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Abstract Resveratrol, a polyphenol found in a number of

plant-based foods such as red wine, has received a great

deal of attention for its diverse array of healthful effects.

Beneficial effects of resveratrol are diverse; they include

improvement of mitochondrial function, protection against

obesity and obesity-related diseases such as type-2 diabe-

tes, suppression of inflammation and cancer cell growth

and protection against cardiovascular dysfunction, just to

name a few. Investigations into the metabolic effects of

resveratrol are furthest along and now include a number of

clinical trials, which have yielded mixed results. There are

a number of controversies surrounding resveratrol that have

not been resolved. Here, we will review these controversies

with particular emphasis on its mechanism of metabolic

action and how lessons from resveratrol may help develop

therapies that harness the effects of resveratrol but without

the undesirable properties of resveratrol.
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Abbreviations

AMPK Adenosine monophosphate activated kinase

Sirt1 Sirtuin 1

SIR2 Silent information regulator 2

cAMP Cyclic adenosine monophosphate

CAMKKb Calcium/calmodulin-dependent kinase kinase

b
PDE Phosphodiesterases

PKA Protein kinase A

EPAC Exchange protein activated by cAMP

COX Cyclooxygenase

HOMA-IR Homeostatic model assessment-insulin

resistance

eNOS Endothelial nitric oxide synthase

Nrf2 Nuclear factor erythroid 2- related factor 2

Introduction

As the chronic diseases of aging such as cancer, diabetes,

and neurodegenerative diseases have become an increasing

burden on society, we have continued to search for drugs

that can solve these problems. Finding a drug that could

reduce the overall effects of aging could increase both the

health span and lifespan of humans. One method that has

consistently been shown to increase the lifespan of

organisms from single-celled organisms to mammals is

caloric restriction. This concept was originally discovered

when McCay et al. [1] showed that caloric restriction could

extend the lifespan of rats. More recently, caloric restric-

tion has been shown to extend the lifespan of a range of

species from yeast to mammals [2]. With the increasing

epidemic of obesity, it has become clear that attempts at

calorie restriction in humans are likely to fail. Therefore,

many have searched for compounds that could act as cal-

orie restriction mimetics. Focus on the pathways involved

in the effect of calorie restriction on lifespan in yeast dis-

covered the sirtuin enzyme SIR2 to be a key mediator [3].

A high throughput screen for activators of SIRT1, the

human homolog of the Saccharomyces cerevisiae enzyme
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discovered the small molecule resveratrol (3,5,40-trihydr-

oxystilbene) [4]. Resveratrol is a natural product that can

be found in several plant species including red grapes. In

the 1990s resveratrol first received attention as a potential

explanation of the ‘‘French Paradox,’’ then later was

characterized as a cyclooxygenase inhibitor and potential

chemopreventive molecule [5]. Since its discovery as a

potential calorie restriction mimetic, resveratrol has been

shown to have beneficial effects in cardiovascular disease,

metabolic disease, cancer and neurodegeneration. Much

work has focused on how resveratrol is capable of having

such wide-ranging effects, what the molecular targets are,

and whether resveratrol treatment will be beneficial in

humans. In this review, we will discuss the current research

on the direct targets of resveratrol, the downstream effects

of resveratrol in animals, and the current state of human

clinical trials.

Molecular targets of resveratrol

Amidst much confusion, it has become clear that resvera-

trol potentially has several direct targets in the cell.

Although the original discovery was as a cyclooxygenase

inhibitor, it has subsequently been identified as an activator

of Sirt1 [4]; an inhibitor of cAMP phosphodiesterases [6];

an inhibitor of the F1-ATPase [7]; an inhibitor of the

estrogen receptor [8], and a modulator of numerous other

targets. The poly-pharmacologic nature of resveratrol has

sparked much debate about the most relevant targets for its

downstream effects, much of this surrounding whether it

truly is an activator of Sirt1, and whether Sirt1 is respon-

sible for the downstream effects of resveratrol in vivo.

Sirtuins

The sirtuin family of proteins began receiving attention due

to the ability of the S. cerevisiae SIR2 gene to modulate

lifespan in yeast. It was shown that the extension of rep-

licative lifespan due to caloric restriction depended on the

presence of SIR2 [3], although a recent paper calls into

question the magnitude of the lifespan expansion due to

caloric restriction in this species [9]. It was further shown

that deletion of Sir2 orthologs in other organisms ablated

the effects of caloric restriction on lifespan [10, 11],

although not in all systems tested [12, 13]. Increasing the

expression of Sirt1 has extended lifespan in yeast [14],

worms [15], and flies [10]. One group could not repeat

these effects in C. elegans or Drosophila [16], thereafter

the original group has repeated their result in C. elegans

although with a smaller effect [17]. In drosophila, it has

now been shown that Sir2 overexpression in the fat body

can increase lifespan [18]. In mammals, sirtuins compose a

family of seven proteins called Sirt1–Sirt7. Sirt1 is the

closest homolog to the yeast SIR2, and has been most

extensively studied for the effects of caloric restriction and

lifespan extension. Overexpression of Sirt1 in mice par-

tially phenocopies the effects of caloric restriction [19, 20],

and overexpression of Sirt1 in the brain can extend lifespan

[21]. However, some effects of Sirt1 overexpression in

mice seem to contradict the effects of resveratrol, including

an increase in atherosclerosis when the mice are placed on

an atherogenic diet [22] and reduced mitochondrial and

cardiac function [23].

Due to evidence showing the potential of increasing

sirtuin activity to mimic the effects of caloric restriction,

Howitz et al. [4] performed a high throughput screen for

activators of human Sirt1 and identified resveratrol as the

most potent activator. It was proposed that resveratrol

activated Sirt1 by lowering the Km for both the peptide and

NAD? substrates of the enzyme. This screen involved the

use of a fluorescently labeled peptide substrate, called

Fluor-de-Lys, mimicking a short sequence from p53 that

had been shown to be deacetylated by Sirt1 [24]. The direct

activation of Sirt1 by resveratrol later became controver-

sial, with evidence showing that the activation in the screen

was due to interaction between resveratrol and the fluo-

rescent moiety on the Fluor-de-Lys substrate [25–27]. Due

to the proposed biological effects of resveratrol being

mediated through Sirt1, further screens were performed to

find novel sirtuin activating compounds (STACs). Several

structurally distinct compounds, including SRT1720, were

found by a screen using a TAMRA tagged substrate.

However, the direct activation of Sirt1 by several of these

compounds was also called into question [27, 28]. Recent

experiments have shown possible explanations for the

variety of results obtained for the activation of Sirt1 by

resveratrol and STACs. One group showed that activation

was possible with resveratrol if the fluorescent group on the

peptide was replaced with large hydrophobic amino acids

[29]. Further evidence for the dependence of activation on

nearby hydrophobic amino acids came from Gertz and

colleagues. First, through crystal structures of Sirt3 and

Sirt5 co-complexed with resveratrol, they showed direct

interaction between resveratrol and fluorescently labeled

peptides in sirtuin active sites [30]. They then went on to

show that resveratrol activated Sirt5 deacetylase activity

towards longer unmodified peptides in a sequence-depen-

dent manner [30]. In a later study, the same group screened

a peptide library of 6,802 physiological acetylation sites for

the resveratrol effect on Sirt1 deacetylation, showing both

activation and inhibition for subsets of acetylation sites but

the majority of acetylation sites unaffected [31]. There was

a tendency for the activated peptides to have large hydro-

phobic residues C-terminal to the deacetylation site [31]. In

another study, Hubbard et al. [32] showed that resveratrol

activated deacetylase activity towards native substrate
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peptides using in vitro coupling and mass spectrometry-

based assays. The common theme among the peptides that

showed resveratrol activation was a hydrophobic residue

located one or six positions C-terminal to the acetylated

lysine. The recent data on the resveratrol activity on Sirt1

clearly show that in vitro, resveratrol can activate Sirt1

activity towards peptide substrates with hydrophobic resi-

dues C-terminal to the acetylated lysine on the peptide.

Unfortunately, very little data has been produced on Sirt1

activity towards native full-length proteins. It remains to be

seen if the peptide substrates that are activated in vitro are

relevant (or the most relevant) to the biological effects of

resveratrol in vivo.

AMPK and PDEs

While the controversy over whether resveratrol was a

direct activator of Sirt1 unfolded, other pathways for

indirect activation of Sirt1 were explored. Several groups

have shown that resveratrol activates AMP-activated

kinase (AMPK), albeit indirectly [33–38]. Subsequently, it

was shown that AMPK was also required for the metabolic

effects of resveratrol in mice [39]. AMPK is a nutrient-

sensing enzyme that is activated by depletion in energy as

reflected by an increased AMP/ATP ratio [40]. Several

mechanisms of this activation include caloric restriction

[41, 42], exercise and glucose deprivation [40], and phar-

macologic compounds such as metformin and AICAR. In

AMPK knockout mice, the effects of resveratrol on weight

gain, glucose tolerance, insulin sensitivity, and mitochon-

drial biogenesis are all ablated [39]. AMPK activation

could indirectly activate Sirt1 activity, as AMPK activation

is known to increase the intracellular NAD? pool [39, 43].

Questions still remain about how resveratrol could activate

AMPK, and how the activation of AMPK and Sirt1 are

related to each other.

Although AMPK is activated by an increase of the

AMP/ATP ratio, there are other proteins that play a major

role in the activation of AMPK. Under most circum-

stances, two well-known kinases phosphorylate AMPK on

the T172 residue necessary for activation: LKB1 and cal-

cium/calmodulin-dependent kinase kinase b (CamKKb)

[40]. LKB1 can modulate the activation of AMPK by

energy depletion, and intracellular Ca2? can activate

CamKKb, which in turn activates AMPK. It is possible that

resveratrol could activate AMPK via depletion of ATP

levels, or by activation of either LKB1 or CamKKb.

Although some evidence has shown that resveratrol can

decrease ATP levels [44, 45], it seems to be dependent on

doses of 50 lM or higher [46] and possibly the cell type

used for the assay, and other studies have shown no effect

of resveratrol on ATP levels [47]. Resveratrol has been

shown to activate AMPK at doses 10 lM or lower, which

are lower than those where ATP depletion has ever been

measured [33, 38, 48]. One study showed that in an AMPK

mutant that is insensitive to activation by AMP, resveratrol

is no longer able to activate AMPK, arguing that activation

is dependent on depletion of ATP [44]. However, this study

only saw effects at doses [100 lM, calling into question

the validity of this effect at lower concentrations [44]. In

fact, several studies have shown that resveratrol leads to

increased levels of ATP along with AMPK activation [32,

49].

An alternative pathway for activation of AMPK via

inhibition of cyclic nucleotide phosphodiesterases (PDEs)

was recently shown by Park et al. [6]. PDEs modulate the

levels of intracellular cAMP by degrading it to AMP,

counteracting the production of cAMP by adenylyl cyc-

lases (ACs). The PDE family of proteins consists of 11

members and a large number of splice variants, capable of

hydrolyzing either cAMP and/or cGMP (depending on the

isoform) to AMP and GMP, respectively [50]. Park et al.

[6] showed that resveratrol had no effect on the production

of cAMP by ACs, but inhibited the breakdown of cAMP by

PDE1, PDE3, and PDE4. They also tested PDE2 and PDE5

and showed no effect, while not studying the remaining

PDE family members.

In cells, cAMP affects downstream processes through

three major groups of effector proteins: protein kinase A

(PKA), exchange proteins activated by cAMP (EPAC), and

cyclic nucleotide regulated ion channels. It is possible for

cAMP to activate AMPK through both a PKA-LKB1

pathway, and a pathway involving EPAC1 and CamKKb
[6, 51, 52]. In HeLa cells, which lack LKB1, resveratrol

works through the EPAC1-dependent cascade [6]. In

myotubes, which express both CamKKb and LKB1, the

activation of AMPK is also dependent on the EPAC1

cascade, but may also contain a contribution from PKA-

LKB1 signaling. The actions of PKA on AMPK activation

have been shown to be complicated. It has been shown that

PKA can directly phosphorylate LKB1 on the S431 residue

and increase its activity in neurons [53]. However, acti-

vation of AMPK by transiently overexpressed LKB1 is not

dependent on phosphorylation at the S431 site [54]. Whe-

ther S431 in LKB1 is required for resveratrol to activate

AMPK when LKB1 is expressed at physiological levels is

not known. Activation of PKA by isoproterenol can inhibit

AMPK [55], but activation of PKA by adiponectin can

activate AMPK [56].Several other studies have found a

relationship between cAMP-PDE signaling and AMPK

activation in adipose tissue and muscle [57–59]. Some

studies have also shown that PKA activation can lead to an

increase in Sirt1 activity [60, 61].

Over the past two years, there has been an increasing

amount of evidence that inhibition of PDE4 via rolipram or

roflumilast can recapitulate some of the phenotypes of
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resveratrol treatment such as extension of lifespan in a

C. elegans model of a neurodegenerative disease [62],

chemoprevention by elimination of tetraploid cells in

cancer cell lines [63] and protection against diabetic

nephropathy in streptozotocin-treated rats [64].

Other molecular targets of resveratrol

Part of the reason there has been so much controversy and

debate over the direct target of resveratrol is the fact that it

is poly-pharmacologic. A number of proposed direct tar-

gets have been shown, at least in vitro, since it first came to

prominence. As mentioned above, before the studies

showing resveratrol action on Sirt1 in the early 2000s,

resveratrol first received attention as a cyclooxygenase

(COX) inhibitor in 1997 [5]. It has been shown to be an

inhibitor of COX-1 but not COX-2 [65], and to have cancer

chemopreventive activity [5]. Also mentioned above was

the discovery that resveratrol has an inhibitory effect on the

F0F1 ATPase in mitochondria, potentially decreasing ATP

production [7, 66]. A similar model has been looked at with

resveratrol inhibition of complex I of the mitochondrial

oxidative phosphorylation machinery [67, 68]. However,

another group found that resveratrol worked by activating

complex I resulting in increased NAD? levels in the cell

and Sirt1 activation [69]. Also before the discovery of

resveratrol as a sirtuin activator, resveratrol was studied as

an estrogen receptor (ER) modulator [70, 71]. Originally,

resveratrol was proposed as a strong ER agonist, but sub-

sequent studies found it did not cause proliferation of

mammary or uterine tissues [72]. A recent study by Nwa-

chukwu et al. [8] shows a co-crystal structure of the ERa
ligand binding domain with resveratrol, and proposes

mechanisms by which resveratrol can mediate selective

downstream effects through ERa. Resveratrol activates

pathway specific effects on ERa by affecting recruitment

of specific co-regulators. Another recent paper from Lee

et al. [73] shows that resveratrol can be a direct activator of

the Ataxia-Telangiectasia Mutated kinase (ATM). They

show that resveratrol can stimulate ATM directly in the

presence of oxidizers in an in vitro activity model. They

also show that resveratrol activates ATM autophosphory-

lation and phosphorylation of substrates, such as p53,

in vitro and in cell lines. However, because resveratrol can

generate reactive oxygen species [74], and ATM is acti-

vated by oxidative stress [75], one cannot rule out the

possibility that the effect of resveratrol on ATM activity in

cell lines may, at least in part, be indirect. It is clear that

resveratrol potentially interacts with a number of molecular

targets both in vitro and in cell lines. Many of these targets

converge on pathways related to metabolism and inflam-

mation that are responsible for the phenotypes of

resveratrol treatment in cells and animals.

Effects of resveratrol in animal models

Lifespan

Inspired by the research on the effects of caloric restriction

and sirtuin genes on lifespan, the effects of resveratrol on

organismal lifespan has been studied in species from yeast

to non-human primates. Resveratrol has been shown to

increase the lifespan of the yeast S. cerevisiae [4], the

nematode C. elegans and the fruit fly D. melanogaster [76].

Lifespan extension has also been shown in the fish N.

furzeri [77], another fish N. guentheri [78], and the bee A.

mellifera [79]. In mammals, resveratrol did not extend the

lifespan of healthy mice [80–82], but partially prevented

premature death of mice fed a high fat diet [35, 80]. In rats,

resveratrol also failed to extend the lifespan of animals on a

normal diet [83]. In non-human primates, no lifespan

studies have been performed with resveratrol. However,

lifespan studies on caloric restriction have provided con-

flicting results [84, 85]. The lifespan studies across species

appear to show that the effects of resveratrol are very

dependent on the specific diet and conditions of the animals

[86]. In mice, it appears that resveratrol is able to extend

their lifespan when they are under metabolic stress. Below,

we will discuss various ways in which resveratrol improves

health span by reducing the effects of the diseases of aging.

Metabolism

The most robust effect that has been seen repeatedly with

resveratrol treatment in vivo is its effect on metabolism.

Resveratrol has been shown to relieve many of the negative

effects of a high-fat diet in mice. As discussed above,

resveratrol increased the lifespan of mice fed a high fat

diet. In the same mice, resveratrol reduced body weight at a

high dose, and reduced insulin resistance at a lower dose

that did not cause reduction in body weight [35, 87]. Later,

it was shown that the weight loss and improvements in the

glucose tolerance test were dependent on the presence of

AMPK [39]. Overexpression of Sirt1 is able to improve

glucose tolerance in mice without changes in body weight

or fat content [19, 88, 89]. With much of the focus of the

resveratrol field on studying how resveratrol could work as

a calorie restriction mimetic, the questions turned to how

resveratrol could produce such profound metabolic bene-

fits. One reproducible effect of resveratrol was an increase

in mitochondrial content (Fig. 1) [6, 35, 39, 87]. Many of

these studies pointed to the ability of resveratrol to up-

regulate the activity of peroxisome proliferator-activated

receptor c co-activator (PGC-1a), a so-called ‘‘master

regulator’’ of mitochondrial biogenesis [90]. PGC-1a
controls the expression of many downstream regulators of

mitochondrial content in the cell, and can lead to switching
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of oxidative fiber types in muscle [91] an effect observed

under resveratrol treatment [87]. In mice, overexpression

of PGC-1a also leads to a decrease in the metabolic dis-

orders that occur during aging [92]. It has been well-

established that Sirt1 can deacetylate and activate PGC-1a
[93]. AMPK activation can lead to increased Sirt1

deacetylation and activation of PGC-1a [94]. Treatment

with resveratrol has been shown to increase both Sirt1 and

PGC-1a activity in mice fed a high-fat diet [6, 39, 87].

Although several papers have shown that resveratrol

treatment leads to increased mitochondrial biogenesis via

Sirt1 deacetylation and activation of PGC-1a, other papers

have produced conflicting results. The first paper to dem-

onstrate an interaction between Sirt1 and PGC-1a actually

demonstrated that overexpression of Sirt1 decreased PGC-

1a activity in PC12 cells [95]. A recent paper from Hi-

gashida et al. [96] showed that this was also true in C2C12

myotubes [96]. They were unable to demonstrate an

increase in mitochondrial biogenesis upon resveratrol

treatment of rats, but could recapitulate the increase in

mitochondrial biogenesis in C2C12 myotubes over-

expressing PGC-1a. This effect was dependent on

activation of AMPK, but not dependent on Sirt1 activity.

Currently, the mechanism by which resveratrol leads to this

increase in PGC-1a activity continues to be under debate in

the literature.

As stated above, many of the downstream effects of

resveratrol on metabolism do not occur in AMPK knockout

mice [39]. The effects of resveratrol on Sirt1 and AMPK

involve a complicated series of interactions. Pathways have

been shown for both Sirt1 to activate AMPK, and for

AMPK to activate Sirt1, complicating the debate over the

true mechanism in vivo [94, 97–99]. Activation of AMPK

leads to an increase in cellular NAD? levels through

stimulation of nicotinamide phosphoribosyltransferase

(NAMPT) activity [97]. Although increased NAD? levels

in vivo have not been shown to directly stimulate Sirt1

activity, NAD? is a necessary cofactor for Sirt1 and

increased NAD? has correlated with increased Sirt1 and

PGC-1a activity [39, 94, 97]. One study demonstrated an

increase in Sirt1 activity by decreasing the consumption of

NAD? by another NAD? utilizing enzyme [100]. Sirt1

could possibly stimulate AMPK activity through the

deacetylation of LKB1, an upstream regulator of AMPK

activity [98, 99]. To further complicate this interplay, Sirt1

stimulation by resveratrol has been shown to be indepen-

dent of AMPK activation [46], and AMPK stimulation by

resveratrol has been shown to be independent of Sirt1

activation [6, 33, 39].

As mentioned above, resveratrol was shown to be a

direct inhibitor of phosphodiesterase activity, increasing

cAMP levels in cells. Amongst the PDE isoforms inhibited

by resveratrol is PDE4, the most abundant PDE in skeletal

muscle [6]. Inhibition of phosphodiesterases leads to an

increase in cAMP levels and downstream activation of the

cAMP effectors PKA and EPAC. In myotubes, it was

shown that treatment with resveratrol stimulated a signal-

ing cascade via cAMP and EPAC that led to the activation

of AMPK and subsequently Sirt1 (Fig. 1). Importantly,

many of the downstream effects of resveratrol were reca-

pitulated by treatment with rolipram, a specific inhibitor of

PDE4 [6]. In fact, several other studies have found meta-

bolic effects due to PDE inhibition or knockout.

Phosphodiesterases are important signaling regulators in

pancreatic b-cells, regulating both Ca2? levels and insulin

secretion [101]. In PDE3B knockout mouse islets, both

glucose and incretin-stimulated insulin secretion are

greater than the secretion in wild-type islets [102]. The

PDE4B knockout mouse also has metabolic phenotypes,

including reduced fat content and serum leptin levels [103].

These previous data on PDE inhibition combined with the

Park et al. study demonstrate that resveratrol may mediate

some of its metabolic effects through the PDE-cAMP-

AMPK pathway.

Price et al. published a study exploring the role that Sirt1

and AMPK play in the downstream effects of resveratrol

using conditional knockout mice. Studies of full-body Sirt1

knockout mice have been challenging because the mice

have limited viability and many developmental defects

[104, 105]. To address these problems, Price et al. [46]

knocked out Sirt1 specifically in adult animals using a

Resveratrol 

PKA/EPAC

LKB1/CaMKKβ

AMPKSirt1

PDE

cAMP

GLP-1

Glucose tolerance

Mitochondrial biogenesis
and fa y acid oxida on

Fig. 1 Schematic of the molecular targets of resveratrol related to

metabolism. Resveratrol potentially activates multiple targets, con-

verging on pathways that lead to mitochondrial biogenesis and fatty

acid oxidation. In the gut (right), where resveratrol concentrations are

likely higher than plasma in animals, resveratrol leads to secretion of

GLP-1 and an improvement in glucose tolerance. Green and blue

arrows represent activation and red bars represent inhibition

Metabolic effects of resveratrol 1477

123



tamoxifen inducible knockout system, avoiding the devel-

opmental defects. The adult conditional knockout mice

appeared largely normal. However, treatment with low

doses of resveratrol led to an increase in mitochondrial

content and function in wild type but not Sirt1 knockout

mice. With the low-dose treatment, AMPK activation

appeared to be dependent on Sirt1, whereas at a higher

dose AMPK activation was Sirt1 independent. Interest-

ingly, a previous study in Sirt1 knockout MEFs showed

that AMPK activation by resveratrol was not Sirt1 depen-

dent [39]. Despite the effects of resveratrol on

mitochondrial biogenesis being Sirt1-dependent in the

conditional knockout mice, there were several systematic

effects in the mice that were Sirt1 independent. After being

fed a high-fat diet, resveratrol improved glucose tolerance

and reduced the amount of hepatic triglycerides in a Sirt1

independent manner [46]. A Sirt1 overexpressing mouse is

also capable of reducing hepatic triglycerides and glucose

intolerance [46], further displaying the complicated rela-

tionship between Sirt1, AMPK and metabolic effects in

mice.

Despite the unclear picture of the direct molecular tar-

gets responsible for the metabolic effects of resveratrol,

many of the effects have become clear in mammals from

rodents to non-human primates. As discussed above, res-

veratrol treatment improves the glucose homeostasis and

insulin sensitivity of mice fed a high-fat diet [35, 39, 46,

87, 106]. Resveratrol has also been shown consistently to

reduce hepatic triglyceride content [46, 107]. Using a

proposed Sirt1 activator, SRT1720, many of these same

effects have been seen in mice fed a high fat diet including

improved glucose tolerance, insulin sensitivity, mitochon-

drial content, and lifespan [108, 109]. In Zucker diabetic

fatty rats, resveratrol lead to improved glucose and insulin

tolerance. Subcutaneous adipose tissue from resveratrol-

treated rats showed increased incorporation of pyruvate

into triglycerides and increased adiponectin secretion. In

subcutaneous and retroperitoneal adipose tissue from res-

veratrol-treated rats, there was an increase in mitochondrial

respiration and cytochrome c oxidase IV protein, showing a

potential increase in mitochondrial biogenesis in adipose

tissue with resveratrol treatment [110]. In rhesus monkeys,

resveratrol added to a high fat/high sugar diet did not

prevent the development of insulin resistance, but was able

to protect against b-cell loss in the pancreatic islets [111].

In visceral fat from rhesus monkeys fed a high fat/high

sugar diet, resveratrol reduced adipocyte size and increased

insulin sensitivity [112]. In Microcebus murinus,

33 months of treatment with resveratrol led to improve-

ments on the homeostatic model assessment-insulin

resistance (HOMA-IR) index and improved glucose toler-

ance [113]. The translation of these effects to human

studies will be discussed below.

Inflammation

Chronic inflammation is increasingly accepted to play a

major role in the diseases of aging [114] including meta-

bolic disorders such as Type 2 diabetes [115]. One of the

reasons that resveratrol has drawn so much attention as an

anti-aging therapeutic is its ability to reduce inflammation.

Even before studies showing resveratrol inhibition of

COX2 or activation of sirtuins, resveratrol was shown to

inhibit 5-lipoxygenase and cyclooxygenase products from

rat peritoneal polymorphonuclear leukocytes [116]. Res-

veratrol treatment has also been shown to inhibit signaling

through interleukin-10 and interferon-c [117–119]. In

human peripheral blood mononuclear cells, resveratrol has

been shown to inhibit IL-17 production [120]. One

important mediator of resveratrol’s effect on inflammation

is NF-jB. Activation of Sirt1 by resveratrol treatment can

lead to downstream inhibition of NF-jB by the direct

deacetylation of the p65 subunit [121]. Resveratrol has

been shown to reduce NF-jB activation in leukocytes

[122]. Sirt1 activation can also modulate several stress

response transcription factors including hypoxia-inducible

factors and FOXO1, FOXO3, and FOXO4 [123–127]. In

rhesus monkeys, resveratrol reduced inflammation in the

white adipose tissue of animals fed a high fat/high sugar

diet [112]. In a mouse model of Crohn’s disease, resvera-

trol reduced inflammatory cytokines [128]. It is clear that

the anti-inflammatory properties of resveratrol can aid in its

benefits to the health of aging animals.

Cardiovascular disease

The beneficial effects of resveratrol on the cardiovascular

system have been reviewed extensively elsewhere [123,

129–131]. These effects are multifactorial, affecting vari-

ous components of cardiovascular disease. In vascular

function, resveratrol has been shown to promote vasodila-

tion through effects on the expression and activity of

endothelial nitric oxide synthase (eNOS) [132–136]. It has

been proposed that resveratrol exerts these effects on eNOS

via a direct Sirt1 deacetylation [137] or by transcriptional

activation downstream of Sirt1 [138], and knockdown of

Sirt1 expression blocked the induction of eNOS expression

by resveratrol [139, 140]. AMPK is also capable of acti-

vating eNOS activity via a direct phosphorylation [141],

and one group has shown that inhibition of AMPK blocks

the effect of resveratrol on vasodilation in aortic rings

[135]. There is also evidence that resveratrol can cause

vasodilation by inhibiting vasoconstriction by angiotensin

II [142] and its receptor [143].

Resveratrol has also been shown to have an effect on

blood pressure in various model systems. In several rat

models of hypertension, chronic treatment with resveratrol
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decreased blood pressure [142, 144–148]. In some other rat

model systems, resveratrol has not had an effect on blood

pressure [149–152]. Recent data has reaffirmed that res-

veratrol can lower blood pressure in the spontaneously

hypertensive rat model of hypertension, and that this effect

coincides with the activation of AMPK both in vitro and

in vivo [153]. The beneficial effects of resveratrol on car-

diac hypertrophy also coincide with the activation of

AMPK [153, 154]. Resveratrol has also been shown to

lower blood pressure in a porcine model of hypertension

[155]. Most recently, resveratrol has been shown to reduce

the amount of arterial wall inflammation in high fat/high

sugar fed rhesus monkeys [156].

Resveratrol likely mediates many of its cardioprotective

effects through its ability to reduce oxidative damage and

inflammation. Resveratrol is known to be a direct antiox-

idant [157], which was an early theory for how it mediated

cardioprotection. Resveratrol is also capable of inducing

the expression of many antioxidant enzymes including

superoxide dismutase, glutathione peroxidase, heme oxy-

genase, and catalase [158–163]. The induction of these

antioxidant genes may be mediated by nuclear factor ery-

throid 2- related factor 2 (Nrf2) [164]. In addition,

resveratrol can down-regulate NADPH-oxidase leading to

decreased production of reactive oxygen species [165–

167]. Oxidative stress is known to be an important mech-

anism for cardiovascular disease during aging [168, 169].

Resveratrol is capable of reducing mitochondrial oxidative

stress in the cardiovascular system [170] and has also been

shown to reduce the oxidation of LDL [171]. In the car-

diovascular system, resveratrol shows many of the anti-

inflammatory effects discussed in the previous section.

Treatment with resveratrol reduces the expression of NF-

jB, IL-6 and IL-8, and TNF-a [134, 172, 173]. Resveratrol

also has benefits in ischemia–reperfusion injuries [130,

174], possibly assisting in the protective effects during

myocardial infarction.

Neuroprotection

Resveratrol has been shown to have some benefit in animal

models of several neurodegenerative diseases. In Alzhei-

mer’s disease, resveratrol can reduce the accumulation of

amyloid b (Ab) peptides in various cell line models [175],

and the accumulation of Ab plaques [176]. An AMPK-

mediated pathway was shown to be involved in the

reduction of Ab levels in cell-based models including in

primary mouse neurons [177]. There is also evidence for a

PDE-Sirt1-mediated pathway affecting the production of

Ab in cell lines [178]. Recently, studies have found that

resveratrol can reduce microglial activation in Alzheimer’s

model via a NF-jB/STAT/TLR based anti-inflammatory

effect [179]. The combination of resveratrol’s antioxidant,

anti-inflammatory, and amyloid lowering effects could

combine to make it a potential treatment for Alzheimer’s

disease.

Resveratrol has also shown some promise in other

neurodegenerative diseases including Parkinson’s disease

[180, 181], Huntington’s disease [182], and multiple scle-

rosis [183]. One major mechanism of neuroprotection may

be resveratrol’s ability to prevent axonal degeneration

through blocking the association between Sirt1 and its

inhibitor DBC1 [184]. A recent paper showed that resve-

ratrol could extend the lifespan of a C. elegans model of

adult onset neuronal lipofuscinosis (ANCL). Mutation of

the dnj-14 gene in C. elegans leads to a decrease in lifespan

for the nematodes. Resveratrol was able to rescue the

lifespan reduction in the dnj-14 mutants. This rescue was

shown to be sirtuin independent, as deletion of the sir-2.1

gene did not remove the lifespan extending effect of res-

veratrol on the dnj-14. The lifespan extension effect of

resveratrol was however, recapitulated by the PDE4

inhibitor rolipram, suggesting that neuroprotection in this

model by resveratrol may be mediated by a PDE-cAMP

pathway [62].

Resveratrol in humans

When resveratrol began to be studied in the late 1990s, its

presence in red wine led some to hypothesize that resve-

ratrol could explain the ‘‘French paradox,’’ that those who

consume a diet high in fatty foods and wine seem to have a

lower incidence of coronary heart disease [185]. Although

this idea was enticing in the early days of resveratrol

research, it became clear that the amounts of resveratrol

consumed in the diet would not lead to sufficient concen-

trations of resveratrol in the body to achieve the effects

seen in cellular models of disease [186]. In fact, a recent

epidemiological study has shown that urinary resveratrol

concentrations solely from dietary consumption are not

correlated with a reduction in any cardiovascular disease or

cancer incidence [187]. When consumed, resveratrol

becomes modified by glucuronidation and sulfation [188]

thereby reducing its bioavailability. It is unlikely that res-

veratrol reaches serum concentrations above 1 lM from

dietary consumption, or 10 lM from direct resveratrol

supplement consumption [189]. It is possible that despite

the low serum concentrations of resveratrol, the lipophil-

icity of the compound allows it to have higher

concentrations within the relevant cells and tissues for its

effects. Also, some tissues express glucuronidases capable

of removing these groups from resveratrol and enhancing

the intracellular concentration [190]. The glucose-lowering

effect of resveratrol may in part be occurring in the gut,

where its concentrations are likely much higher than in
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serum. Glucose-lowering incretin glucagon-like peptide-1

(GLP-1), which is secreted by the gut, has numerous

physiological effects that make it an attractive type 2 dia-

betes therapy: increased insulin secretion and insulin

sensitivity and decreased glucagon secretion and appetite

[191]. Indeed, GLP-1 receptor agonists or GLP-1 mimetics

are one of the most widely utilized classes of drugs used to

treat type-2 diabetes. One possible mechanism by which

resveratrol lowers serum glucose levels may be via GLP-1.

Secretion of GLP-1 is inhibited by PDE4D [192], and both

resveratrol [6, 193] and the PDE4 inhibitor rolipram [6,

192] increase GLP-1 production (Fig. 1).

With the enticing health benefits in animal models,

several clinical trials have focused on the use of resveratrol

supplements to treat cardiovascular or metabolic diseases.

In a series of Phase I dose escalation studies of resveratrol,

it has been shown that resveratrol is generally safe in

healthy subjects [194–197]. Higher doses were correlated

with mild adverse effects such as diarrhea and nausea

[195], but doses at 1 g/day or lower presented minimal side

effects [195, 197]. Given the safety profile of resveratrol

supplementation, clinical studies began to explore the

effects of resveratrol on health. Brasnyo et al. [198] per-

formed a trial with type 2 diabetic male patients receiving

10 mg resveratrol or a placebo for one month. The resve-

ratrol treated group had improved HOMA-IR index,

reduced glucose spike after a meal, and an increased

pAKT:AKT ratio in platelets. Another trial treated 34

metabolic syndrome patients in a 6-month crossover trial

receiving 100 mg of a resveratrol supplement [199]. The

patients saw an improvement in flow-mediated dilation at

the end of the 3-month treatment period with resveratrol

that disappeared after removal of the treatment. Blood

pressure and metabolic parameters tested were not affected.

Type 2 diabetics receiving 250 mg resveratrol daily for

3 months had significantly improved fasting blood glucose,

blood pressure, triglycerides and LDL cholesterol in

another trial, compared to a control group receiving only

standard of care for diabetes [200]. To examine the effects

in cardiovascular disease, Tome-Carneiro et al. [201, 202]

performed a trial with 75 subjects using placebo, grape

extract lacking resveratrol, or grape extract supplemented

with 8 mg of resveratrol over a full year. This trial

explored the use of resveratrol treatment for pre-clinical

benefits in subjects at high risk of cardiovascular disease.

The trial found reduced ApoB and oxidized LDL levels in

the resveratrol treated group compared to the no resveratrol

grape extract or placebo groups. There also was a reduction

in reactive oxygen species and the inflammatory markers

CRP, TNF-a and IL-1b. To explore the effects of resve-

ratrol on flow-mediated dilation, Wong et al. [203]

performed a trial with 19 subjects including overweight

men and post-menopausal women with high blood

pressure. After treatment with varying doses of a resvera-

trol capsule or a placebo once per week, the investigators

found that resveratrol caused an acute increase in flow-

mediated dilation 45 min after treatment. Similarly, a trial

of 40 patients after a myocardial infarction treated with

10 mg resveratrol for 3 months found some improvement

in flow-mediated dilation and a decrease in LDL levels

[204]. Two small trials exploring the effects of resveratrol

on metabolic parameters found that resveratrol improved

post-meal glucose levels in patients with impaired glucose

tolerance, and reduced markers of oxidative stress in

healthy subjects [205, 206]. The most recent small clinical

trial reported that resveratrol had no positive effects on

non-alcoholic fatty liver disease subjects given 3 g resve-

ratrol daily for 8 weeks [207].

Three recent small controlled trials examined closely the

effects of resveratrol on metabolic parameters in healthy

and obese humans. Timmers et al. [208] treated 11 obese

male patients with 150 mg/day resveratrol for 30 days in a

crossover trial. During the treatment period, resveratrol

improved insulin sensitivity on the HOMA-IR index,

reduced systolic blood pressure, and reduced intrahepatic

lipid content. A reduction in circulating levels of glucose

and alanine aminotransferase was found in addition to

markers of inflammation such as TNF-a. Microarray

samples from muscle biopsies showed that resveratrol

treatment up-regulated genes from pathways involved in

mitochondrial oxidative phosphorylation, in line with the

studies done in rodents. The muscle biopsies also showed

that there was an increase in AMPK activity, Sirt1 level,

and PGC-1a level in tissues from the resveratrol-treated

group. A follow-up from this study examining adipose

tissues from the subjects was recently reported [209]. This

study found that the resveratrol treated subjects had lower

mean adipocyte size and upregulation of expression of

genes involved in adipogenesis [209]. Two subsequent

studies found no effect of resveratrol on metabolic

parameters. Yoshino et al. [210] performed a double-blind

placebo-controlled trial with 12-week resveratrol supple-

mentation of 75 mg/day. The patients in this study were 29

non-obese postmenopausal women. This trial found no

effect of resveratrol on glucose homeostasis, insulin resis-

tance, blood pressure, or markers of inflammation. A subset

of the trial subjects had a skeletal muscle and adipose tissue

biopsy taken. The biopsy results showed no increase in the

expression of Sirt1, AMPK, NAMPT, or PGC-1a. Another

randomized double-blinded placebo-controlled trial was

done on 24 healthy obese male subjects. After treatment

with 500 mg resveratrol daily for 4 weeks resveratrol-

treated subjects showed no change in HOMA-IR, HbA1c,

cholesterol or triglyceride levels, blood pressure, or body

fat composition. They also showed no changes in inflam-

matory markers or liver function. Similar to the Yoshino
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et al. trial, a hyperinsulinemic euglycemic clamp study

showed no significant changes with resveratrol treatment.

This trial also found that resveratrol treatment did not

affect levels of phosphorylated AMPK, or expression lev-

els of PGC-1a, GLUT4, TNFa, or NF-jB [211].

Overall, the results of clinical trials in human present a

very cloudy picture. Despite positive results for metabolic

parameters and cardiovascular function in some trials,

several other trials have shown no effects of resveratrol.

These differences could potentially be due to the widely

varying doses selected in the trials. The trials have also

explored a diverse set of subjects with different clinical

backgrounds, including differing degrees of impairment in

glucose homeostasis. To better understand the role of res-

veratrol in humans, future trials will need to be well-

designed and include larger patient populations.

Conclusions

As research into the diseases of aging became more

prominent, the allure of caloric restriction and its ability

to extend organismal lifespan increased. Resveratrol first

came to the forefront as a potential chemopreventive

molecule, then re-emerged as a potential calorie restric-

tion mimetic, and continues to be studied for therapeutic

potential in diseases ranging from cancer to metabolic

disease to neurodegeneration. In laboratory models of

these diseases of aging, resveratrol has shown an

impressive ability to alleviate the symptoms. Unfortu-

nately, like many other drugs that work well in animal

models, resveratrol has not translated well to treatment in

humans. Resveratrol has a low bioavailability in humans,

as it is rapidly glucuronidated and sulfated as it is cleared

through the body. So far, clinical trials have shown mixed

results for metabolic and cardiovascular diseases. Unfor-

tunately, since resveratrol is a natural substance it is not

easily patent-protected, so it is unlikely any company will

undertake the investment to perform any large-scale

clinical trials that would clarify the therapeutic potential

of resveratrol in human disease. Instead, work continues

to focus on the molecular mechanisms underlying the

beneficial effects of resveratrol in disease models. Two

potential targets have come to the forefront as mediators

of the metabolic effects of resveratrol: phosphodiester-

ases, whose inhibition leads to AMPK activation and

Sirt1, which is thought to be activated directly. Although

there is ongoing discussion in the scientific literature

about what the direct target of resveratrol is, there is clear

consensus that resveratrol’s metabolic action converges

on pathways involving AMPK, Sirt1, and PGC-1a. With

the lack of results for resveratrol in humans, many have

shifted focus to other compounds that more specifically

target these pathways. There have been a series of

structurally distinct sirtuin activating compounds devel-

oped by Sirtris that have been explored for therapeutic

potential in diseases of aging [32, 212]. More recently,

evidence is mounting that increasing NAD? levels in cells

may work as an alternative pathway to increase sirtuin

activity and improve health [213–216]. As that work is

ongoing, we and other groups have begun to explore the

potential of phosphodiesterase inhibitors, and more spe-

cifically PDE4 inhibitors to treat metabolic diseases.

Indeed, the PDE4 inhibitor roflumilast, which is already

an FDA-approved treatment for COPD, has been shown

to lower blood glucose in individuals with Type 2 dia-

betes [217]. Other studies have also shown that PDE4

inhibition can recapitulate the effects of resveratrol in

diabetic nephropathy and chemoprevention [63, 64]. In

the future, work will continue to find molecules that can

reproduce the therapeutic potential of resveratrol with a

more favorable pharmaceutical profile.
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