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Abstract Disorders and diseases of the gastrointestinal

system encompass a wide array of pathogenic mechanisms

as a result of genetic, infectious, neoplastic, and inflam-

matory conditions. Inflammatory diseases in general are

rising in incidence and are emerging clinical problems in

gastroenterology and hepatology. Hemeoxygenase-1 (HO-

1) is a stress-inducible enzyme that has been shown to

confer protection in various organ-system models. Its

downstream effectors, carbon monoxide and biliverdin

have also been shown to offer these beneficial effects.

Many studies suggest that induction of HO-1 expression in

gastrointestinal tissues and cells plays a critical role in

cytoprotection and resolving inflammation as well as tissue

injury. In this review, we examine the protective role of

HO-1 and its downstream effectors in modulating inflam-

matory diseases of the upper (esophagus and stomach) and

lower (small and large intestine) gastrointestinal tract, the

liver, and the pancreas. Cytoprotective, anti-inflammatory,

anti-proliferative, antioxidant, and anti-apoptotic activities

of HO-1 make it a promising if not ideal therapeutic target

for inflammatory diseases of the gastrointestinal system.
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Introduction

The biological importance of hemeoxygenase (HO) origi-

nates from its function as the rate-limiting enzyme in heme

catabolism. Heme is oxidatively cleaved by the HO system

into equimolar quantities of carbon monoxide (CO), bili-

verdin, and Fe2? [1]; and in a coupled reaction biliverdin is

rapidly converted into bilirubin via biliverdin reductase [2].

Three distinctive HO isoforms have been identified and

although they catalyze the same biochemical reaction they

are the products of different genes with different expres-

sion patterns in cells and tissues [3]. HO-3 (33 kDa) is a

poor heme catalyst that has been found only in rat brain

with no activity reported in humans [4, 5]; HO-2 (36 kDa)

which contributes to cell homeostasis is constitutively

expressed in many tissues including neuronal and testicular

tissues [6, 7]; whereas, HO-1 (32 kDa), also known as heat

shock protein-32 (Hsp32), is stress-inducible and expressed

at a relatively low level in most tissues. In addition to its

substrate heme, HO-1 is upregulated by heavy metals [8]

and stimuli that cause oxidative stress such as heat shock

[9], ischemia, hemorrhagic shock [10], reactive oxygen

species (ROS) [11], radiation, and hypoxia [12]. Many

reports have also shown that inflammatory mediators such

IL-1, TNF-a, LPS, ROS and reactive nitrogen species

(RNS) are able to upregulate HO-1 in vitro [13, 14].

HO-1 induction is usually associated with a protective

response [15]; classically the beneficial nature of HO is

attributed to its ability of removing free heme, which has

cytotoxic effects [5]. However, new evidence indicates that

although HO-1 as such does not directly catalyze an anti-

oxidant reaction, its upregulation, and the production of

CO and biliverdin, influences many biological events

linked to a cytoprotective and anti-inflammatory response

against oxidative stress [16–18]. For instance CO is
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believed to act as a signaling molecule in a similar manner

as nitric oxide (NO), with anti-inflammatory and anti-

apoptotic properties [19, 20]. The anti-inflammatory

actions of CO have been proposed to be mediated through

p38 mitogen-activated protein kinase (MAPK) pathway

[19, 21]. Biliverdin and bilirubin are reducing agents with

antioxidant properties and have the ability to efficiently

scavenge proxyl radicals and inhibit lipid peroxidation

[22]. Although biliverdin is rapidly converted to bilirubin

and has a short half-life, in a recycling process bilirubin as

a potent antioxidant oxidizes itself back to biliverdin [23,

24]. Treatment with biliverdin decrease mRNA expression

of inducible nitric oxide synthase (iNOS), cyclooxygenase

2, and the inflammatory cytokines IL-6 and IL-1b, as well

as decrease neutrophil infiltration into the jejunal muscu-

laris in rat model of small intestinal transplants [25].

Moreover, biliverdin is an endogenous ligand of the aryl

hydrocarbon receptor (AhR), which upon activation pro-

tects against experimental acute pancreatitis by induction

of IL-22 [26]. Similarly, Fe2? is involved in gene regula-

tion including that of NO synthase (NOS). Although

potentially toxic, Fe2? leads to the opening of channels that

export Fe2? from the cells inducing the upregulation of

ferritin, an iron storing protein which protects cells against

oxidant damage by oxidation of low-density lipoproteins

[27, 28].

The beneficial effects of HO-1 have been demonstrated

in HO-1-deficient mice models which have atypical innate

and adaptive immune responses with a general pro-

inflammatory response displaying a T helper 1 (Th1)-type

cytokine profile (IL-1, IFN-c, TNF-a, IL-6) [29]. HO-1-

deficient mice develop chronic inflammation, and are vul-

nerable to endotoxin sepsis [30] and have defective

expression of interferon-b [31]. In addition, ablation of the

HO-1 gene results in alteration of the endothelial mono-

layer making it more susceptible to apoptosis and

denudation from the extracellular matrix [32, 33]. On the

other hand, HO-2-deficient mice have intact immune reg-

ulation but have defects in their central and autonomic

nervous system [34]. Many of the clinical hallmarks

observed in HO-1-deficient mice are consistent with those

found in HO-1-deficient patients. HO-1 deficiency in both

in human and mice is either lethal before birth or results in

death at early age; survivors present with anemia, eryth-

rocyte fragmentation and iron deposition [35]. In humans

HO-1 deficiency is characterized by hemolysis, dissemi-

nated intravascular coagulation, nephritis and asplenia [35,

36]. In the first human reported case of HO-1 deficiency an

infant, born to parents without clinical manifestation each

of whom had a partial deletion of the HO-1 gene in dif-

ferent alleles, had severe inadequate HO-1 expression with

affected phenotype that proved to be fatal [35]. The

afflicted patient had marked growth and developmental

retardation associated with erythrocyte fragmentation and

abnormal coagulation/fibrinolysis system since early age

[35]. In a different case of HO-1 deficiency, the charac-

teristic symptoms manifested later in life, but the clinical

outcome was the same as in the first patient [36].

HO-1 regulation

Currently the transcriptional regulation of the HO-1 gene is

attributed to two transcription factors: nuclear erythroid

2-related factor-2 (Nrf2) and the heme-binding protein

Bach1 [37, 38]. Nrf2 plays a crucial role in cytoprotection

and contains an activation domain that initiates HO-1

transcription, whereas Bach1 represses HO-1 transcription

by competing with Nrf2 [37, 38]. Other molecules are also

associated with HO-1 upregulation; for instance, MAPK

signaling is involved in HO-1 induction [39] and the

phosphatidylinositol-3 kinase (PI3K)/Akt signaling modu-

lates HO-1 activity by phosphorylation of Ser-188 [40]. It

was also shown that the anti-inflammatory cytokine IL-10

induces HO-1 expression via a p38 MAPK-dependent

pathway [21]. Upregulation of HO-1 in turn amplifies the

effects of IL-10. In activated macrophages, HO-1 and CO

mediate IL-10 inhibition of iNOS expression and NO

production [21]. In addition, HO-1 and IL-10 work in

conjunction to suppress the expression of the pro-inflam-

matory cytokine TNF-a [21]. The suppressive effect of IL-

10 on TNF-a production was reversible with zinc proto-

porphyrin (ZnPP), an HO-1 inhibitor [21].

The regulation of HO-1 response to an inflammatory

stimuli is further demonstrated via its association with an

HO-1 gene promoter microsatellite (GT) (n) dinucleotide

repeat polymorphism [41] and a single nucleotide poly-

morphism (SNP) A(-413)T in the promoter [42, 43]. In

humans the GT length polymorphism in the HO-1 promoter

is associated with the strength of HO-1 response to a given

stimulus. Individuals with short GT repeats are reported to

have a lower risk of necrotizing acute pancreatitis [44],

chronic pulmonary emphysema [45], rheumatoid arthritis

[46], restenosis after balloon angioplasty [47], coronary

artery [48], and other diseases [41]. In addition to the (GT)

(n) polymorphism, the A(-413)T SNP has been identified

as a functionally relevant variation of the HO-1 gene; even

more important for HO-1 promoter activity than the (GT)n

polymorphism [42, 43]. The A(-413)T genotype of HO-1 is

associated with an increased incidence of hypertension in

women [42] and reduced the incidence of ischemic heart

disease [43], possibly due to the high expression of HO-1.

HO-1 expression

At the cellular level, HO-1 is highly expressed in Kupffer

cells in the liver [49], spleen macrophages [50] and
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dendritic cells [51]. HO-1 upregulation in these cells in

response to LPS attenuates the expression of various pro-

inflammatory genes [52, 53]. Likewise, pharmacological

induction of HO-1 in dendritic cells alters their maturation

state and interaction with other cells [51, 54]. For instance

HO-1 expression in dendritic cells is essential for the

function of T cells influencing the proliferation of both

effector and regulatory CD4 T cells [55, 56]. Accumulating

evidence shows that HO-1 is involved in multiple functions

of macrophages including infiltration, differentiation and

polarization. HO-1 induction is essential for monocyte/

macrophage early infiltration to damaged tissues. Induction

of HO-1 by hemin is associated with upregulation of che-

mokines (MCP-1/MIP-1a) and recruitment of HO-1?

monocyte/macrophages into the pancreas [57]. HO-1

expression is increased during myeloid progenitor cell dif-

ferentiation, and is critical for myeloid cells differentiation

into macrophages [58]. In addition, upregulation of HO-1

contributes to alternative activation of macrophage that

plays a critical role in anti-inflammation and tissue repair

[59]. At a tissue level HO-1 is constitutively expressed in

the liver, gastric, intestinal, and colonic mucosa [60–62].

Expression of HO-1 is increased during inflammation and

gastrointestinal injury such as in gastric ulcers [63], radia-

tion enteritis [64], inflammatory bowel disease [65–67], and

liver fibrosis [68].

In this review, we provide an overview of the protective

roles of HO-1 in diseases of the upper (stomach and

esophagus) and lower (small and large intestine) gastroin-

testinal tract, the pancreas and the liver.

HO-1 and diseases of the esophagus and stomach

It is suggested that HO-1 and CO may play a role in the

maintenance of proper function of the lower esophageal

sphincter (LES) [69, 70]. Whenever the LES is dysfunc-

tional due to weakness or improper relaxation, the contents

of the stomach rise up into the esophagus, leading to reflux

of gastroduodenal contents and subsequent gastroduodenal

reflux disease and/or esophagitis [71]. CO is believed to

play a role as a peripheral messenger due to its relaxant

effect on the circular LES muscle [70]. The expression of

CO in the LES [69, 70] is linked to HO-1 activity since CO

production was blocked with the use of HO-1 inhibitor

ZnPP [70]. Reflux of duodenal juice was found to be

necessary to induce the oxidative damage leading to HO-1

upregulation in rats that underwent esophagoduodenal

anastomosis (EDA); a model for esophagitis due to duo-

denoesophageal reflux into the distal esophagus [72].

Users of non-steroidal anti-inflammatory drugs

(NSAID) have a greater risk of developing esophagitis,

esophageal and gastric ulcers [73]. The beneficial effect of

HO-1 expression on esophageal and gastric ulcers has also

been demonstrated in models of NSAIDs such as indo-

methacin- and ketoprofen-mediated injuries [74–76]. In

an indomethacin-induced gastric ulcer model there was

increased tissue expression of IL-6 and TNF-a [74]. HO-1

induction with cobalt protoporphyrin (CoPP) ameliorated

the disease by reducing gastric inflammation, tissue neu-

trophil activation and the expression of pro-inflammatory

cytokines [74]. Furthermore, in this model HO-1 upreg-

ulation, via activation of Nrf2, was found to protect the

gastric mucosa by inhibiting apoptosis [75]. Conversely,

HO inhibitor tin mesoporphyrin (SnMP) resulted in

exacerbation of gastric lesions and increased apoptosis

[75]. In ketoprofen-induced peptic ulcer catechin, a die-

tary polyphenol antioxidant, was protective against

epithelial cell injury by inducing the expression of HO-1

via modulation of Nfr2 and inhibition of oxidative dam-

age [76].

Numerous studies have shown that the cytoprotective

effects observed by many pharmacological agents used

in upper gastric diseases such as, polaprezinc [77], eu-

patilin [78] and lansoprazole [79] may be in part

mediated via HO-1 upregulation. In cultured esophageal

epithelial cells, there was a dose- and time-dependent

expression of HO-1 in response to eupatilin in vitro and

in esophageal epithelium of rats in vivo [80]. Eupatilin-

induced HO-1 expression in the cultured esophageal

epithelial cells was mediated by nuclear translocation of

Nrf2 and by ERKs and PI3K/Akt signaling [80]. In

addition, eupatilin prevented cytotoxic action of

indomethacin.

HO-1 induction has also been reported to have a bene-

ficial effect in diabetic gastroparesis, a condition with

delayed gastric emptying due to complications of diabetes

mellitus. In diabetic gastroparesis there was a decrease in

HO-1? CD206? macrophages and an increase in oxidative

stress that was associated with low expression of the

receptor tyrosine kinase KIT in interstitial cells of Cajal

(ICC) resulting in delayed gastric emptying [78, 81]. In a

non-obese diabetic (NOD) model of diabetic gastroparesis,

hemin treatment protected ICC by decreasing reactive

oxygen species and restoring KIT expression [82]. In

addition, hemin treatment led to repopulation of HO-1?

gastric CD206? macrophages and a phenotypic switch

from pro-inflammatory M1 macrophages to wound healing

inducer M2 macrophages [59]. The increased number of

HO-1? expressing gastric macrophages was associated

with normalization of gastric emptying [59]. Thus, HO-1

expressing CD206? macrophages appear to play an

important role in preventing delayed gastric emptying in

diabetic mice.
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HO-1 and diseases of the small and large intestine

The expression of HO-1 in intestinal tissue is localized in

mononuclear cells of the submucosal layer [83] and epi-

thelial cells in the human duodenal mucosa [60, 61].

Although HO-1 is constitutively expressed in intestinal

epithelial cells, HO-1 inducers appear to ameliorate

mucosal injury by decreasing infiltrating inflammatory

cells such as neutrophils and lymphocytes [65]. HO-1

induction has been shown to be beneficial in models of

small intestinal injury. For instance, in indomethacin-

mediated injury, pharmacologic induction of HO-1 by

lansoprazole [84, 85] and sulforafane [86] resulted in

inhibition of intestinal injury, which was reversed by HO-1

inhibition with tin protoporphyrin (SnPP) [84].

CO mediates many of the biological actions of HO-1;

CO releasing molecules (CO-RMs) were shown to lessen

intestinal injury during postoperative ileus [39], indo-

methacin injury [85] and sepsis [87]. Postoperative Ileus is

the transient impairment of bowel motility usually as a

result of a major abdominal surgery. Pretreatment with CO-

RMs reduced the development of postoperative ileus in

mice [39]. The protective effects were mediated in part via

induction of HO-1 expression and activity through modu-

lation of the MAPK signaling pathway (p38 and ERK1/2)

[39]. In addition, CO-RMs reduced oxidative stress and

suppressed the inflammatory response associated with

intestinal manipulation [39]. The beneficial effect was

abrogated by chromium mesoporphyrin (CrMP), an HO-1

inhibitor, which aggravated the intestinal injury [39].

Similarly in an indomethacin-induced small intestinal

ulceration, pretreatment with CO-RMs reduced the severity

of injury by inhibition of iNOS expression through

upregulation of HO-1/CO in the mucosa [85]. Likewise,

this protective effect was reversible with the use of HO-1

inhibitor SnPP [85]. Furthermore, the beneficial role of

HO-1 and CO during sepsis, a complex syndrome charac-

terized by both infection and a systemic inflammatory

response, was demonstrated with the use of CO-RMs [87].

Administration of CO-RMs 6 h after sepsis onset decreased

bacterial counts, increased bacterial phagocytosis and

reduced mortality in HO-1-deficient mice highlighting the

importance of CO as a protective downstream effector of

HO-1 [87].

Ischemia/reperfusion injury

Ischemia/reperfusion (I/R) injury of the gut occurs fre-

quently due to interruption and reintroduction of blood

supply; it has been shown that induction of HO-1 has anti-

inflammatory and cytoprotective effects in I/R-mediated

small intestinal injuries [88–90]. Administration of CoPP

before intestinal I/R induces HO-1 and reduces I/R injury

[91]. Other agents such as glutamine, a major fuel for en-

terocytes, protect the intestine from I/R injury by inducing

the expression of HO-1 in the intestinal mucosa of villous

epithelial cells, crypts, and muscular layers and by inhib-

iting inflammatory cytokines [92]. In a similar manner,

pyrrolidine dithiocarbamate improves the outcome of I/R

injury by inducing HO-1 production and enhancing per-

fusion in the microvasculature [93]. Ablation of the HO-1

gene in mice exacerbates I/R injury [94, 95], conversely

mice that overexpress HO-1 due to Bach1 deficiency have

a damped response to I/R-mediated injury [96]. In addition,

the products of HO-1 activity have also been found to

ameliorate intestinal I/R injury. CO inhalation at a low

concentration attenuates the remote intestinal inflammatory

response caused by hindlimb I/R [97, 98]; and protects

against I/R injury of intestinal grafts during prolonged cold

preservation [99]. Similarly, biliverdin and bilirubin act as

potent cytoprotective agents during I/R [98, 100].

HO-1 expression has also been found to be increased in

patients with ischemic colitis a condition in which there is

inadequate blood flow to the large intestine due to narrowed or

blocked blood vessels leading to colonic inflammation [101].

Inflammatory bowel disease

Inflammatory bowel disease (IBD) comprises Crohn’s

disease and ulcerative colitis. While ulcerative colitis is

limited to the colon and rectum, Crohn’s disease can affect

any part of the gastrointestinal tract from the mouth to the

anus, although over a third of Crohn’s disease patients have

disease involving the terminal ileum [102]. HO-1 mRNA

and protein are increased in inflamed colonic mucosa of

IBD patients [65, 67] and in colitis mouse models [66, 67,

103]. Upregulation of HO-1 in the large intestine by hemin

[66, 104], heme [105] and CoPP [65, 106] results in a better

outcome in experimental colitis. HO-1 expression and

activity were increased in the damaged colonic tissue fol-

lowing the acute model of 2,4,6-trinitrobenzene sulfonic

acid (TNBS) colitis and it is believed that the protective

effect of HO-1 could be the result of radical scavenging

and inhibition of NO production and iNOS expression

since HO-1 induction by hemin lowered iNOs mRNA and

protein expression in the affected colon [66]. Similarly,

HO-1 induction with CoPP was protective in the dextran

sulfate sodium (DSS) mouse model of colitis [65]. On the

contrary, the use of HO-1 inhibitors reversed the beneficial

effects of HO-1 induction. For instance, in the TNBS

colitis model, administration of the HO inhibitor SnMP

resulted in reduction of HO-1 activity and increased colo-

nic damage [66]. In the same way, treatment with the HO

inhibitor Znpp enhanced intestinal inflammation and

increased the disease severity score in the DSS colitis

model [103]. Furthermore, mice deficient of the HO-1
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transcription factor Nrf2, have low HO-1 expression and

are more susceptible to developing colitis in the DSS

model [107]. In contrast, mice deficient of the Bach1

transcription factor have higher expression of HO-1 mRNA

and protein in colonic mucosa and have significantly

attenuated colonic inflammation after induction of TNBS

colitis [108]. The expression of HO-1 from Bach1-deficient

mice was localized mainly in F4/80? and CD11b? mac-

rophages which presented M2-type markers such as, Fizz-

1, Ym1, and MRC1 [108]. Further experiments indicated

that transfer of these macrophages into wild-type mice,

inhibited TNBS-induced colitis [108].

The therapeutic benefits of HO-1 in colitis can be attrib-

uted to the effect of HO-1 activation: biliverdin [106] and CO

[109, 110]. In a DSS-induced acute colitis model, adminis-

tration of biliverdin has a protective effect comparable with

the one seen with treatment of HO-1 inducer CoPP [106]. In

addition, in the chronic Th1-mediated IL-10-deficient mice

model of colitis, CO at a low concentration diminishes

chronic intestinal inflammation by inducing HO-1 expression

[109]. It was shown that CO acts upon macrophages by

altering IFN-c signaling and by inhibiting activation of IL-12

p40 and iNOS after LPS/IFN-c stimulation through selective

inhibition of IRF-8 [109]. Similarly, the beneficial effects of

CO and HO-1 induction were also demonstrated in a Th2-

mediated TCRa-deficient mice model of colitis by increasing

the expression levels of the anti-inflammatory cytokines IL-

10 and IL-22 [110]. HO-1 upregulation has also been

attributed to the efficacy of current IBD therapies such as

5-amino salicylic acid (5-ASA) [111]. Intracolonic admin-

istration of 5-ASA in a TNBS model of colitis increased HO-

1 expression levels, reduced colonic injury, decreased mye-

loperoxidase activity and TNF-a levels and these effects

were abolished with HO-1 inhibitor ZnPP [111].

Necrotizing enterocolitis

HO-1 activity has also been linked to the development of

necrotizing enterocolitis (NEC) [112], a condition in pre-

mature or low weight infants that mostly affects the distal

ileum and less commonly the right colon or upper small

bowel [113]. Mice heterozygous for the HO-1 gene (HO-

1Het) have abnormal intestinal morphology, are predisposed

to intestinal injury and enhanced apoptosis [112]. Due to the

fact that HO-1Het mice have deficient upregulation of HO-1,

they have exaggerated inflammatory response observed by

increased expression of IL-1b, P-selectin, and MMP2,

resulting in higher incidence and onset of NEC [112].

Radiation enteritis

Radiation enteritis is a condition in which there is mucosal

damage to the lining of the intestine with infiltration of

activated inflammatory cells during or after ionizing

radiotherapy to the abdomen, pelvis, or rectum [114]. HO-1

induction by glutamine protects against abdominal radia-

tion-induced damage to the intestinal tissues in a rat model

by decreasing myeloperoxidase (MPO) and caspase-3

activity, and malondialdehyde (MDA) levels which leads

to reduction of tissue inflammation and suppression of

apoptosis [115]. HO-1 inhibition by ZnPP in irradiated rats

worsened the intestinal damage [115]. In addition, in a rat

model of abdominal radiation it was proposed that the

protective effect of octreotide (OCT), the synthetic ana-

logue of somatostatin, against radiation-induced intestinal

damage [116] was in part mediated by modification of the

inflammatory response and induction of HO-1 expression

[117].

HO-1 and diseases of the pancreas

Pancreatitis is an inflammatory disease that is clinically

categorized into acute and chronic. Acute pancreatitis (AP)

is one of the most frequent gastrointestinal causes of hos-

pital admission in the United States. AP ranges from mild

transient self-limited inflammatory reaction to severe high-

mortality disease state with multiple organ dysfunction

syndrome (MODS) [118]. Chronic pancreatitis (CP),

although lower in incidence, significantly reduces patients’

quality of life [119]. CP is characterized by inflammation,

fibrosis, exocrine and/or endocrine insufficiency as well as

chronic abdominal pain [120]. CP can be driven by

recurrent acute pancreatitis and is a risk factor for the

development of pancreatic ductal adenocarcinoma (PDAC)

[121]. Gallstone and excessive alcohol use are the most

common causes of AP. In addition to alcohol, genetics,

obesity and smoking have been identified as important

independent risk factors for pancreatitis [119]. However,

the current therapeutic options in the treatment of both AP

and CP are limited to supportive care and active therapies

that can alter outcome and natural cause of these diseases

are urgently needed. Several independent groups have

shown that HO-1 activation and its downstream effectors

(CO and biliverdin) have the ability to ameliorate experi-

mental AP [26, 122, 123].

Hemeoxygenase-1 is upregulated both in animal models

of AP [124] and hospitalized AP patients [125]. HO-1 is

induced in both mild and severe experimental AP induced

by cerulein and feeding a choline-deficient diet (CDD),

respectively. Intraperitoneal hemin administration dramat-

ically increases peritoneal and pancreas macrophages that

overexpress HO-1 and was responsible for the beneficial

therapeutic effect of hemin [126]. Pilot and proof-of-con-

cept study in patients hospitalized with AP demonstrated

that HO-1 was upregulated in peripheral blood
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mononuclear cells (PBMCs), primarily in monocytes,

during the course of pancreatitis and decreased signifi-

cantly upon recovery [125]. These findings showed an

association between reversible monocyte HO-1 upregula-

tion and clinical improvement of AP. Furthermore, the

beneficial effect of Panhematin (FDA-approved hemin

formulation) was demonstrated in established experimental

AP, supporting a potential use of hemin in clinical trial for

pancreatitis in the future [127]. More recently, HO-1-based

gene therapy (adenoviral transfer of HO-1) showed bene-

ficial effects in experimental severe AP [128]. Most of the

studies demonstrate that HO-1 based therapy to be medi-

ated mainly via macrophages. HO-1 is induced in

macrophages as early as 2 h after intraperitoneal and

intravenous hemin or Panhematin administration. Recruit-

ment of monocytes/macrophages into the inflamed

pancreas likely starts resolution phase of pancreatitis by

decreasing pro-inflammatory cytokines (TNFa, IL-6 and

IL-1b) and by increasing anti-inflammatory cytokines such

as IL-10 [126, 127]. In this manner, HO-1 contributes to a

shift of macrophage polarization from classically (M1) to

alternative activated (M2) phenotype, which plays a critical

role in anti-inflammation and tissue repair [129]. Interest-

ingly, recently it was reported that the length of the GT

repeats in the HO-1 gene promoter polymorphism is

associated with the development of severe and necrotizing

AP [44]. Patients with SS (GT) (n) genotype have higher

HO-1 expression and may be protected against the devel-

opment of severe pancreatic injury and fatal outcomes once

the inflammatory response is initiated [44].

A wide array of evidence suggests that protective

properties of HO-1 can also be mediated via its effector

molecules—carbon monoxide (CO) and biliverdin (BV)

[26, 122, 123]. CO deliverance is achieved mainly through

inhalation and CO-RMs. CO or CO-RMs have been shown

to protect against experimental AP via inhibition of NF-jB

signaling [130]. Recently, our group showed that CO-RMs

ameliorate experimental AP via inhibition of macrophage

TLR4 expression and activation. To avoid potential side

effects of systemic CO or CO-RMs, a novel therapeutic

approach was taken by showing therapeutic potential of

CORM-primed monocytes adoptive transfer in experi-

mental AP [123]. Biliverdin is another product of HO-1

activation with promising future clinical use in AP. In a

recent report, biliverdin attenuated experimental AP

through activation of the aryl hydrocarbon receptor (AhR)/

IL-22 signaling pathway [26].

Furthermore, specific induction of HO-1 might also be

applicable for treatment of chronic pancreatitis. Pancreatic

stellate cells (PSCs) play a cardinal role during pancreatic

fibrosis development [131]. Therefore, the suppression of

PSCs growth represents a therapeutic option for the treat-

ment of pancreatic fibrosis. In addition, it was shown that

HO-1 induction by curcumin inhibited pancreatic stellate

cell proliferation [132]. These finding have been extended

in a more recent report, in which PSCs proliferation was

inhibited by CORM2 via activation of p38 MAPK/HO-1

pathway, indicating a therapeutic potential of CO carriers

in the treatment of pancreatic fibrosis [133]. Although

in vitro data implicate a potential influence of HO-1 on

pathogenesis of CP, the function of HO-1 or its therapeutic

use in development of CP still needs to be further con-

firmed by in vivo experimental and clinical studies, as the

role of HO-1 ? macrophages in CP remains unknown.

HO-1 and diseases of the liver

Liver damage due to I/R injury occurs often during shock

and surgical procedures such as liver resection or trans-

plantation. The use of CoPP, an HO-1 inducer, or gene

therapy with a recombinant adenovirus encoding HO-1

cDNA can prevent severe I/R in a steatotic rat liver model

of ex vivo cold I/R injury [134]. The protective effect of

HO-1 was abrogated after administration of the HO-1

inhibitor ZnPP [134]. Similarly, in a mouse model of

segmental hepatic I/R the administration of CoPP prior to

the I/R protects the liver from hepatic parenchymal and

apoptotic injury via a NF-jB pathway and induction of

endoplasmic reticulum stress transcriptional C/EBP

homologous protein (CHOP) [135]. It was also found that

remote ischemic preconditioning (RIPC) protects against

warm liver I/R injury via HO-1 upregulation [136]. In this

model HO-1 induction by hemin increased autophagy via a

p38-MAPK-mediated pathway, whereas HO-1 inhibition

by ZnPP resulted in hepatic damage or cell death [136].

Similarly, HO-1 upregulation in the liver in response to

sepsis or LPS stimulation limits hepatocyte death and

protects against liver damage via autophagy [137]. This

was confirmed with HO-1-deficient mice or pharmacologic

inhibition of HO-1 by SnPP in which HO-1 deficiency

resulted in interruption of autophagic signaling resulting in

hepatic injury and apoptosis [137].

Orthotopic liver transplantation (OLT) is used as treat-

ment for end-stage liver diseases [138]; however, I/R to the

graft leads to allograft rejection a condition mediated by

apoptosis via the CD95/FasL (CD95L) pathway [139]. In a

rat model of OLT it was demonstrated that HO-1 overex-

pression after local adenoviral gene therapy impedes liver

graft rejection by prevention of CD95L-mediated apopto-

sis, prolongs the allogeneic OLT survival and inhibits Th-1

type cytokines via the downstream CO signaling pathway

[140]. Likewise, the expression of HO-1 in human liver

transplants was correlated to I/R injury and graft function

[141]. In a study that investigated the levels of HO-1 in

human livers before and after transplantation, human livers
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that initially had low HO-1 levels and increased HO-1

expression further had less injury and better hepatobiliary

function than those with initially high HO-1 expression.

Thus an increase in HO-1 during transplantation is more

protective than high HO-1 expression pre-transplantation

[141]. In a clinical study of OLT, graft survival at 1 year

was significantly better when the donor had the single

nucleotide polymorphism A(-413)T genotype compared to

TT-genotype corresponding to high and low HO-1

expression, respectively [142]. Graft loss due to primary

dysfunction occurred more frequently in TT-genotype

compared to A-receivers [142]. Recipients of a liver with

TT-genotype had significantly higher serum transaminases

after transplantation and lower hepatic HO-1 mRNA levels

compared to the A-allele livers [142].

Hemeoxygenase-1 is also beneficial in liver fibrosis, a

condition caused by activation of hepatic stellate cells

(HSCs) resulting in a continuous wound healing response

accompanied by inflammation and oxidative stress [143].

The severity of carbon tetrachloride (CCl4)-induced

micronodular fibrosis was reduced using adenovirus-med-

iated gene transfer where HSCs were targeted to

overexpress HO-1 [68]. HO-1 overexpression in HSCs

controls the fibrogenic activities associated with CCl4-

induced recurrent liver injury by impairing the proliferative

ability of HSCs and reducing the transcript levels of type 1

collagen and transforming growth factor b1 [68].

HO-1 is also protective in models of immune- and

alcohol-mediated liver injury [139, 144]. The immunologic

cascade leading to liver damage can be studied with

apoptotic liver damage models [145]. Upregulation of HO-

1 by CoPP or adenoviral gene transfer protected mice from

apoptotic liver damage induced by anti-CD95 antibody

(ab) or D-galactosamine in combination with either anti-

CD3 ab, LPS or TNF-a; whereas, HO-1 inhibition by SnPP

abrogated the protective effect [144]. HO-1 mediated liver

protection by reducing caspase-3 activation [144]. In

addition, it was demonstrated that CO provided either as a

gas, methylene chloride, or CO-RMs, contributed to pre-

vention of apoptotic liver injury in vivo [144]. CO in

cooperation with biliverdin prolongs survival and reduces

the expression of Th-1 inflammatory cytokines TNF-a and

IFN-c in immune-mediated liver injury [139]. Alcoholic

liver disease (ALD) is characterized by a wide spectrum of

liver pathology including steatosis and cirrhosis [146]. HO-

1 induction in human primary hepatocytes by hemin and

quercetin, a flavonoid with potent hepatoprotective effects,

protects from ethanol-induced oxidative damage via the

MAPK/Nrf2 pathway [147]. HO-1 inhibition by ZnPP or

MAPK signaling transduction inhibitor(s) not only signif-

icantly blocked the protection of quercetin, but also

promoted ethanol-induced cytotoxicity [147]. Furthermore,

it was determined that heme cleavage and CO release

contributed to the protective effect through dose-dependent

inhibition of ethanol-induced cytochrome P450 2E1 (CYP

2E1) activity and hepatotoxicity [148].

Potential therapeutic challenges

Despite the array of evidence supporting the beneficial

effects of HO-1 upregulation in diverse animal models of

diseases of the gastrointestinal tract; the inability to induce

or block HO-1 upregulation and activity in humans by

genetic or pharmacological means under similar conditions

still remains a challenge. The beneficial effect of HO-1

upregulation has been proven in animal models with HO-1

inhibitors such as the metalloporphyrins (SnPP, SnMP and

ZnPP), which exacerbate disease state. Nevertheless, there

is not enough data to indicate that this is the case in

humans. The data available on the use of metalloporphyrins

in humans is on clinical studies that sought to inhibit HO-1

activity to treat excessive neonatal hyperbilirubinemia

[149]. A comprehensive review on metalloporphyrins

clinical studies by Schulz et al. [149] reports transient

erythema and photosensitization as common side effects;

however, there are no reports suggesting that gastrointes-

tinal disorders manifest after HO-1 inhibition. The lack of

attestation, by means of HO-1 inhibitors, that HO-1

upregulation is beneficial in the outcome of human disor-

ders of the GI tract remains an area of further investigation.

However, recent data showing HO-1 polymorphism asso-

ciation with disease or disease severity lend support to the

potential protective roles of HO-1 in humans. The upreg-

ulation of HO-1 protein and activity in humans has been

demonstrated in a clinical study using intravenous hemin

[150]. In the first reported human study, hemin which is

normally used for the treatment of diseases involving

porphyrin metabolism was able to induce HO-1 protein

concentration and activity in healthy volunteers [150]. The

increase in HO-1 expression did not increase venous car-

boxyhemoglobin concentrations or induce significant

changes in hematological, biochemical or coagulation

parameters and resulted in minimal adverse side effects

such a headaches and vomiting reported in two out of the

ten subjects [150]. This study suggests that HO-1 upregu-

lation in humans is possible, yet a more detailed study

assessing a dose response followed by hemin treatment is

necessary due to the involvement of HO-1 in a myriad of

pathways. The modulation of HO-1 expression offers

potential as a therapy for various human diseases but at the

same time there are many impending side effects due to

acute or chronic induction of HO-1, heme and the products

of heme degradation. For instance, free heme can activate

the inflammatory cascade [151] and biliverdin/bilirubin

and CO can be toxic at high levels in tissues. Biliverdin
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which is rapidly converted to bilirubin is neurotoxic in

newborns resulting in kernicterus [152] and CO can affect

hemostasis by having both anticoagulant and procoagulant

functions [153]. Thus, CO’s potential effects on coagula-

tion are an important consideration for gastrointestinal

diseases that are associated with vascular complication; for

example, venous or arterial thromboembolism are both

well-recognized extraintestinal complications in IBD

[154]. Thus, an extensive assessment of the possible

adverse effects should be carefully evaluated in order to

determine the beneficial effects of HO-1 upregulation or its

downstream effectors as therapy.

Conclusion

The HO-1 system plays an important role in many different

pathways and its upregulation on different cell types is

associated with the modulation of inflammatory diseases of

the gastrointestinal tract (Fig. 1). It is well established that

HO-1 prevents oxidative stress by removal of excess heme;

in addition, HO-1 and heme degradation products work

synergistically or in conjunction to modulate and dampen

inflammatory and cytotoxic responses. The data obtained in

recent years have started to elucidate the mechanisms by

which HO-1 protects the gastrointestinal tract from

inflammation and oxidative injury. Therefore, the regula-

tion of HO-1 by pharmacological means, at the gene or

cellular level offers a potential new therapeutic target for

inflammatory gastrointestinal diseases. Although the data

in favor of this idea is compelling, HO-1 mode of action

requires further investigation particularly in humans. Most

of the studies supporting the protective role of HO-1 have

been performed in animal models, thus a better under-

standing of HO-1 activity and regulation in human studies

will likely allow efficient translation of the protective roles

of HO-1 and bring forth potential HO-1 therapeutic targets

for clinical use in gastrointestinal diseases.
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