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Abstract Parkinson’s disease (PD) is the second most

common neurodegenerative disorder, leading to a variety

of motor and non-motor symptoms. Interestingly, non-

motor symptoms often appear a decade or more before the

first signs of motor symptoms. Some of these non-motor

symptoms are remarkably similar to those observed in

cases of impaired neurogenesis and several PD-related

genes have been shown to play a role in embryonic or adult

neurogenesis. Indeed, animal models deficient in Nurr1,

Pitx3, SNCA and PINK1 display deregulated embryonic

neurogenesis and LRRK2 and VPS35 have been implicated

in neuronal development-related processes such as Wnt/b-

catenin signaling and neurite outgrowth. Moreover, adult

neurogenesis is affected in both PD patients and PD animal

models and is regulated by dopamine and dopaminergic

(DA) receptors, by chronic neuroinflammation, such as that

observed in PD, and by differential expression of wild-type

or mutant forms of PD-related genes. Indeed, an increasing

number of in vivo studies demonstrate a role for SNCA and

LRRK2 in adult neurogenesis and in the generation and

maintenance of DA neurons. Finally, the roles of PD-

related genes, SNCA, LRRK2, VPS35, Parkin, PINK1 and

DJ-1 have been studied in NSCs, progenitor cells and

induced pluripotent stem cells, demonstrating a role for

some of these genes in stem/progenitor cell proliferation

and maintenance. Together, these studies strongly suggest

a link between deregulated neurogenesis and the onset and

progression of PD and present strong evidence that, in

addition to a neurodegenerative disorder, PD can also be

regarded as a developmental disorder.
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Abbreviations

6-OHDA 6-Hydroxydopamine

aPKC Atypical protein kinase C

DA Dopaminergic

DG Dentate gyrus

DKO Double knockout

dNB Drosophila neuroblasts

ESC Embryonic stem cell

iPSC Induced pluripotent stem cell

KD Knockdown

KO Knockout

LRRK2 Leucine-rich repeat kinase 2

MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NB Neuroblast

NF-jB Nuclear factor-kappaB

NPC Neural progenitor cell

NSC Neural stem cell

OB Olfactory bulb

PCNA Proliferating cell nuclear antigen

PD Parkinson’s disease

PINK1 PTEN-induced putative kinase 1

RMS Rostral migratory stream

SN Substantia nigra

SNpc Substantia nigra pars compacta

SNCA a-Synuclein

SGZ Subgranular zone

SVZ Subventricular zone

TH Tyrosine hydroxylase
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VPS35 Vacuolar protein sorting 35

WT Wild type

Introduction

Parkinson’s disease (PD), first described in 1817 by James

Parkinson [1], is the second most common neurodegener-

ative disease after Alzheimer’s disease and the first most

common motor neurodegenerative disease, affecting

approximately 2 % of the population aged 60 years and

older [2, 3]. The disease is characterized by its locomotor

phenotypes, which include resting tremors, difficulty ini-

tiating movement, postural instability, bradykinesia

and rigidity as well as the formation of intracytoplasmic

inclusions or protein aggregates called Lewy bodies, con-

taining insoluble a-synuclein (SNCA) protein. Several

non-motor symptoms of PD have also been described,

including anhedonia [4–8], depression [9], anxiety [10],

olfactory deficits [11–13], sleep disturbances [14, 15] and

cognitive dysfunction [16–18]. These non-motor symptoms

often precede the prototypical motor symptoms of PD by

years or even decades [19, 20]. The PD-associated motor

symptoms primarily result from the degeneration of DA

neurons in the substantia nigra pars compacta (SNpc),

although degeneration has also been observed in the stri-

atum, hippocampus, and neocortex [21]. Interestingly,

changes in DA innervation and DA concentration in the

striatum can occur 20–30 years prior to the onset of any

motor symptoms [22, 23].

Over 90 % of all PD cases appear to occur sporadically

and most of them are idiopathic cases. Most plausibly,

these cases arise from multiple factors acting simulta-

neously, including genetic susceptibility, environmental

factors and, most importantly, age. Familial variants of

PD result from genetic mutations leading to either auto-

somal dominant forms of PD, such as those caused by

mutations in the SNCA, LRRK2, VPS35 or GBA gene, or

autosomal recessive forms of PD, such as those caused by

mutations in the PINK1, Parkin or DJ-1 gene. Several

other genes have been described to confer an increased

susceptibility to PD, including EIF4G1, ATP13A2,

PLA2G6, FBXO7, DNAJC6, DNAJC13, SYNJ1, MAPT,

Pitx3, Nurr1 and UCHL1. Although familial variants of

PD account for up to only 10 % of all cases [24, 25], an

induced pluripotent stem cells (iPSC)-based study has

recently suggested that even in idiopathic cases of PD, the

increased susceptibility of DA neurons is probably enco-

ded in the genome [26]. Moreover, sporadic and genetic

forms of PD have comparable motor phenotypes, imply-

ing that they share common neurodegenerative

mechanisms [27].

No matter what the etiology, in PD, more than 50 % of

SN neurons degenerate before the onset of motor symp-

toms and many of the non-motor symptoms of PD precede

the occurrence of motor symptoms by years or even dec-

ades [19, 28–30]. Some of the prominent non-motor

symptoms described during the premotor phase of PD such

as hyposmia, depression and anxiety are also phenotypes

observed in models of deregulated neurogenesis [31–34]

and medications and treatments for depression and anxiety

have been shown to increase adult neurogenesis (reviewed

in [35]). Although a causative role for neurogenesis in

depression and anxiety has yet to be demonstrated, it is

likely that hyposmia is caused, at least in part, by dereg-

ulated neural stem cell (NSC) activity already occurring

during development and/or in adult NSCs.

NSCs are self-renewing, multipotent progenitors that

give rise to multiple types of neurons and glial cells during

embryonic brain development as well as during adult

neurogenesis (more detailed information in [36–51]). NSCs

represent a potential endogenous source for neuronal

replacement therapy in neurodegenerative disorders such

as PD. Moreover, studies focusing on adult NSCs and

neurogenesis in PD models offer the potential for earlier

diagnosis, stratification and possibly therapeutic treatments

for this debilitating disease.

Evidence for a developmental component of PD:

deregulated embryonic neurogenesis

A number of PD-associated genes have been implicated in

DA neuronal development during embryogenesis. Here, we

discuss studies using mice deficient for Nurr1, Pitx3, and

SNCA that have demonstrated deregulated embryonic

neurogenesis of DA neurons in the midbrain as well as

studies describing the role of PINK1, LRRK2 and VPS35 in

neuronal development and the altered expression of the

developmentally related brain-derived neurotrophic factor

in PD.

The orphan nuclear receptor, Nurr1, is expressed prin-

cipally in the limbic and ventral midbrain and plays an

important role in the development and maintenance of DA

neurons [52–55]. As previously mentioned, mutations in

the Nurr1 transcription factor have been associated with a

susceptibility to PD [56–60]. Moreover, Nurr1 gene and

Nurr1 protein expression is reduced in DA neurons of the

SN in PD patients [57, 61].

Given its role in the induction of differentiation of

progenitor cells to tyrosine hydroxylase (TH)-positive DA

neurons, it is likely that Nurr1 mutations contribute to PD

pathology early in development, during the formation of

the ventral midbrain DA neuron pool. Indeed, reduced

Nurr1 expression in heterozygous mutant mice leads to
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decreased DA transporter expression [62], decreased TH-

positive neurons in SNpc and less DA concentration in the

dorsal striatum [63]. Moreover, these mice display mor-

phological, biochemical and behavioral phenotypes similar

to those observed in PD, reflecting the reduced number of

DA neurons in the SNpc [62, 64, 65]. Nurr1 also inhibits

expression of pro-inflammatory molecules involved in the

neurotoxic response in microglia and astrocytes [66] and

acts to transcriptionally downregulate SNCA [67].

Reduced expression of Nurr1 would also therefore lead to

an increased inflammatory response, an unregulated

increase in SNCA expression and possibly DA neuron cell

death, further reducing the number of DA neurons in the

developing brain, all factors that increase the risk to

develop PD.

Another PD-susceptibility gene involved in neuronal

development is the Pitx3 gene. The Pitx3 protein is a

transcription factor necessary for terminal differentiation of

TH-expressing neurons in the SN through the potentiation

of Nurr1 transcription [68]. In mice lacking Pitx3, SN

neuronal precursor numbers are dramatically decreased and

these cells fail to produce TH, demonstrating that the Pitx3

protein is important for SNpc development and mainte-

nance [69]. Moreover, overexpression of Pitx3 in ventral

mesencephalon-derived NPCs improves motor function in

a 6-OHDA PD model [70]. As previously mentioned, Pitx3

is necessary for Nurr1-mediated transcription, an important

mechanism in DA neuron development and maintenance.

As such, Pitx3 mutations may increase susceptibility to PD

by a downstream effect on Nurr1 activity and the sub-

sequent reduction in the numbers of DA neurons formed in

the SN during brain development,

Endogenous a-synuclein has also been implicated in DA

neuronal development [71]. In this study, Garcia-Reitboeck

and colleagues describe a reduction in the number of DA

neurons in the SN of mice with a spontaneous deletion of

the SNCA gene, as well as in SNCA knockout (KO) mice,

visible as early as E13.5. Their results demonstrate that a-

synuclein is necessary for the embryonic development of at

least a subpopulation of DA neurons and suggest that PD-

related SNCA mutations may also lead to a reduction in the

number of DA neurons in the developing brain, long before

DA neuronal degeneration even starts. Interestingly, in this

scenario, reduced levels of a-synuclein contribute to an

increased PD risk, although more commonly, it is elevated

a-synuclein levels that are associated to PD. This would

suggest that only a balanced, optimal dosage of a-synuclein

is beneficial for DA neuron formation and maintenance,

while too high as well as too low levels are detrimental.

Additionally, the function of a-synuclein as well as the

dosage effects of this protein might be different during

embryonic development or adulthood (see further discus-

sion of SNCA below).

In the developing mouse brain, PINK1 protein expres-

sion is evident at E15 and increases significantly just before

birth at E19 [72], coinciding with a period of increased

neurogenesis in the brain [73]. PINK1 has recently been

shown to interact with and phosphorylate the embryonic

ectoderm development polycomb histone-methylation

modulator, redistributing it to the mitochondria, resulting

in a favorable change in transcription regulation for neu-

ronal differentiation [74]. PINK1 downregulation in

zebrafish results in delayed brain development, enlarged

ventricles and a moderate decrease in TH-positive neurons

in the diencephalon, likely due to an increase in apoptosis

as evidenced by an increase in active Caspase 3 in these

embryos [75].

LRRK2 expression in the developing mouse brain is

particularly strong in the ventricular zone and SVZ of the

telencephalon during the period of neurogenesis (E11.5 to

E17.5) [76]. Furthermore, LRRK2 is expressed in NSCs

isolated from both the DG and SVZ of E18.5 mice. The

LRRK2 protein may interact with the regulator of neurite

outgrowth during embryonic neurogenesis, CRMP2 [77]

and numerous studies have demonstrated that mutant

LRRK2 overexpression decreases neurite length/out-

growth, while LRRK2 deficits result in an increase of

neurite length and arborization [78–94]. Moreover, LRRK2

has been shown to bind Wnt signaling components (the

DVL proteins) and play a role in the canonical Wnt/b-

catenin signaling pathway, an important pathway for neu-

rogenesis and in particular the development of DA neurons

[83, 95, 96].

Neuronal developmental defects are also visible in the

absence of the PD-related gene, VPS35, discussed in more

detail in the ‘‘Function of PD Genes in neural stem cells’’

section below. Briefly, VPS35 knockdown (KD) in mouse

embryonic hippocampal neurons results in shortened apical

dendrites, reduced dendritic spines and swollen commis-

sural axons [97].

Lastly, brain-derived neurotrophic factor, known to

regulate the differentiation and survival of midbrain DA

neurons [98], displays reduced mRNA expression in the

SNpc of PD models [99, 100].

Evidence for deregulated adult neural stem

cell activity in PD

Neurogenesis in the PD brain

Adult neurogenesis has been described in the human brain

in both the SVZ and the SGZ [46, 47, 101]. Unfortunately,

few studies have been done to examine neurogenesis in the

post-mortem PD brain and those that have been conducted

present conflicting findings.
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A first group of studies has demonstrated that post-

mortem PD brains display deregulated adult neurogenesis.

In these studies, cell proliferation appears to be decreased

in the SGZ and SVZ of PD patients. The number of pro-

liferating cell nuclear antigen (PCNA)-positive adult NSCs

in the SVZ and Nestin-positive precursor cells in the OB

are decreased in the PD-affected post-mortem brain [102]

and a decrease in NSCs correlates with the progression of

PD, while L-Dopa treatment appears to increase NSC

numbers [103]. Moreover, EGF and EGFR levels are also

decreased in the PD striatum and the prefrontal cortex of

PD patients [104] and EGFR-positive neural stem/pro-

genitor cell numbers are decreased in the SVZ of PD

patients [105].

Other groups, however, have demonstrated no change in

NSC proliferation in the PD-affected brain, such is the case

in one study that examined NSC proliferation in the SVZ of

PD patients and control brains [106]. NSCs have been

identified in the SVZ of the aged human brain [107, 108]

and in the SVZ of PD patients [106]. NPCs have been

isolated from post-mortem human cortex and SN of PD

patients [109, 110] and neurospheres have been obtained

from the SVZ of a PD brain, indicating the presence of

adult NSCs [106]. However, idiopathic human PD multi-

potent NPCs isolated from the SN appear to lack key

factors required for neuronal differentiation as they must be

co-cultured with embryonic stem cell-derived neural pre-

cursors to obtain neurons [110].

Neurogenesis defects in PD animal models

Mainly, two animal models for PD have been used to study

neurogenesis: acute lesions formed by either 6-hydroxy-

dopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) administration. Both experi-

mental models replicate the DA neuron degeneration

observed in PD and result in motor phenotypes. Although

neurogenesis in both the SVZ and the SGZ has been shown

to decline with age in rodents [111–113], whether this

phenomenon is exacerbated, inversed or unchanged in PD

animal models is still up for debate.

In one study, MPTP administration in the mouse brain

decreased the number of proliferating cells in the SVZ and

the corresponding DA neuron denervation decreased the

number of PCNA-positive progenitor cells in the SGZ

[102]. In later studies, MPTP administration was shown to

induce apoptosis of migrating neuroblasts (NBs) from the

SVZ [114, 115]. Conversely, MPTP treatment has also

been shown to increase proliferation in the SVZ and the

SGZ [116] and to increase neurogenesis in the SN and OB

[116–119] of mice. Yet in another study, no change in

proliferation or neurogenesis was observed. While MPTP

treatment in mice induced DA denervation of the striatum,

no change in proliferation of the SVZ progenitors was

observed [106].

In macaque monkeys, MPTP treatment has been shown

to deplete DA innervation in the SVZ and reduce the

number of proliferating cells in this area [120]. In another

study focusing on another brain region, MPTP treatment in

the macaque revealed no increase in DA neurogenesis in

the striatum [121].

In a number of studies, 6-OHDA treatment leads to

decreased proliferation of neuronal precursors in the SVZ,

visualized by a decrease in the number of PCNA-

expressing cells in the SVZ of treated rats [102, 122] or a

decrease in the number of BrdU-labeled cells in the SVZ

of treated mice [123]. In the OB, 6-OHDA treatment

results in decreased BrdU labeling in the granule cell

layer (the site of integration for neural progenitors origi-

nating in the SVZ) but increased BrdU labeling in the

glomerular cell layer with a concomitant increase in DA

neurons in the OB, suggesting that DA differentiation is

increased [122–124]. On the other hand, 6-OHDA treat-

ments in rats have also increased proliferation in the SVZ

[125–127]. It is noteworthy that, although proliferation

appeared to be increased, these cells could only differ-

entiate into astroglial cells and not neurons and thus

neurogenesis would appear to be deregulated in these

models as well [125]. Finally, examination of Dcx-posi-

tive NPCs in the SN of mice revealed no change after

6-OHDA injections [128].

Regulation of NSC activity by PD-associated

neuroinflammation

Chronic neuroinflammation has been observed in both PD

patients’ brains and in animal models of PD [129–132], but

how this inflammation affects neurogenesis is only just

being elucidated.

Inflammation-related proteins and molecules such as

TNF-a, inflammatory cytokines and nitric oxide negatively

regulate neurogenesis [133–136], while neurogenesis is

increased in the hippocampus and SVZ by anti-inflamma-

tory drug treatment in the focal traumatic brain injury and

Japanese encephalitis models for acute neuroinflammation

[137–139].

In the 6-OHDA PD model, treatment with anti-inflam-

matory drugs (minocycline or specific COX2 inhibitors)

activates NSC proliferation in the SVZ and oligodendro-

genesis and/or astrogliosis in the affected striatum and in

the SN and even induces a functional regeneration as

shown by rotational behavior experiments [128, 133].

Finally, the inflammatory response and microglia acti-

vation in a MPTP model of PD are partially mediated by

the chemokine receptor CX3CR1 [140], a known regulator

of adult neurogenesis [141].
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Regulation of neurogenesis by dopamine

Dopamine appears to also play a role in the control of

neurogenesis. Indeed, dopamine receptors have been

observed on both neurospheres derived from rodent SVZ

precursors [102, 142, 143] and in vivo on progenitor cells

of the SVZ in mice and rats [102, 144, 145]. Moreover, DA

fibers have been described in close proximity to EGFR-

positive cells (progenitor cells) in the post-mortem human

brain [102]. These DA fibers likely originate from SN cells,

as has been described for non-human primates [120].

An experimentally reduced dopamine level in mice

decreases precursor cell proliferation in both the sube-

pendymal zone and in the SGZ; this effect can be reversed

by a selective D2-like receptor agonist (one of two sub-

families of DA receptors, including the D1, D2 and D3 DA

receptors) [102]. Correspondingly, experimentally induced

dopamine loss decreases SVZ proliferation and EGFR-

positive adult NSCs via D2-like receptors [102, 105, 122,

123, 146]. It appears that dopamine can also exert its

effects on neurogenesis, at least in part, via the D3 receptor.

Activation of the D3 receptor in rats increases proliferation

in the SVZ, RMS and possibly in the SN [147] and also

stimulates OB neurogenesis [145]. In vitro studies have

demonstrated that dopamine can also stimulate cell pro-

liferation in neurospheres through the D3 receptor and may

also stimulate neurogenesis [142].

Function of PD genes in neural stem cells

Studies of PD-related genes, in particular in NSCs, pro-

genitor cells and iPSCs have suggested that these genes

may be important in the regulation of stem/progenitor cell

proliferation, maintenance and differentiation. Below, we

outline the state of the art of this topic for the most com-

mon PD-related genes (reviewed in Table 1).

SNCA (PARK1/PARK4)

The SNCA gene (4q21), located at the PARK1/4 locus,

encodes the protein a-synuclein. Several PD-related SNCA

mutations have been identified. The A53T [148], A30P

[149] and E46K [150] mutations as well as gene duplica-

tions [151] and triplications [152] are the SNCA genetic

variations responsible for the onset of an autosomal dom-

inant form of PD, while other PD-associated mutations

such as the A18T, A29S, H50Q and G51D mutations may

also contribute to PD progression [153–155].

a-Synuclein is a highly conserved protein that is abun-

dantly expressed in the adult brain, but its precise function

is still unknown [156, 157]. Certain studies have, however,

described an involvement of a-synuclein in normal brain

function [158], synaptic plasticity [159, 160] and the reg-

ulation of the presynaptic vesicular pool [161, 162],

including DA release [163]. a-Synuclein has also been

described as a chaperone and described to contribute to

SNARE complex formation [164]. a-Synuclein is a

natively unfolded monomer but it is able to switch from a

helical to a b-sheet structure, aggregate and form fibrils

[156, 157]. In PD brains, a-synuclein is the predominant

protein found in Lewy Body inclusions [165, 166] and the

misfolding and aggregation of this protein into neurotoxic

species is considered central in PD pathogenesis [167].

An increasing number of studies reveal that a-synuclein

plays an important role in neurogenesis. When the SNCA

gene is differentially expressed or bears mutations or the a-

synuclein protein forms aggregates, the neuronal stem cell

pool is negatively regulated and the survival of newly

generated neurons is decreased. The aforementioned sug-

gests that there is a link between neurogenesis, SNCA and

neurodegenerative diseases. If decoded, the details of this

relationship could provide a valuable tool for designing

potential therapies for patients with neurodegenerative

diseases such as PD.

Overexpression of wild-type SNCA

Adult mice overexpressing human wild-type SNCA under

the PDGF promoter were used to investigate adult NSC

proliferation, migration and differentiation [168]. Although

no difference in the number of PCNA-positive proliferating

SVZ or DG cells could be observed between the transgenic

and the control mice, a significant reduction of newly

generated (BrdU positive) neurons was apparent in the OB

and the DG. In particular, DA neurogenesis in the OB was

severely impaired as was evident by the fact that the

number of TH/BrdU double-positive cells was reduced

more than half in the mice overexpressing SNCA. This

effect observed in the OB was accompanied by increased

cell death in the granule layer of the DG and in the OB

[168].

In vitro, SNCA overexpression reduces the number of

secondary neurospheres formed and affects NSC mor-

phology and cell cycle progression, leading to their

accelerated differentiation [169]. However, when the

authors used the same virus to overexpress SNCA in vivo,

no effect was seen on the proliferation of SVZ NSCs, an

observation that agrees with previous study mentioned.

Instead, they observed a delay in the migration of NSCs

through the SVZ/RMS/OB system, evident by an increased

number of NSCs that remained in the neurogenic niche

[169].

A subsequent study using mice overexpressing human

SNCA under the tet-off system investigated if impaired OB
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Table 1 Effect of PD-related genes in NSCs and on neurogenesis

Gene Phenotype Observed effect References

SNCA Overexpression Adult [168]

– proliferation in SVZ and DG

; neurogenesis in OB and DG

: cell death in OB and DG

Embryonic [169]

; formation of secondary spheres

; cell cycle entry of NSCs

: differentiation of NSCs

Adult

– proliferation in SVZ, RMS and OB

– cell death in SVZ, RMS and OB

– differentiation of NSCs into DA neurons in OB

; NSC migration through the RMS

Adult [71]

: DA neurons in SN

Adult [184]

; dendritic length of neurons in DG

: spine density of neurons in DG

; mushroom spines of neurons in DG

Adult [172, 173]

; neurogenesis in DG

: cell death in DG

In vitro

; neurogenesis

: cell death

; neuronal differentiation

Knockout Adult [184]

: neurogenesis in DG

– BrdU? newly generated cells in DG

– proliferation in DG

– cell death in DG

Mutant A30P ; neurogenesis in OB [175]

– proliferation in SVZ

A53T Adult [174]

; neurogenesis in OB

: cell death in OB

Aged mice

; proliferation in SVZ

: cell death in SVZ

; neurogenesis in OB

: cell death in OB

Adult [172]

; neurogenesis in DG

: cell death in DG

In vitro

; neurogenesis

: cell death
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Table 1 continued

Gene Phenotype Observed effect References

LRRK2 Knockout/knockdown Adult [94]

– proliferation in DG

– BrdU? newly generated cells in DG

: early differentiating neurons (DCX? cells) in DG due to delayed maturation

: dendritic arborization and dendritic length

In vitro [197]

– NSC proliferation

: neuronal differentiation

; ROS and cell death of differentiating neurons

In vitro [198]

: (accelerated) neuronal differentiation

Adult

: early differentiating neurons (DCX? cells) in DG

In vitro [199]

; DA neuronal differentiation

: cell death

Mutant G2019S Adult [86]

; proliferation in DG, SVZ and RMS

; survival of newly born neurons in OB and DG

; dendritic arborization and spines

In vitro [200]

; neural differentiation

; proliferation (clonal expansion)

: susceptibility to proteasomal stress

R1441G In vitro [197]

– NSC proliferation

; neuronal differentiation

: ROS and cell death of differentiating neurons

VPS35 Knockout/knockdown Adult [97]

; dendritic arborization and spines

In vitro [197, 218] [199]

; neurite length

PINK1 Knockout/knockdown In vitro [250]

– DA neuronal differentiation

Adult drosophila [254]

; proliferation

In vitro (human NSCs)

; proliferation

Mutant Q456X In vitro [251, 253]

– DA neuronal differentiation

Parkin Knockout/knockdown In vitro [276–278]

– DA neuronal differentiation

DJ-1 Knockout/knockdown In vitro (ESCs) [300]

: sensitivity to proteasomal stress and ROS

– no effect is observed, : increased, ; decreased
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neurogenesis caused by SNCA overexpression could be

rescued when the transgene is silenced [170]. As in the case

of Winner et al., the authors demonstrated a decrease in

NSC proliferation in the SVZ and in the generation of new

neurons in the OB. When SNCA overexpression was

ceased, the amount of new cells in the granule cell layer

was increased but these cells did not manage to become

neurons. On the other hand, glomerular layer neurogenesis

was partially restored. It is worth mentioning that the

amount of newly TH-positive cells was also reduced when

the transgene was active and upon its silencing, the number

of TH-positive cells was increased up to 89 % in the glo-

merular layer of the bulb [170].

A broader investigation concerning a-synuclein was

performed in silico; mice overexpressing human wild-type

SNCA were used to perform a transcriptome analysis of the

striatal brain region [171]. The expression of many genes

implicated in apoptosis, cell cycle progression, neurogen-

esis and synaptic function were impaired, demonstrating

that indeed a-synuclein is involved in many different cell

processes that, when deregulated due to differential SNCA

expression, may influence neurogenesis. Indeed, rat hip-

pocampal NPCs and mouse ESCs overexpressing SNCA

display impaired neuronal differentiation and survival, an

effect that is mediated by increased p53-mediated repres-

sion of Notch-1 signaling [172, 173].

Overexpression of mutated SNCA

OB neurogenesis during aging was investigated in mice

that overexpress either human wild-type (WT) or A53T

mutated SNCA [174]. Among these animals, only the aged

mice bearing the SNCA mutation showed a significant

decrease in proliferation of the SVZ NSCs. In addition,

both transgenic mice revealed a reduction in the total

number of newly generated neurons accompanied by an

increase in apoptosis of neuronal progenitor cells in the

OB. Newly generated TH-positive cells were decreased in

both groups but the effect was more profound in the mice

overexpressing the mutant form of SNCA [174]. This study

demonstrates a correlation between aging and neurogenesis

in the context of WT and mutant SNCA overexpression,

showing that the A53T mutation produces more deleterious

effects with respect to proliferation of NSCs and the sur-

vival of both stem cells and newly generated neurons.

Transgenic mice overexpressing the A30P mutant form

of SNCA display no difference in proliferation in the SVZ,

compared to control mice [175]. However, in the OB, the

amount of newly generated DA neurons is decreased in the

mutant mice. More recently, the same group investigated

the effect of the mutation on hippocampus plasticity and

found that the survival of new hippocampal neurons is

dramatically decreased in these mice [176]. The cause of

this decrease in newly formed neurons has not been

investigated in this model. As such, it would be interesting

to investigate if the decrease in neurons in this model is

also due to decreased survival (increased apoptosis), as was

the case for the A53T SNCA overexpression mouse model.

In addition, the SNCA mutant mice present behavioral

changes such as an increase in anxiety. Olfactory deficits

and behavioral changes such as increased anxiety are also

examples of non-motor symptoms of PD patients, sug-

gesting a role for SNCA variations in non-motor deficits of

PD.

Finally, mice expressing a truncated form of human

SNCA (1–120 SNCA) under the control of the TH promoter

in an endogenous null background developed inclusions in

the SN, motor abnormalities, redistribution of SNARE

proteins and impaired exocytosis [177, 178]. Recently,

these mice were used to generate a new transgenic line by

crossing them with WT mice. Compared to WT or to the

1–120 SNCA transgenic line, a significant increase in the

number of SN DA neurons was observed [71]. The group,

however, did not investigate the correlation between the

increase of TH-positive neurons with increased neurogen-

esis nor did they investigate the proliferation,

differentiation or survival potential of these cells, which

would be an interesting point for future research. If these

questions are answered, they might unveil an interesting

mechanism or point to a certain direction concerning the

specific function of a-synuclein in neurogenesis of the SN.

The sum of these studies demonstrates the deleterious

effects of SNCA overexpression in the mouse brain.

In vitro, WT SNCA overexpression leads to a decrease in

proliferation. Overexpression of WT SNCA in vivo

decreases the number of newly generated TH? neurons via

increased apoptosis of newly generated neurons and a

decrease in cell migration through the RMS. Moreover, the

decrease in the number of newly generated TH? neurons is

even more pronounced and is accompanied by a clear

decrease in SVZ NSC proliferation when a mutated form of

SNCA is expressed. Neurogenesis is a vital ongoing process

in the adult brain and its disruption, via the deregulated

expression or function (incurred by genetic mutations) of

SNCA, could contribute to the non-motor deficits observed

in patients with PD.

Interestingly, olfactory deficits have been described in

mice overexpressing WT SNCA and olfaction impairment

is an early non-motor symptom of PD. In one study, mice

overexpressing SNCA under the Thy1 promoter displayed

impairments in a number of olfactory functions [179]. In

another study, mice overexpressing the human WT SNCA

gene via the mouse SNCA promoter displayed olfactory

deficits such as odor detection impairment, olfactory

memory deficit and impaired odor discrimination [180,

181]. OB neurogenesis was also examined in the latter
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experiment but no difference in the number of newly

generated neurons in the OB, based on BrdU labeling

assays, was detected. Instead, it is likely that the olfaction

deficits observed in SNCA transgenic mice are due, at least

in part, to impaired growth and branching of dendrites and

the subsequent failed stable integration into the OB of

newly born DA neurons during adult neurogenesis, leading

to a decrease in cell survival, as has been described for an

A30P SNCA overexpressing mouse [182, 183].

Reduced expression of SNCA

Neurogenesis in the adult mammalian brain has also been

investigated in the a/b–SNCA double knockout (DKO)

mouse in the second neurogenic niche of the brain, the DG.

These mice display increased neurogenesis in the DG but

lack any apoptosis phenotype. When human SNCA is

introduced (either as a transgene or a retrovirus), a sub-

stantial impairment in hippocampal neurogenesis and in

dendrite development and morphology is observed [184].

In this study, the group investigated if there was an

increase in the newly generated neurons by injecting the

mice with BrdU. In addition, they used Caspase 3 staining

to examine if the increase that they saw in the new neurons

was balanced by increased apoptosis but they did not find

any difference of cell death between the DKO mice and the

wild type. These observations indicate that the results

obtained indeed represent an increase in neurogenesis. It

would be interesting to investigate the second adult neu-

rogenic niche of this mouse to examine the effect of SNCA

ablation on proliferation of the SVZ stem cells, their

migration and the number of newly generated neurons in

the OB.

Finally, in another study, surprisingly, the number of TH

positive neurons is profoundly reduced in the SN of

developing homozygous and heterozygous SNCA knockout

embryos compared to WT embryos, suggesting that

endogenous SNCA plays an important role in the embry-

onic development of DA neurons [71].

Altogether, the majority of the above-described experi-

ments suggest that overexpression of SNCA (either WT or

mutant forms) decreases the number of newly generated

neurons in the DG, OB and SN of the adult brain, including

DA neurons in the latter two brain regions. This decrease in

DA neurogenesis has been attributed to a multitude of

factors, depending on the study, including decreased NSC

proliferation in the SVZ, decreased survival of newly

generated neurons (increased apoptosis) in the DG and in

the OB as well as decreased cell migration through the

RMS. Moreover, the a/b–SNCA double KO mouse displays

increased neurogenesis in the adult DG. By contrast, one

study describes a decrease in the number of newly gener-

ated DA neurons in the embryonic DG in the SNCA KO

mouse. These seemingly contradictory results hint at a

differential effect of SNCA expression on neurogenesis,

depending on the age of the animal (during embryonic

development vs. in the adult neurogenic niches) or on the

region of the brain being studied (SN vs. OB vs. DG).

Moreover, it appears that SNCA expression levels need to

be tightly regulated to avoid detrimental effects, as both

increased and decreased expression of SNCA has been

linked to an increase in PD risk.

It is obvious that there is a relation between cell pro-

liferation, death and survival and that SNCA orchestrates,

in an unknown way, cell fate decisions. In particular, it

appears essential that SNCA expression and function be

tightly regulated in the neuronal cells, as any changes in the

expression levels (increased or decreased) or in the SNCA

genetic sequence lead to defects in both embryonic and

adult neurogenesis. In particular, the documented decrease

in DA neurogenesis may suggest that individuals with

SNCA mutations are born with less DA neurons and would

therefore be more susceptible to PD. Still, PD symptoms

would occur later in life due to the normal decline in

neurogenesis with age. Mutant forms of SNCA would

exasperate the neurogenesis decline; the accumulated

decline in neurogenesis (from age and SNCA mutations)

may bring it under a certain threshold, leading to the

occurrence of non-motor symptoms.

LRRK2 (PARK8)

Mutations in the LRRK2 gene (12q12), located at the

PARK8 locus, are the most common cause of autosomal

dominant PD, accounting for 1–40 % of all the cases

depending on the populations, and up to 5 % of apparently

sporadic cases [185, 186]. PD-related LRRK2 gene muta-

tions include R1441C, R1441G, Y1699C, G2019S and

I2020T [187–191]. The G2019S and R1141G mutations,

which increase kinase activity and decrease GTPase

activity, respectively, are the two most common PD-asso-

ciated mutations in LRRK2 [192–194].

The LRRK2 gene encodes for the leucine-rich repeat

kinase (LRRK2) protein, a large and complex protein

comprised of multiple domains, including a central cata-

lytic tridomain with GTPase and kinase activities

surrounded by several potential protein–protein interaction

domains [187, 188]. Despite the knowledge regarding

LRRK2 protein structure and its mRNA and protein

expression, the precise physiological function of LRRK2

remains unclear.

LRRK2 shows widespread expression throughout the

brain at both the mRNA and protein level [76]. In the

mouse brain, LRRK2 mRNA is first detected at E16 and

increases as development progresses through postnatal
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periods [195]. It is a ubiquitous protein expressed in vari-

ous brain regions and various cell types, including neurons

and glial cells. LRRK2 has been described to display robust

expression in areas with ‘‘high proliferative and migratory

activity as well as sites of differentiation and cell death’’

[76]. In particular, it is expressed in the main neurogenic

niches of the mammalian brain: the ventricular zone, SVZ

and hippocampus [195]. Moreover, LRRK2 co-localizes

with the migrating NB marker PSA-NCAM [195]. Alto-

gether, the expression pattern of LRRK2 suggests a role for

this protein in CNS development and neurogenesis.

Reduced expression of LRRK2

Although LRRK2 KO mice do not appear to exhibit any

alterations in neuronal function or survival [196], the dif-

ferent NSC gene expression profiles in the presence or

absence of LRRK2 expression demonstrate that the absence

of LRRK2 protein affects a number of different cellular

processes, including genes implicated in cell cycle regu-

lation, ribosome biosynthesis, proteasome function and

mitochondrial oxidation or reduction processes [197].

LRRK2 loss of function does not affect NSC self-

renewal in in vitro cultures, nor does it affect cell prolif-

eration in the adult DG of LRRK2 KO mice [94, 197].

LRRK2 deficiency has, however, been linked to an increase

in neuronal commitment in vitro and an increase in

immature NBs due to delayed neuronal maturation in the

adult DG [94, 197, 198]. In fact, neuronal differentiation

appears to be closely linked to LRRK2 protein expression

levels, as even a 50 % decrease of this protein’s expression

levels in LRRK2 heterozygote ESCs appears to accelerate

retinoic acid-induced neuronal differentiation [198]. This

was visible through a differential gene expression analysis

that revealed accelerated silencing of ESC pluripotency

markers and downstream targets as well as increased

expression of voltage-gated ion channels and neurotrans-

mitter receptors or transporters in LRRK2 heterozygous

cells 7 days after retinoic acid-induced neuronal differen-

tiation. This effect may be mediated through the alleviation

of let-7 miRNA (a key pro-differentiation miRNA, dis-

cussed further below) suppression via Lin28. Indeed, the

reduction in Lin28 expression was also exaggerated in

LRRK2 heterozygous cells compared to WT cells during

differentiation.

The sum of these studies demonstrates that LRRK2 is

implicated in early neuronal differentiation and appears to

negatively regulate this process. Of note, another study

utilizing siRNA-mediated KD of LRRK2 in NPCs did not

observe a difference in the number of total neurons after

neuronal differentiation but instead observed a difference

in the number of TH? neurons, suggesting a reduced

capacity of these cells to differentiate into DA neurons

[199]. Varying the expression levels of LRRK2 may,

therefore, differentially affect the genesis of specific neu-

ronal populations.

Overexpression of mutated LRRK2

Overexpression of PD-related mutant G2019S LRRK2

protein produces defects in adult neurogenesis, at the level

of cell proliferation and generation of newborn neurons.

Indeed, transgenic mice overexpressing the PD-associated

human LRRK2 G2019S protein display a significant

decrease in the number of proliferating (BrdU positive)

cells in the adult DG, SVZ and RMS and decreased neu-

rogenesis (BrdU and NeuN positive) and DA neurogenesis

(BrdU, NeuN and TH positive) as well as decreased sur-

vival of newly generated neurons in the OB [86]. The

LRRK2 G2019S mutation may contribute to the hippo-

campal and SVZ-related age-dependent non-motor

symptoms via dysfunctions in the NSC pool and in their

neural derivatives at early stages of maturation. Indeed,

LRRK2 G2019S iPSC-derived NSCs in culture, especially

at late passages, display increased susceptibility to prote-

asomal stress and a passage-dependent decrease in clonal

expansion and neuronal differentiation capacities [200].

LRRK2 regulates microRNAs

microRNAs, also known as miRNAs, are short (20–25

nucleotides) endogenous RNAs that regulate gene expres-

sion at the mRNA level. Briefly, pre-miRNAs are recruited

to the miRNA-induced silencing complex, containing at

least the Dicer protein, the double-stranded RNA-binding

domain protein transactivation-responsive RNA-binding

protein and a member of the Argonaut family [201]. The

pre-miRNA is then processed by Dicer [202] and the

mature miRNA guides the miRNA-induced silencing

complex to the target mRNA sequence, via complementary

base pairing, to downregulate its expression through

translational repression, mRNA degradation or mRNA

cleavage [203]. Several miRNAs are specifically enriched

in the brain and the necessity of miRNA regulation for

normal brain development has been the subject of several

recent reviews [204–206]. What is more, miRNAs are

regulators of NSC proliferation and differentiation and

several studies have linked deregulated miRNA expression

or function in the brain or in NSCs with PD pathogenesis

(reviewed in [207, 208]).

Although miRNAs were initially described to function

upstream of protein expression by targeting the mRNA of

disease-associated genes to direct their posttranscriptional

repression, more recent studies have demonstrated that

some disease-associated proteins are also involved in the

regulation of miRNAs pathways. For example, in
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Drosophila, pathogenic LRRK2 antagonizes let-7 and miR-

184*; transgenic flies carrying the equivalent of the human

G2019S mutation displayed increased inhibition of let-7

and miR184* activity [209]. Furthermore, the effect of

pathogenic LRRK2, at least on let-7 inhibition, was

dependent on its kinase activity, evident by the fact that the

introduction of kinase-inactivating mutations abolished the

observed effect. let-7 and miR184* are implicated in the

repression of E2F and DP, respectively. These transcription

factors are involved in cell cycle control and survival. As

such, their repression results in a reduction in locomotor

activity and an enhanced neuronal degeneration phenotype,

suggesting another mechanism of miRNA pathway regu-

lation in LRRK2-associated PD.

Additionally, Bahnassawy and collaborators investi-

gated miRNA regulation by the R1441G mutation, the

second most common PD-associated LRRK2 mutation.

They showed that expression of R1441G LRRK2 in murine

NSCs leads to a downregulation of let-7a and miR-9,

although LRRK2 deficiency did not affect microRNA

expression levels [197]. Altogether, these studies point to

an important role for the LRRK2 gene in the pathogenesis

of PD, mediated through miRNA regulatory pathways and

point to future possible targets in the search for new ther-

apeutic strategies for PD.

LRRK2 is involved in Wnt signaling

In addition to its role in the regulation of NSC differenti-

ation, LRRK2 has been suggested to play a role in

neurogenesis. Correspondingly, Berwick and Harvey have

proposed that LRRK2 functions as a scaffolding protein

that plays a role in numerous signaling pathways, thus

linking LRRK2 to neurogenesis and to the function of post-

mitotic and mature neurons [210]. The canonical Wnt/b-

catenin pathway is part of the signaling mechanisms

involved in the regulation of embryonic and adult neuro-

genesis, and in particular in the development of DA

neurons. It plays a role in the regulation of axonal guid-

ance, dendritic morphogenesis and synapse formation. Wnt

cascades have been implicated in PD and deregulated Wnt

signaling represents a feasible initiation event in neurode-

generation [211].

LRRK2 has been associated to Wnt signaling via its

interaction with key components of the Wnt signaling

pathway, such as DVL, the b-catenin destruction com-

plex and LRP6 [95, 96]. Moreover, it has been

demonstrated that pathogenic mutations of LRRK2

modulate its interaction with different Wnt pathway

molecules, including DVL and GSK3, a component of

the b-catenin destruction complex [83, 95]. Importantly,

KD of LRRK2 results in enhanced canonical Wnt sig-

naling [96]. This data suggest that LRRK2 plays a

central role in Wnt signaling, an essential pathway in

NSC biology and neurogenesis.

Despite the growing body of knowledge concerning the

LRRK2 gene and its PD-related mutations, the molecular

and cellular implications of LRRK2 mutations during the

onset and progression of PD still remain unknown. Given

LRRK2’s implication in neurogenesis and the parallels

between neurogenic niches and brain regions implicated in

non-motor PD symptoms, it is likely that LRRK2 mutations

are responsible for some of the non-motor symptoms

related to PD.

VPS35 (PARK17)

The VPS35 gene (16q12) is located at the PARK17 locus

and codes for the vacuolar protein sorting 35 (VPS35).

Recently, the p.D620N mutation in the VPS35 gene was

identified as a novel cause of autosomal dominant late-

onset PD by two research groups [212, 213] and five

subsequent studies have identified this mutation in PD

patients [214–217]. Moreover, PD-associated defects in

RAB7L1 or LRRK2 lead to a deficiency of the VPS35

component of the retromer complex [218].

VPS35, along with VPS26 and VPS29, makes up the

cargo recognition and binding subcomplex of the retromer,

an important complex for the trafficking and recycling of

lipids and proteins [219–221]. The D620N PD-related

mutation in VPS35 displays a dominant negative missort-

ing phenotype of retrograde transport of proteins dependent

on the WASH complex [218, 222]. WT VPS35 regulates

mitochondrial-anchored protein ligase transport from the

mitochondria to the peroxisomes [223], suggesting that

VPS35 mutations may produce mitochondrial defects in

patients. VPS35 is also responsible for divalent metal

transporter 1 transport [224]. Mutated VPS35 may, there-

fore, lead to divalent metal transporter 1 missorting and

iron accumulation, similar to the iron accumulation

described in PD patients and in the 6-OHDA mouse model

of PD [225]. Finally, VPS35 is also hypothesized to

influence the Wnt signaling pathway via deficient sorting

of the Wntless protein, which leads to Wntless degradation

[226–228] and Wnt/b-catenin signaling is impaired in

6-OHDA-lesioned rats [229] and MPTP-induced mouse

and monkey models [230].

As previously mentioned, Wnt signaling plays a role in

embryonic and adult neurogenesis and has been linked to

PD. As such, the PD-related VPS35 mutation (D620N) may

also have an effect on neurogenesis in the PD brain. Little

is known about the role of VPS35 in neurogenesis partly

because homozygous KO mice die early during embryonic

development, before E10 and before the onset of neuro-

genesis [231]. In one study focusing on Alzheimer’s
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disease by Wang et al. [97], VPS35 was shown to promote

apical dendritic growth and maturation and axonal protein

transport in developing mouse hippocampal neurons. The

authors demonstrated that embryonic hippocampal CA1

neurons with reduced VPS35 expression (via electropora-

tion with microRNAs) display shortened apical dendrites,

less dendritic spines and swollen commissural axons. The

authors suggest that these observations reflect a defective

protein transport in developing mouse neurons via

impaired retrograde trafficking of beta1-secretase and

altered beta1-secretase distribution. Similarly, KD of

VPS35 or overexpression of D620N VPS35 in rat primary

cortical cultures leads to a reduction in neurite length

[218]. It will be interesting in the future to see if this

protein also plays a role in the development or maintenance

of other neuronal types in the adult brain as well as during

embryonic neurogenesis. One could hypothesize that the

dominant negative VPS35 mutant may drastically decrease

the survival of newly generated neurons by inhibiting

proper retrograde transport of important trophic factors and

by inhibiting normal neurite outgrowth.

Of note, in a non-neuronal system, the mouse intestinal

epithelium, although depletion of VPS35 does reduce

Wntless protein levels, it did not affect stem cell prolifer-

ation in intestinal epithelium-derived cell cultures but did

slightly reduced the growth rate of in vitro organoids

derived from these cultures [232]. Given its role in Wnt

signaling, it is not surprising that the loss of normal VPS35

function results in a decreased proliferative phenotype. It

will be interesting to see if this phenotype is reproduced or

even exaggerated in other systems such as during devel-

opment of the CNS, in which Wnt signaling is required for

long-distance gradient formation to guide NB migration

and to establish neuronal polarity. Recalling that Wnt

signaling has been implicated in the development of mid-

brain DA neurons, we can then hypothesize that disruption

of Wnt signaling via the D620N VPS35 mutation has the

potential to decrease the number of DA neurons formed

during embryonic development, resulting in fewer DA

neurons at birth, thus increasing an individual’s suscepti-

bility to PD. Moreover, defects in adult neurogenesis

caused by a disruption in Wnt signaling are likely to con-

tribute to the non-motor symptoms observed in PD.

Finally, the D620N VPS35 mutation has also been

shown to impair the autophagic process via missorting of

the autophagic protein, Atg9, thought to contribute to

autophagosome formation [222]. Several studies using

mice deficient for autophagy-related genes have outlined

the importance of the autophagic machinery in embryonic

development of the CNS [233–236]. In particular,

autophagy is necessary for proper neuronal differentiation

[237, 238]. It will be interesting in the future to evaluate if

impaired autophagosome formation caused by the PD-

related VPS35 mutation also leads to impaired neurogen-

esis via defects in neuronal differentiation.

PINK1 (PARK6)

More than 50 mutations in the PINK1 gene (1p36), located

at the PARK6 locus, have been identified in PD-affected

patients [239–243] and these mutations are believed to

account for up to 1–8 % of sporadic cases with early onset

[244].

PTEN-induced putative kinase 1 (PINK1) is a serine/

threonine kinase protein localized to the mitochondrial

matrix and the intermembrane space [245, 246]. Under

normal conditions, it is rapidly degraded but when the

mitochondrial membrane is compromised, PINK1 is sta-

bilized at the outer mitochondrial membrane where it

recruits the E3-like ligase protein, Parkin, which in turn

ubiquitinates other matrix surface proteins and targets the

damaged mitochondria for autophagic degradation [247,

248].

PINK1 transcripts are ubiquitously expressed in the

murine brain, including brain structures in which neuro-

genesis still occurs in the adult such as the hippocampus

[249]. PINK1 expression has also been confirmed in human

NSCs using RT-PCR. Interestingly, PINK1 expression

increases 100-fold following differentiation to DA neurons

[250]. In the latter study, the authors created a stable

PINK1 KD human NSC line using RNAi methods to study

this proteins’ function in NSC-derived mature DA neurons.

Although PINK1 expression was reduced by[90 % in the

selected clone, these NSCs displayed a similar DA neuron

differentiation efficiency as the WT controls, suggesting

that PINK1 is not necessary for DA neuronal

differentiation.

In another study, the role of PINK1 was examined in

human iPSCs derived from a patient with a PD-associated

PINK1 mutation (Q456X) that results in a premature stop

codon and results in a 80–90 % reduction in PINK1 mRNA

levels compared to human iPSCs derived from a healthy

family member [251, 252]. iPSCs derived from the fibro-

blasts of the PD patient were comparable to WT iPSCs;

they displayed a high expression of the pluripotency

markers OCT4a, Tra-1-60, NANOG and SSEA-4 at both

protein and transcript levels; the iPSC-derived embryonic

bodies were able to differentiate into the three embryonic

germ layers; and the iPSCs displayed a normal karyotype.

Once again, the decreased expression of PINK1 in the

mutant iPSCs did not impede DA neuronal differentiation,

as was demonstrated by a slightly higher number of TH-

positive neurons in the PINK1 mutant-derived cells.

Similar observations were made in a third study done by

Cooper and colleagues in 2012 in which human iPSCs
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were again derived from patients with the Q456X PINK1

mutation [253]. Supplementary results to validate the cel-

lular model confirmed that the PINK1 mutant iPSCs are

able to differentiate into all the neuronal lineages including

DA neurons and display normal karyotyping. As only one

PINK1 mutation has been studied with respect to neuro-

genesis defects, future studies will be needed to determine

if other PINK1 mutations affect DA neurogenesis or DA

neuronal differentiation.

All the above studies focused on DA neuron differen-

tiation in cells with reduced, but not absence of, PINK1

expression. By contrast, in drosophila neuroblasts (dNB)

and mammalian NSCs, PINK1 deficiency is inversely

related to dNB maintenance and cell proliferation [254].

The number of type II dNBs, which contain transit-

amplifying intermediate progenitors and are similar to

mammalian NSCs, was significantly reduced in PINK1-

null Drosophila mutants. Moreover, RNAi KD of dPINK1

blocks activation of mTORC2 and formation of ectopic

NBs. In human NSC cultures, shRNA KD of PINK1 sig-

nificantly inhibited cell proliferation. This effect appeared

to be regulated by a non-canonical Notch signaling

involving PINK1, mTORC2 and phosphorylated AKT, in

which Notch directly interacts with PINK1 at the mito-

chondria. Indeed, Notch signaling is implicated in neuronal

precursor cell proliferation and loss of function mutations

of Notch leads to early neuronal differentiation and a

decrease in the number of neuronal precursor cells [255,

256].

As previously mentioned, the PINK1 protein is impor-

tant for mitochondrial quality control via autophagic

degradation of damaged mitochondria. Mitochondria may

play a role in stem cell proliferation by reducing mito-

chondrial oxygen levels, a phenomenon that enhances both

ESC and NSC proliferation and differentiation potential

[257–259], and by reducing mitochondrial Ca2? levels, that

are increased, along with mitochondrial fusion, during

neuronal differentiation [260]. Loss of normal mitochon-

drial function may also contribute to the observed decrease

in proliferation in the PINK1 KD experiments.

Although little research has been done to date on the

implication of the PINK1 protein in neurogenesis, the little

data thus far would suggest that the PINK1 loss of function

mutations results in a decrease of NSC proliferation.

Moreover, conditional PINK1 KO mice display impaired

olfaction [261], which is a non-motor symptom of PD and a

phenotype that can be attributed to impaired neurogenesis.

Parkin (PARK2)

Parkin deletion mutations are a common cause of early-

onset PD and over 100 mutations have been identified to

date [262–266]. The Parkin gene, located at the PARK2

locus (6q25.2-q27), is mutated in up to 50 % of all

familial PD cases and in 10–15 % of sporadic early-onset

PD [267].

The Parkin gene, located at the PARK2 locus, codes for

the protein Parkin, an E3 ubiquitin ligase enzyme that is

involved in proteasome-mediated and autophagy-mediated

degradation of several substrates, particularly mitochondria

[268]. During membrane depolarization or in the presence

of reactive oxygen species, Parkin is recruited to the

mitochondrial membrane by PINK1 and ubiquitinates

mitochondrial proteins, targeting them for autophagic

degradation [269]. PD-related mutations in Parkin result in

the loss of its ubiquitin ligase activity [268]. Parkin KO

mice display decreased levels of proteins involved in

mitochondrial function or oxidative stress [270] and Parkin

KO Drosophila display a mitochondrial pathology [271].

Given its role in mitochondrial quality control, Parkin

mutations may act similarly to PINK1 loss of function and

affect neuronal differentiation, via abnormal mitochondrial

activity. Moreover, the Parkin protein ubiquitinates the

neuronal cell fate determinant TRIM32, which in turn

regulates NSC differentiation [272–275]. However, the

experimental evidence for a role for Parkin in neuronal

differentiation, outlined below, is contradictory.

Parkin KO ESCs display the same efficiency of

in vitro neuronal differentiation as the WT ESCs, in par-

ticular the expression of the DA neuronal marker, TH, was

the same in both WT and KO ESC-derived neurons [276].

RT-PCR analysis of these neurons revealed similar

amounts of all transcripts examined, including the tran-

scription factors Nurr1 and Pitx3, the enzymatic proteins

TH and AADC, and the DA receptor, D2R.

In other studies, iPSCs derived from Parkin mutation

related PD patients with homozygous or heterozygous

deletions for a variety of different exons were created and

compared to control iPSCs. Again, the mutant iPSCs dis-

played the same human pluripotent stem cell markers as

their WT counterparts and were capable of generating

embryonic bodies as well as neurospheres and differenti-

ating into DA neurons [277, 278].

On the other hand, the drosophila Parkin protein has

been shown to interact with clueless [279], which regulates

atypical protein kinase C (aPKC) activity, a protein that is

involved in NB asymmetric division, giving rise to both

NBs and newly generated neurons [280]. Interestingly,

both clueless and park (drosophila Parkin gene) mutants

display similar Parkinsonian phenotypes and mitochondrial

defects [279] as well as a similar NB phenotype, namely

mislocalized cell fate determinants [281]. Furthermore,

aPKC has been previously shown to regulate the neuronal

cell fate determinant TRIM32 [272]. Together, these

results suggest that, in Drosophila, Parkin is involved in
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the same neurogenic pathway as clueless, although further

studies will be necessary to confirm this hypothesis.

Finally, in vitro experiments have shown that, in SH-

SY5Y cells, PINK1 phosphorylates Parkin and activates its

E3 ubiquitin ligase activity, which in turn adds K63-linked

polyubiquitination chains to nuclear factor-kappaB (NF-

jB), activating NF-jB signaling [282], a known regulator

of embryonic and adult neurogenesis and neuronal differ-

entiation. PD-related mutations in PINK1 (G309D, L347P)

disrupt PINK1 kinase function [283–285] and are unable to

phosphorylate Parkin and therefore unable to activate NF-

jB signaling, suggesting that neurogenesis may also be

disrupted in these PD genetic models. These findings and

the subsequent effect on neurogenesis will need to be

confirmed in in vivo models of PINK1 and Parkin

mutations.

Although very little evidence exists linking PD-related

Parkin mutations to neurogenesis and non-motor symp-

toms of PD, clearly this protein is implicated in several

neurogenesis-related pathways, including mitochondrial

quality control in neuronal differentiation, TRIM32 ubiq-

uitination in cell fate determination, regulation of aPKC in

stem cell renewal regulation and NF-jB signaling in adult

neurogenesis and neuronal differentiation.

DJ-1 (PARK7)

Over 10 different mutations in the DJ-1 gene (1p36.23),

located at the PARK7 locus, are responsible for 1–2 % of

early-onset cases of autosomal recessive PD [286–288].

Originally identified as an oncogene, DJ-1 is thought to

act as a molecular chaperone protein [289–291], an oxi-

dative sensor and antioxidant [292–294] and in the

regulation of gene transcription [295]. DJ-1 mutations can

reduce DJ-1 protein synthesis or increase DJ-1 protein

degradation [296]. In the cell, DJ-1 is expressed in the

nucleus and the cytosol [297, 298]. Nuclear DJ-1 forms a

complex with RNA-binding proteins and DNA-binding

proteins that regulate gene transcription [295], while

cytosolic DJ-1 can be found in several pools, including in

the intermembrane space and matrix of the mitochondria.

DJ-1 is expressed in the cytosol of Nestin-positive cor-

tical NSCs cultured from E14 rats, as well as in vivo, in the

same cortical region and in rat NSC-derived neurospheres

during proliferation [298]. DJ-1 may protect NSCs during

proliferation through its antioxidant activity. Indeed, DJ-1

plays a role in the protection against oxidative stress and

oxygen–glucose deprivation in human NPCs in culture

[299] and DJ-1 deficiency in murine ESCs causes increased

sensitivity to oxidative stress (increased apoptotic cell

death after H2O2 treatment) and to proteasomal inhibition

(increased sensitivity to the proteasomal inhibitor

lactacystin) [300]. These results underline the importance

of this protein in the protection of these highly proliferative

cells against accumulation of deleterious ROS or accu-

mulating proteins.

DJ-1 protein expression has also been described in both

midbrain- and hippocampal-derived NSC neurospheres, in

cells within the neurospheres as well as in cells migrating

from the spheres [301]. During differentiation of cultured

NSCs, DJ-1 expression increases gradually although the

percentage of neuron-specific enolase NSE/DJ-1 colocal-

isation in neurons was less than 5 %, while the percentage

of glial fibrillary acidic protein/DJ-1 colocalisation in

astrocytes increased gradually to 85 % at day 7 of differ-

entiation [297]. This is in accordance with the fact that, in

the brain, DJ-1 is expressed mainly in astrocytes [302]. By

contrast, another study has demonstrated a high level of

DJ-1 expression in ESCs and a downregulation of DJ-1

expression to null amounts in these cells as they differen-

tiate to cardiomyocytes [303], suggesting that any role for

this protein in differentiation is likely specific to neural

lineages. DJ-1 may play a role in NSC differentiation by

acting as a scavenger of ROS, since controlled generation

of ROS can stimulate differentiation via regulation of

redox-sensitive transcription factors important for neuro-

genesis such as NF-jB and AP-1 [304, 305].

Conclusions

The studies described in this review demonstrate a link

between defects in NSC characteristics, neurogenesis and

PD. It suggests that some of the non-motor symptoms

observed early in PD are likely due to defects in embryonic

neuronal development as well as defects in adult neuro-

genesis. Furthermore, they underscore that PD has a strong

developmental component. A better understanding of the

interplay between deficits in embryonic and adult neuro-

genesis and PD onset and progression will be key to the

development of better treatments for this debilitating dis-

ease. In particular, the adult SVZ contains a source of

endogenous NSCs that are capable of differentiating into

DA and non-DA neurons. As such, treatments that can

restore impaired neurogenesis in PD patients could provide

a source of endogenous repair. It may be time to change the

way we look at this neurodegenerative disease, to start

considering the possibility that PD starts much earlier than

DA neuron degeneration and to consider that develop-

mental and adult neurogenesis are key players in onset and

progression of this disease.
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