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Abstract The mouse is often used as a model for

understanding human placentation and offers multiple

advantages, including the ability to manipulate gene

expression in specific compartments and to derive tropho-

blast stem cells, which can be maintained or differentiated

in vitro. Nevertheless, there are numerous differences

between the mouse and human placentas, only the least of

which are structural. This review aims to compare mouse

and human placentation, with a focus on signaling path-

ways involved in trophoblast lineage-specific

differentiation.

Keywords Placenta � Trophoblast stem cells �
Cytotrophoblast � Syncytiotrophoblast �
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Labyrinth � Chorionic villi

Abbreviations

CTB Cytotrophoblast

EGF Epidermal growth factor

EPC Ectoplacental cone

EVT Extravillous trophoblast

FAK Focal adhesion kinase

FGF Fibroblast growth factor

HGF Hepatocyte growth factor

HIF Hypoxia-inducible factor

ICM Inner cell mass

MEF Mouse embryonic fibroblast

PI3K Phosphoinositide 3-kinase

PKA Protein kinase A

STB Syncytiotrophoblast

TE Trophectoderm

TGC Trophoblast giant cell

TS Trophoblast stem (cells)

Introduction

The human placenta is a very poorly understood organ, and

as a result, so is our understanding of numerous pregnancy-

related conditions, including pre-eclampsia and fetal

growth restriction [1]. Many of these conditions are caused

by abnormalities early during human pregnancy and pla-

centation, which are challenging to study. For these and

other reasons, mouse models have been utilized exten-

sively, giving us comprehensive knowledge regarding the

role of specific genes in the formation and function of the

placenta and the associated contribution to fetal growth and

development. At times, however, knowledge of processes

in the mouse has been extended to the human system

without additional studies. This review seeks to compare

mouse and human placentation based on studies done using

relevant models, including in vitro (trophoblast stem-cell

based) and in vivo experiments in the mouse, and in vitro

experiments using validated human trophoblast cell culture

systems. The uniqueness of this review is its particular

focus on specific trophoblast subtypes in placentas of both

F. Soncin � M. M. Parast (&)

Department of Pathology, Sanford Consortium for Regenerative

Medicine, University of California San Diego, 9500 Gilman

Drive, MC 0695, La Jolla, CA 92093, USA

e-mail: mparast@ucsd.edu

F. Soncin

e-mail: fsoncin@ucsd.edu

D. Natale

Department of Reproductive Medicine, University of California

San Diego, 2A03 Leichtag Biomedical Research Building,

9500 Gilman Drive, MC 0674, La Jolla, CA 92093, USA

e-mail: dnatale@ucsd.edu

Cell. Mol. Life Sci. (2015) 72:1291–1302

DOI 10.1007/s00018-014-1794-x Cellular and Molecular Life Sciences

123



species and comparison of the signaling pathways required

for the maintenance and/or differentiation of each lineage

subtype.

Placental structure and terminology

Both mouse and human have a hemochorial placenta,

where maternal blood comes in direct contact with fetal-

derived trophoblast. However, certain anatomical differ-

ences exist. In the mouse labyrinth, three layers of

trophoblast separate maternal and fetal blood, while in the

chorionic villi of the human placenta, there are at first two,

and, later in gestation, functionally one layer of trophoblast

separating maternal and fetal blood (Fig. 1). Similarly, the

trophoblast cells anchoring the placenta to the uterine wall

in the mouse (parietal giant cells and glycogen tropho-

blasts) are not nearly as invasive as the equivalent cells

(extravillous trophoblast/EVT) in human, where these cells

invade up to one-third of the thickness of the uterine wall,

including the maternal arterioles [2].

At the cellular level, the two species appear more

equivalent, with syncytiotrophoblast formation arising

from cell fusion in the interhemal compartment (the laby-

rinth in the mouse and chorionic villi in human), and

hyperdiploid trophoblast cells forming in the placental

implantation site of both species (Fig. 1). The latter arise

through a process called endoreduplication (DNA synthesis

without nuclear division) in the mouse, leading to ‘‘giant’’

nuclei (hence the name ‘‘trophoblast giant cells’’) [3], while

the process leading to hyperdiploidy in human EVT is less

clearly defined [4].

Early events and the trophoblast stem cell niche

Both mouse and human placentation start with the forma-

tion of trophectoderm (TE) in the pre-implantation

blastocyst (Fig. 2). TE specification in the mouse is marked

by expression of CDX2 and exclusion of inner cell mass

(ICM)-specific OCT4 (Pou5f1) [5]. In vitro, using a com-

bination of mouse embryonic fibroblasts (MEFs) as a

feeder layer and FGF4, trophoblast stem (TS) cell lines

have been established from both mouse blastocysts and

extraembryonic ectoderm, which recapitulate the above

gene expression profile [6]. Mouse TS cells require a

combination of FGF4 and TGFb signaling to proliferate

and maintain their undifferentiated state, while withdrawal

of these factors leads to terminal differentiation [6–8].

Similar attempts have so far failed to yield human TS cells,

raising doubts about the existence of these cells in the

human pre-implantation blastocyst [9]. In fact, unlike the

mouse embryo, where the post-implantation period is

characterized by expansion of proliferative TS cells in the

extraembryonic ectoderm [10], the early post-implantation

human embryo (days 10–12 post-coitum) is characterized

by formation of highly invasive trophoblasts, which help

the embryo burrow into the endometrium [2, 11]. Only

after this point in time does the mononuclear cytotropho-

blast begin to proliferate to form the cytotrophoblastic

shell. This and other data have led to the proposal that, in

human, TS cells may, in fact, not exist in the placenta until

the post-implantation period (on and after day 13 post-

coitum), where co-expression of the ELF5 and CDX2 in a

subgroup of cytotrophoblast (CTB) may in fact point to

such a niche [12]. Another suggestion of a human TS cell

niche is the Ki67? cells in the proximal trophoblast cell

column. In fact, in the context of a first trimester explant,

FGF4 and activin, the growth factors that contribute to

mouse TS cell maintenance, have each been shown to

expand the CTB layer, although activin also induces some

markers of EVT [13, 14]. Finally, the chorionic mesen-

chyme has also been suggested as a TS cell niche in the

human placenta, though whether these cells are truly

multipotent trophoblast remains to be confirmed [15].

Whether these, or other compartments, constitute a stem

cell niche in the placenta, remains to be elucidated. The

lack of knowledge about human TS cell markers, combined

with our inability to maintain primary human CTB in

culture, remain major obstacles to progress in this field.

Trophoblast of the interhemal region

Morphogenesis

The interhemal region of the placenta (labyrinth in the

mouse and chorionic villi in human) is composed of

cells whose main function is to perform nutrient and gas

exchange between the maternal and fetal blood. In both

species, this compartment is composed of extraembry-

onic ectoderm (chorion)-derived trophoblast and

extraembryonic mesoderm (allantois)-derived fetal mes-

enchyme and blood vessels. However, the union of these

two structures (referred to as chorio-allantoic attachment

in rodents) is temporally distinct in the two species. In

mice, chorionic morphogenesis and branching are not

initiated until after embryonic day 8.5 (E8.5), when the

allantoic mesoderm attaches to the basal surface of the

chorion [16]; however, in the human placenta, villus

formation and branching initiate early (day 13 post-coi-

tum) and are followed by infiltration of allantoic blood

vessels, which is not concluded until the end of the first

trimester [2].

1292 F. Soncin et al.

123



Gcm1: The master regulator of the interhemal

compartment

In mouse, the major transcription factor to initiate laby-

rinthine formation is the product of the Gcm1 gene [17].

Gcm1 is involved both in branching morphogenesis and in

syncytiotrophoblast formation through regulation of

syncytin genes, involved in cell–cell fusion [17–19].

Gcm1 is initially expressed in the basal layer of the

chorion, which comes into direct contact with the allan-

tois [19]; following completion of branching

morphogenesis, it is co-expressed with Synb and Cebpa in

the syncytiotrophoblast layer II (SynT-II) of the labyrinth

[19]. In vitro, Gcm1 promotes G1-to-G0 transition of

mouse TS cells, in preparation for fusion and syncytio-

trophoblast formation [20]. The expression pattern of

GCM1 in the human placenta is more complex, with the

RNA expressed in both villous CTB and cell column

trophoblasts, and the protein detected in the nuclei of a

subgroup of villous CTB and few cells in the distal cell

column [21]; nevertheless, similar to its function in the

mouse placenta, it appears to promote cell cycle exit and

syncytiotrophoblast formation in chorionic villi [22], also

through regulation of syncytins [23].

namuHesuoM
Trophoblast Stem / Labyrinthine Progenitor Cell Cytotrophoblast (CTB) 

Spongiotrophoblast Cell Column Trophoblast 
Parietal Giant Cell Extravillous Trophoblast (EVT) 

Glycogen Trophoblast 
Spiral Artery Giant Cell Endovascular EVT 

A B

C

Fig. 1 Mouse and human placenta. Although both mouse and human

placentas are hemochorial, some structural differences can be

observed. a Mouse placenta: the labyrinth is the functional structure

where gas/nutrient exchange occurs. Maternal blood is separated from

fetal blood by three layers of trophoblasts (SynT-I, SynT-II and

sinusoidal giant cells). The supportive junctional zone contains

spongiotrophoblast, which give rise to trophoblast giant cells (TGCs)

and glycogen trophoblasts. Both TGCs and glycogen trophoblasts are

only modestly invasive, compared to the human extravillous tropho-

blasts (EVTs). b Human placenta: the functional structure for gas/

nutrient exchange is the chorionic villus. In the first trimester,

maternal blood is separated from the fetal blood by two layers of

trophoblast, the syncytiotrophoblast (STB) and the cytotrophoblast

(CTB) stem cells. Later in gestation, the continuous CTB layer

disappears and only sparse CTBs are visible at term. The EVTs arise

from the trophoblast cell column, and are highly invasive, penetrating

up to one-third of the thickness of the uterus. Endovascular EVTs

extensively remodel maternal spiral arterioles to ensure correct blood

supply to the growing embryo. c Table listing functionally and/or

structurally analogous mouse and human trophoblast subtypes

Mouse and human trophoblast differentiation 1293
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Progenitor trophoblasts in the interhemal compartment

Most recently, two groups have described labyrinthine

trophoblast ‘‘progenitor’’ cells in the mouse placenta.

Hughes et al. [24] have identified LY6E as a surface

marker of the SYNA? cells in the upper portion of the

chorion as early as E8.5. When sorted out of mouse TS

cultures, LY6E? cells expressed higher levels of SYNA

and, when plated in differentiation media, readily formed

multinucleated syncytiotrophoblast [24]. Ueno et al. [25]

have identified EPCAMhi BrdU? cell clusters during lab-

yrinthine morphogenesis between E9.5 and E14.5. During

co-culture with VCAM1-expressing OP9 cells, these EP-

CAMhi cells efficiently formed multinucleated

syncytiotrophoblast, and expressed markers of SynT-I,

SynT-II and sinusoidal giant cells, suggesting they are

progenitors of all three layers of the labyrinth [25]. In

addition, Ueno et al. have suggested that HGF signaling

through its receptor, c-Met, is a pathway through which

these EPCAMhi labyrinthine progenitor cells are main-

tained in vivo. c-Met knockout mice showed labyrinthine

hypoplasia, intra-uterine growth restriction, and embryonic

lethality by E14.5; specifically, EPCAMhi cells were

present in similar numbers at E9.5, but were significantly

decreased from E10.5 onward [25]. Similar trophoblast

progenitors have not been described in the human chori-

onic villi, and HGF signaling has only been implicated in

promotion of trophoblast motility, signaling through

phosphatidylinositol 3-kinase (PI3-kinase) (see below)

[26].

Signaling pathways regulating differentiation

of the interhemal trophoblasts

Activin/Nodal/TGFb signaling

One signaling pathway identified as a regulator of labyrinth

growth in the mouse is that of Activin/Nodal. In vitro, in

the absence of FGF4, Activin-A inhibits differentiation of

mouse TS cells into spongiotrophoblast and trophoblast

giant cells (TGC), instead promoting differentiation

towards a labyrinthine cell fate [27]. Interestingly, Activin

is thought to originate from the giant cells, suggesting

paracrine control of differentiation between the distinct

trophoblast layers in vivo [27]. While both Activin and

Nodal utilize similar receptors, studies on transgenic mice

have described Nodal to be the primary player in vivo. In

knockout mice, Nodal produced by the epiblast has been

shown to be required to maintain FGF4 signaling that

supports TS cells early in gestation [28]. After mid-

Fig. 2 Timeline comparison of mouse and human placental devel-

opment. Timeline for both species is calculated from conception, with

assignment of day of observation of the copulation plug as E0.5 in the

mouse, and mid-menstrual cycle (corresponding to time of ovulation

followed by fertilization) as coitus in human. The formation of

blastocyst defines two distinct populations of cells: the inner cell

mass and the outer trophectoderm, at E3.5 in mouse and approxi-

mately day 5 post-coitum in human. Implantation occurs at E4.5 in

mouse and day 7–8 post-coitum in human. In mouse, chorio-allantoic

attachment starts off the formation of the labyrinth around E8.0, with

branching morphogenesis complete by E10.5, the half point through

gestation, although the labyrinth continues to grow in the latter half of

gestation. In human, villous formation starts early, around day 13

post-coitum, and the villi are fully vascularized by the end of the first/

beginning of the second trimester. However, further maturation of

both the stroma and trophoblast continues through the second

trimester. In mouse, the junctional zone and TGCs are also fully

formed by E10.5, although glycogen cells continue to differentiate

and invade the uterus along with specific TGC subtypes. In human,

EVT invasion and remodeling of maternal spiral arterioles are

complete by the end of the first trimester, at which point the chorionic

villi become fully bathed in well-oxygenated maternal blood
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gestation, Nodal is expressed in spongiotrophoblast and its

loss or reduction leads to a smaller labyrinth, as well as

alteration of the spongiotrophoblast and a thickened giant

cell layer [29, 30] (Table 1).

In the context of human trophoblast differentiation,

Activin has been shown to promote both proliferation and

EVT differentiation in first trimester villous explants (see

below) [13], and hCG production and syncytiotrophoblast

differentiation in context of term CTB [31]. The source of

Activin-A is also distinct in human chorionic villi, being

the mesenchymal villous core [32]. Another family mem-

ber, TGFb, also plays a role in human EVT differentiation

(see ‘‘Invasive Trophoblast’’ section below and Table 1).

Conversely, Nodal has been shown to inhibit proliferation

and induce apoptosis in human in vitro trophoblast models,

while it inhibits cell invasion and migration in HTR8 and

first trimester CTB explants [33, 34].

PPARc signaling

Another pathway involves signaling through the nuclear

receptor, peroxisome proliferator-activated receptor

gamma (PPARc). Lack of PPARc in the mouse placenta

leads to embryonic lethality at E10.5, due to placental

abnormalities, including arrest of labyrinth formation [35,

36]. In vitro, PPARc-null mouse TS cells fail to form

syncytiotrophoblast, and are unable to upregulate Gcm1

upon switching to differentiation media [37]. In vitro,

PPARc agonists appear to have similar effects on mouse

and human trophoblast, inhibiting differentiation into tro-

phoblast giant cells in mouse [37] and interfering with

invasion of human EVT [38]. Their effect on syncytiotro-

phoblast differentiation is more subtle, with modest

induction of Gcm1 in mouse TS cells [37] and variable

effects on hCG secretion in human term CTB [39, 40].

The role of oxygen tension and hypoxia-inducible factor

Alterations in oxygen tension, and its main effector path-

way through the hypoxia-inducible factor (HIF) complex,

have also been identified as a modulator of syncytiotro-

phoblast differentiation. Specifically, culture of term

human CTB under low oxygen tension reduces cell–cell

fusion and hCG secretion [41]. In mouse, formation of an

intact HIF complex is required for invasive trophoblast

differentiation (see below); when disrupted, such as in

HIF1b (or Arnt)-null mouse TS cells, the latter differentiate

exclusively into multinucleated syncytiotrophoblast [42].

In wild-type mouse TS cells, culture in 20 % oxygen on a

fibronectin-rich matrix mimics the Arnt-null phenotype,

leading to syncytiotrophoblast formation [43]. Treatment

with the chromatin modifiers, histone deacetylase inhibi-

tors, similarly, promotes differentiation into

syncytiotrophoblast [42, 44], although this particular

pathway appears to be both GCM1- and PPARc-indepen-

dent [44].

Canonical Wnt signaling

In mice, Wnt signaling appears to be required for chorio-

allantoic attachment and labyrinthine development [45].

Specifically, Gcm1 appears to be the main target of

canonical Wnt signaling in mouse placentation as defects

in this pathway are associated with decreased expression of

this transcription factor [45, 46]. More recently, Lu et al.

[47] have provided additional evidence for the role of

canonical Wnt signaling in regulation of Gcm1 expression

in TS cells. In this study, signaling through Fzd5 was

shown to lead to up-regulation of Gcm1 expression and

fusion of trophoblast cells [47]. A similar effect of Wnt/

TCF signaling on GCM1 and syncytialization has been

shown in the human trophoblast cell line, BeWo [46],

although in human, this pathway is better known for its role

in EVT differentiation (see below and Table 1).

Protein kinase A-based signaling

Finally, two other pathways have long been known to

promote CTB differentiation in chorionic villi of the human

placenta: epidermal growth factor (EGF) [48] and hCG

itself [49]. Both act through their specific receptors to

increase intracellular levels of the second messenger cAMP,

thus activating protein kinase A (PKA), and promoting cell

fusion through induction of expression of syncytins [50,

51]. In the mouse, EGF signaling has not been shown to

regulate syncytiotrophoblast formation but rather impli-

cated in mediating differentiation of spongiotrophoblast and

glycogen trophoblast in the junctional zone [52].

Invasive trophoblast

Morphogenesis and subtype-specific markers

in the mouse

In mice, the first invasive trophoblasts arise from the mural

trophectoderm as primary TGCs [53]. Later, the polar

trophectoderm gives rise to the ectoplacental cone, which

further differentiates into the spongiotrophoblast layer; these

regions are characterized by expression of Ascl2 (previously

known as Mash2) and Tpbpa, and are the source of secondary

TGCs [53, 54]. TGCs are polyploid cells, which arise

through a process of endoreduplication, or DNA synthesis

without nuclear division [55, 56]. They secrete multiple

hormones, including placental lactogens and proliferins,

required for maintenance of pregnancy [54]; they also
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secrete metalloproteinases, which facilitate their locally

invasive potential [54]. Unlike their human counterpart (see

below), mouse TGCs have a fairly limited ‘‘invasive’’

potential. In fact, their invasive behavior can be character-

ized as more ‘‘phagocytic’’ than migratory: as mouse TS

cells differentiate into TGC in vitro, they decrease their

membrane protrusive activity, and instead develop highly

organized actin stress fibers, large internal focal adhesions,

and stable cell–cell interactions [57]. Phosphorylation of

focal adhesion kinase (FAK), required for focal adhesion

turnover, also decreases with differentiation into TGC [57].

Four types of TGCs have been characterized based on

expression of placental lactogens Pl1, Pl2, Plf, and Ctsq,

including parietal TGC (Pl1?/Pl2?/Plf?), canal TGC (Plf?/

Pl2?), spiral artery-associated TGC (Plf?), and the sinu-

soidal TGC (Ctsq?/Pl2?) [54]. The latter cells are

considered part of the labyrinth and, unlike the other TGCs,

arise exclusively from Tpbpa- cells [54]. All four subtypes

require expression of the bHLH transcription factor Hand1,

as differentiated Hand1-/- TS cells fail to express any of

these markers [54]. Another group of ‘‘invasive’’ tropho-

blast in the mouse placenta is glycogen trophoblast cells,

which arise from Tpbpa? cells [54]. These cells are char-

acterized by PAS? intracellular content and express the

gap junction protein connexin 31 (GJB3) [3]. Some gly-

cogen cells migrate deep into the maternal decidua where

they are thought to help enhance maternal blood flow [53].

Recently, a report by Mould et al. shed further light on the

development of these trophoblast subtypes [58]. In this

study, the authors showed that glycogen trophoblast as well

as spiral artery and canal TGC subtypes derive from a

specific subpopulation of Tpbpa? cells. These progenitor

cells express Prdm1 (also known as Blimp1) and, through

lineage tracing studies, were shown to be distinct from the

Tpbpa? cells that give rise to spongiotrophoblast and

parietal TGCs [58]. This work further defines the complex

relationship between progenitor and terminally differenti-

ated trophoblast cells.

Morphogenesis and subtype-specific markers in human

In the human placenta, the extravillous trophoblast or

EVTs are the functional equivalent of mouse TGC and

glycogen cells. While there is an initial round of differ-

entiation into highly invasive EVT early following

implantation, the majority of EVT later in gestation arises

from trophoblast cell columns in anchoring villi [2]. In

comparison to mouse, much less is known about EVT

subtypes and markers in the human placenta. Nonetheless,

we know that human EVTs are in fact highly invasive,

invading up to one-third of the myometrial thickness in the

uterus [2]. Functionally, these cells either invade the uter-

ine wall (interstitial EVT) or the maternal spiral arterioles

(endovascular EVT); the latter invade through the arterial

wall and replace maternal endothelial lining in a process

termed vascular remodeling [59]. This process involves

changes in integrin expression, with progression from

integrins a6b4 in villous CTB, to a5b1 in cell column tro-

phoblast, to a1b1 in mature invasive EVT [60]. In addition,

trophoblasts in cell columns also lose their epithelial phe-

notype, decreasing expression of E-cadherin, and gain a

vascular phenotype, acquiring endothelial markers such as

PECAM1 (CD31), VE-cadherin, and MCAM (CD146) [61,

62]. Interestingly, however, E-cadherin expression appears

to be restored in a subset of mature EVT, particularly the

endovascular subtype [63]. In addition, unlike TGCs in the

mouse, FAK phosphorylation is increased upon CTB dif-

ferentiation into EVT, as focal adhesion turnover is

required for enhanced migration of these cells [64]. Finally,

it is important to note that, in contrast to mouse, where

TGCs are the primary producers of hormones such as

placental lactogens, in human, syncytiotrophoblast produce

similar hormones, including hCG and hPL [65, 66]. Human

EVT do produce a hyperglycosylated form of hCG, which

promotes invasion in an autocrine fashion [67–69].

Less is known about the transcription factors that dis-

tinguish between different EVT subtypes. The human

homolog of Mash2, ASCL2, has been shown to be

expressed in trophoblast cell columns and invasive EVT by

in situ hybridization in early gestation human placentas

[70, 71], although whether it is in fact required for EVT

differentiation has yet to be explored. The role of HAND1

in human trophoblast is less clear, as its RNA has been

detected in the trophectoderm of human blastocysts, but not

in samples of first trimester placental tissue or immuno-

purified CTB [72, 73]. Other transcription factors,

including members of the homeobox family and the

nuclear receptor PPARc, are not specific to EVT, as they

are also expressed in villous trophoblast [74]. In fact, as

discussed above, PPARc appears to be required for syn-

cytiotrophoblast differentiation; interestingly, induction of

PPARc has been shown to inhibit differentiation of both

mouse and human invasive trophoblast: in mouse TS cells,

treatment with the PPARc agonist, rosiglitazone, reduced

markers of spongiotrophoblast and TGC [37], while similar

treatment of human first trimester cytotrophoblast inhibited

invasion in a dose-dependent manner [75].

Signaling pathways regulating invasive trophoblast

differentiation

Activin/TGFb signaling

Numerous signaling pathways are known to modulate

differentiation and function of invasive trophoblast

[76] (Table 1). As mentioned above, Activin induces EVT
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differentiation in the human placenta [13], an effect that

contrasts sharply with promotion of mouse TS proliferation

and labyrinthine differentiation (see above). In context of the

first trimester chorionic villi, Activin induced outgrowth of

CTB into the surrounding matrix and induced EVT-associ-

ated markers, including HLA-G and production of matrix

metalloproteinases, MMP-2 and -9 [13]. In contrast to

Activin, TGFb signaling has both anti-proliferative and anti-

invasive activity in human CTB [77–79]; the latter are

mediated through production of tissue inhibitors of

metalloproteinases (TIMPs) and plasminogen activator

inhibitor 1 (PAI-1), which block MMP and urokinase plas-

minogen activator (uPA) activities, respectively [77, 79].

Again, this contrasts with the effect of TGFb on mouse TS

cells, which, similar to Activin, is pro-proliferative [7].

Canonical Wnt signaling

Another signaling pathway, which has been shown to

promote human EVT differentiation, is Wingless/b-catenin

(canonical Wnt). This pathway has been nicely detailed in

a recent review [80], and thus will not be expanded on in

detail here. In short, Wnt3a was shown to stimulate first

trimester CTB to migrate and invade through Matrigel; this

is at least partly mediated through TCF3/4, whose

expression is increased in invading trophoblast, and its

interaction with b-catenin, leading to induction of Wnt/

TCF target genes [81]. In mice, Wnt signaling is dispens-

able for blastocyst development, but is otherwise required

for blastocyst activation and implantation [45]. Neverthe-

less, in contrast to human EVT, DKK1, an inhibitor of

canonical Wnt pathway, has been shown to increase

motility of mouse ectoplacental cone cells, the precursors

to giant cells, in vitro [82]. As described above, Wnt/TCF

signaling also affects development of the interhemal region

in both mouse and human placenta, through its effects on

GCM1 and syncytialization [46].

Notch signaling

Another pathway, which has been shown to play a role

in invasive trophoblast, is Notch signaling. While

numerous Notch receptors and ligands are expressed

throughout the mouse placenta at different gestational

ages [83], most of the work has focused on Notch2,

which is expressed in all TGC subtypes [83, 84]. Con-

ditional deletion of this receptor in the mouse reduced

the size of maternal blood sinuses and placental perfu-

sion, leading to embryonic lethality by E11.5 [84]. The

role of Notch signaling in human EVT differentiation

and invasion is less clear. Similar to the mouse placenta,

multiple Notch receptors (including Notch2) and ligands

are expressed in villous CTB, cell column trophoblast,

and EVT of the human placenta [85]. However, the

effect of Notch inhibition on first trimester CTB invasion

appears to be different in different studies, reducing

Matrigel invasion in one study [84] and promoting pro-

liferation, EVT differentiation, and migration of these

cells in another study [85]. Although the same Notch

inhibitors were used for some of these experiments in

both studies, one major difference was the use of dif-

ferent matrices for culturing and assaying primary human

CTB (Matrigel in Hunkapiller et al. [84] and fibronectin

or collagen I in Haider et al. [85]).

Oxygen tension and the role of hypoxia-inducible factor

Hypoxia and signaling through the hypoxia-inducible factor

have also been shown to modulate invasive trophoblast dif-

ferentiation. As described above, mouse TS cells unable to

form an intact HIF complex fail to differentiate into TGC,

instead differentiating exclusively into syncytiotrophoblast

in vitro [42]. In addition, culture of mouse TS cells in 2 %

oxygen on a fibronectin-rich matrix redirects differentiation

into TGC [43]. In another rodent model, the pregnant rat,

where endovascular trophoblasts are similarly invasive as in

the human placenta, maternal exposure to 11 % oxygen

during mid-gestation (E6.5–E13.5) enhanced uterine vas-

cular remodeling by increasing invasion of endovascular, but

not interstitial, trophoblast [86]. In human, there are some

discrepancies in results from numerous studies. It is known

that early placentation (\8 weeks) occurs under low oxygen

tension (\20 mmHg,\3 % oxygen), and that oxygen levels

rise (to[50 mmHg,[7.5 %) by 12 weeks gestation [87]. In

accordance with these findings, expression of HIF1a, the

subunit of HIF sensitive to hypoxia, drops precipitously after

8 weeks of gestation. During this period, the human placenta

grows rapidly, but much differentiation into EVT and inva-

sion are also taking place [2]. Paradoxically, when compared

to 20 % oxygen, culture of primary first trimester CTB in

2 % oxygen appears to induce proliferation, inhibit integrin-

a1 expression, and reduce invasion [88]. Nevertheless, in the

context of the first trimester explant, the number of cells

expressing HLA-G, a marker of EVT, appears to expand

[89]. Similarly, expression of integrin-a5, a marker of cell

column trophoblasts, which are intermediate in differentia-

tion between CTB and mature EVT, is increased when first

trimester human placental explants are cultured under 3 %

oxygen [90]. Finally, treatment of these explants with

HIF1a-antisense oligonucleotides under 3 % oxygen, pro-

moted a more invasive EVT phenotype, including enhanced

integrin-a1 and gelatinase B expression [90]. These data,

considered in whole, appear to indicate that lower oxygen

tension (generally below 3 % oxygen) promotes differenti-

ation of CTB into an intermediate EVT phenotype,

characterized by expression of HLA-G and integrin-a5,
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while higher oxygen tensions are required for maturation of

this phenotype, including the switch to integrin-a1.

Phosphoinositide 3-kinase-based signaling

Phosphoinositide 3-kinase (PI3K) is a major signaling

pathway, activated downstream of growth factor receptor-

tyrosine kinases as well as G protein-coupled receptors,

and, in turn, activates the serine/threonine kinase, Akt [76].

While it has not been shown to promote differentiation per

se, signaling through PI3K does promote growth factor-

mediated trophoblast migration, a phenotype characteristic

of the EVT lineage. Specifically, HGF and EGF were

found to induce EVT migration, acting through the PI3K

pathway, in two human EVT cell culture models, SGHPL-5

and HTR8/SVneo cells, respectively [26, 91]. In rodents,

PI3K inhibitors have been shown to interfere with

expression of giant-cell-associated genes during differen-

tiation of the rat choriocarcinoma cell line, Rcho-1 [92].

Summary, limitations, and conclusions

In summary, mouse and human placentation do share some

markers and signaling pathways in both the interhemal and

invasive lineages (Table 1). One major limitation, which

should be kept in mind, is the systems available for

assessment of various factors in human trophoblast dif-

ferentiation. In this review, we have focused on data from

first trimester human CTB or explants, which are thought to

be bipotential [14]; clear notation has been made where

data with other cell types (term CTB or human trophoblast

cell lines) are described. It is clear, however, that much

work remains. This will include further comparisons of

signaling pathways using more optimal in vitro systems for

human trophoblast differentiation; one such system may be

human pluripotent stem cells, following treatment with

BMP4 [93–95]. In addition, identification of additional

human trophoblast lineage-specific markers is required to

better understand trophoblast function and placental

abnormalities associated with pregnancy complications.

Finally, while the mouse continues to be invaluable as a

genetic tool for the study of placental development, the

importance of comparative studies using human placental

tissues and isolated CTB must not be disregarded, partic-

ularly when drawing conclusions about the roles of

analogous genes or pathways with regard to human pla-

cental disorders.
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8. Kubaczka C, Senner C, Araúzo-Bravo M, Sharma N, Kuckenberg
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