates E487 and

D94 in O–O bond cleavage

during PI decay. Reprinted with

permission from [94]. Copyright

2007 American Chemical

Society

Fig. 9 2D potential energy surface of the decay of the peroxy

intermediate. Reprinted with permission from [94]. Copyright 2007

American Chemical Society

Fig. 10 Schematic of the overlap between the HOMOs on the T2 and

T3a sites and the O2�
2

r* orbital. Reprinted with permission from

[94]. Copyright 2007 American Chemical Society
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reactivities due to their different oxygen bridges (l3-O and

l2-OH in NI and l2-OH in RO). In the absence of excess

reductant, NI decays slowly to the RO form with an

observed rate constant of *0.05 s-1 [78, 105]. IRMS on
18O2 revealed that one of the oxygen atoms from dioxygen

remained bound to the TNC in RO [90, 106]. A model

linking the NI structure to RO requires the addition of

protons and the loss of H2O. Protonation of the l3-oxo

bridge is energetically favorable relative to protonation at

the l2-hydroxo ligand, and the protonated l3-oxo rotates

through the T2-T3a edge with a calculated barrier of

8.5 kcal/mol, which is consistent with the experimentally

observed barrier of 8.8–13.9 kcal/mol in the decay of NI to

the resting enzyme [103]. Importantly, the rate of decay of

NI is several orders of magnitude slower than catalytic

turnover, which is further evidence that RO is not part of

the catalytic cycle. Instead, as summarized below, NI has

been shown to be the fully oxidized form of the enzyme

that is relevant to catalysis.

It has been observed that the turnover rate of RvL

(560 s-1) was significantly higher than either the T1–T3

electron transfer rates in RO (1.1 s-1), or the decay of NI to

RO (0.05 s-1). For this reason, the RO form of the enzyme

is not catalytically relevant. Instead, re-reduction of NI has

now been shown to be the catalytically relevant reduction

step. The kinetics of RO reduction versus re-reduction of

NI were studied via stopped flow absorption spectroscopy

[78]. The two processes show markedly different behaviors

for the T1 and T3 electron transfer rates. In RO, the T1

reduces quickly, followed by slow reduction of the T3 at an

initial rate of 0.111 s-1 at 4 �C. In contrast, the rate of T1

to T3 ET in the first e- reduction of NI was observed to be

[700 s-1. Both processes are proton-coupled electron

transfers (PCET), and this dramatic change in kET between

the two fully oxidized TNC’s is due to the substantially

higher basicity of the l3-oxo ligand of NI relative to the l2-

OH ligand present in the RO structure [78]. The increased

proton affinity of the l3-oxo species drives the PCET

enabling fast re-reduction of NI.

DFT calculations were used to evaluate changes in the

parameters of the ET rate equation. The differences in

driving force between these two PCET steps reveal that NI

reduction is 7 kcal/mol more favorable than reduction of

RO. In these calculations, the reorganization energy for the

first PCET in NI reduction is *0.3 eV lower than for

reduction of RO. Using these values in the Marcus equation

(with HDA held constant) yield a factor of 103 greater ET

rate for NI reduction, in agreement with experimental data

[78]. The structure of NI is therefore responsible for rapid

turnover, since reductive cleavage of the O–O bond forms

the l3-oxo ligand and allows for proton coupling leading to

fast re-reduction and high turnover rates.

The mechanism described here likely applies in general

to all MCOs. Turnover rates of laccases vary widely among

substrates, but are generally several orders of magnitude

greater than rates measured for metalloxidases [6, 15, 98].

Although PI has not been observed in native enzymes, it

has been observed in several MCOs lacking a T1 center,

including derivatives of RvL [107], Fet3p [89], CueO

[108], and CotA [97]. PI forms at a rate consistent with it

being in the reduction of O2. NI-like features have been

observed in RvL, BOD [109], Cp [105, 110], and CueO

[108]. Interestingly, in some MCOs including BOD, Cp,

and CueO, NI features are not long lived; however, in both

CueO and BOD, mutations at sites equivalent to E487 in

Fig. 11 Origin of the low g values observed in NI. Reprinted from [104] with permission of The Royal Society of Chemistry

Fig. 12 Optimized structure of the NI. Reprinted from [103].

Copyright 2007 National Academy of Science, USA
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Fet3p result in more pronounced NI features [108, 111].

This suggests that although differences in second-sphere

residues around the Cu centers may lead to changes in rates

for individual mechanistic steps, the intermediates descri-

bed here are common to all MCOs. Future studies will

expand this model to include other relevant features that

exert a mechanistic influence on different MCO activities.

Conclusion

In laccases, the enzyme ET properties, largely governed by

the T1 Cu, combined with the unique triangular topology

of the TNC effectively couple the oxidation of substrates to

the reduction of dioxygen. As illustrated above, structural

constraints imposed by the protein modulate electron and

proton transfer rates both to and from the T1 Cu, and at the

site of O2 reduction. Reductive cleavage of the O–O bond,

effectively a 4e- process, leads to the formation of a spe-

cies, NI, that is then poised for rapid proton-coupled

reduction to generate H2O and continue the catalytic cycle.

It is fascinating to consider that while laccases and other

MCOs have nearly identical Cu active sites they exhibit

substantial diversity in substrate interactions and catalytic

rates. As structure–function relationships are established

for second-sphere residues that explain differences in

reactivity, it will be interesting to correlate these changes to

the roles that particular enzymes serve in biological sys-

tems. Understanding how enzyme activity is regulated by

changes in electron and/or proton transfer rates will both

provide fundamental insight into how nature controls the

fundamentally important process of O2 reduction to H2O

and also be important to the development of industrial

processes and biomedical applications.
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