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Abstract Taste receptors were first identified on the

tongue, where they initiate a signaling pathway that com-

municates information to the brain about the nutrient

content or potential toxicity of ingested foods. However,

recent research has shown that taste receptors are also

expressed in a myriad of other tissues, from the airway and

gastrointestinal epithelia to the pancreas and brain. The

functions of many of these extraoral taste receptors remain

unknown, but emerging evidence suggests that bitter and

sweet taste receptors in the airway are important sentinels

of innate immunity. This review discusses taste receptor

signaling, focusing on the G-protein–coupled receptors that

detect bitter, sweet, and savory tastes, followed by an

overview of extraoral taste receptors and in-depth discus-

sion of studies demonstrating the roles of taste receptors in

airway innate immunity. Future research on extraoral taste

receptors has significant potential for identification of

novel immune mechanisms and insights into host-pathogen

interactions.

Keywords Airway physiology � Chronic rhinosinusitis �
Epithelial biology � Host-pathogen interactions �
Respiratory infection � Interkingdom signaling

Abbreviations

ACh Acetylcholine

AHL Acyl-homoserine lactone

AMP Antimicrobial peptide

ASL Airway surface liquid

ATP Adenosine trisphophate

C4HSL N-butyryl-L-homoserine lactone

C12HSL N-3-oxo-dodecanoyl-L-homoserine lactone

CALHM1 Calcium homeostasis modulator isoform 1

cAMP Cyclic adenosine monophosphate

CGRP Calcitonin gene-related peptide

COPD Chronic obstructive pulmonary disease

CRS Chronic rhinosinusitis

CSF Cerebrospinal fluid

ENaC Epithelial sodium channel

ER Endoplasmic reticulum

GPCR G-protein–coupled receptor

IP3 Inositol 1,4,5-trisphosphate

IP3R3 Inositol trisphosphate receptor isoform 3

NO Nitric oxide

NOS Nitric oxide synthase

PDE Phosphodiesterase

PKA cAMP-dependent protein kinase A

PKG cGMP-dependent protein kinase G

PLCb2 Phospholipase C isoform b2

PROP Propylthiouracil

PTC Phenylthiocarbamide, also known as

phenylthiourea

RNS Reactive nitrogen species

ROS Reactive oxygen species

SCC Solitary chemosensory cell

T1R Taste receptor family 1 protein isoform

T2R Taste receptor family 2 protein isoform

TAS1R Taste receptor family 1 gene

TAS2R Taste receptor family 2 gene
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TLR Toll-like receptor

TRPM5 Transient receptor potential cation channel

subfamily M isoform

Introduction

It has been previously proposed that the immune system is

the mammalian ‘‘sixth sense’’ [1–3]. While our senses of

sight, smell, hearing, touch, and taste allow us to con-

sciously perceive our external environment, our immune

system similarly detects the presence of potentially dan-

gerous foreign chemicals and organisms, albeit internally

and often subconsciously. Looking at the immune system

from this viewpoint, it is perhaps not surprising but none-

theless very exciting that recent studies have demonstrated

that several mechanisms of mammalian innate immunity

utilize components of sensory signal transduction.

Chemosensory G-protein-coupled receptors (GPCRs) that

were originally identified as ‘‘taste’’ receptors have now

been found in many tissues outside the tongue (Table 1),

and bitter and sweet taste GPCRs have recently been found

to be sentinels of defense against infection in the airway,

where they function as a novel arm of innate immunity, as

described in more detail below. Emerging evidence [4] also

supports the hypothesis that taste receptors serve similar

immune roles in at least some of the other tissues in which

they are expressed. Because these chemosensory receptors

are likely involved in many biological processes beyond

taste, it is important that researchers in other fields

understand the physiology and cell biology of chemosen-

sory receptors. Thus, the focus of this review is on taste

receptor signaling mechanisms, extra-oral taste receptors,

and the recently identified roles of taste receptors in the

regulation of airway epithelial innate immunity.

The biology of taste and taste receptors

Overview of taste signaling

Taste GPCRs were first identified in the type II taste cells

of the tongue. These receptors signal information to the

brain regarding the nutritive value and/or potential toxicity

of ingested foods and beverages [5, 6]. Our sensory per-

ception of foods and beverages is called flavor [7], which is

a complex sensation made up of taste, smell, and texture,

also called ‘‘mouth feel.’’ Flavor can also include pain, as

in the case of capsaicin- or CO2-meditated activation of

nociceptor neurons during ingestion of foods containing

chili peppers or carbonated beverages [8, 9], respectively.

However, there are only five well-defined types of tastes

that are detected by the sensory cells of the taste buds of

the tongue [10]. These are sweet, salty, sour, bitter, and

savory (also known as umami, which is the taste of savory

amino acids such as glutamate). Sweet, salty, and umami

tastes reveal the presence of sugars, sodium chloride, and

amino acids, respectively. These are generally perceived as

beneficial nutrients, and they result in a pleasing taste. In

contrast, sour and bitter tastes are often perceived as

unpleasant; they signal the presence of potentially harmful

chemicals. Sour taste can alert the body to the presence of

spoiled foods by detecting lactic acid products from bac-

terial fermentation, while bitter can signal the presence of

toxic plant alkaloids such as strychnine [11].

There is thought to be only one major type of receptor

type for sweet (T1R2/3 [11–15]), salty (the epithelial

sodium channel or ENaC [16–20]), savory (T1R1/3 [14,

21–24]), and sour (acid-sensing ion channels or ASICs [20,

24–26]). Bitter sensation is unique in that there are multiple

G-protein coupled receptor (GPCR) isoforms tuned to a

wide array of different bitter compounds. These are known

as T2R receptors [6, 27–30] (Fig. 1a), and humans have at

least 25 different functional T2R isoforms [15, 31]. T2R

bitter taste receptors are found in taste bud cells known as

type II cells, sometimes also called receptor cells [32, 33].

Type II cells also contain a second family of taste GPCRs,

known as T1R receptors. The T1R family contains only 3

isoforms, T1R1, T1R2, and T1R3; (Fig. 1b–c), which oli-

gomerize to make up the receptors for umami

(T1R1 ? T1R3) and sweet (T1R2 ? T1R3). However, it

is important to note that an alternative T1R3 homo-oligo-

meric form of a sweet taste receptor has also been recently

proposed to exist in pancreatic beta cells [34–37] and

adipocytes [38]. Additionally, some type II taste cells have

been observed to express only T1R3 without T1R1 or

T1R2 [31, 39], and T1R3 homo-oligomers have been

proposed to affect calcium and magnesium taste [40].

Thus, the true range of oligomerization states of T1Rs and

the resulting functional consequences are not yet fully

clear. Biochemical studies of T1R and T2R oligomeriza-

tion have relied on heterologous expression systems,

including HEK293 cells, often utilizing tagged versions of

the receptors [41, 42]. In vivo biochemistry has so far been

hampered in particular by low levels of protein expression

and poor antibody specificity [43]. It still remains to be

determined if and/or how the in vivo oligomerization of

T1Rs and T2Rs changes their pharmacological profiles or

otherwise alters their physiological responses.

Within type II taste cells, T1R and T2R signaling is

thought to occur through identical intracellular pathways

(Fig. 2) [32, 44]. Stimulation of these receptors activates

intracellular calcium signals that cause the type II cells to

release ATP [45, 46] to activate purinergic receptors on

presynaptic cells and afferent sensory fibers [11, 44, 47].
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While these bitter, sweet, and umami GPCRs share com-

mon intracellular signaling pathways, the differential

transmission of these three taste sensations occurs, at least

in part, at a cellular level. The majority of type II taste cells

respond to only one type of taste: bitter, sweet, or umami

[33, 48–50], depending on their expression of T2Rs,

T1R2 ? T1R3, or T1R1 ? T1R3, respectively. Each taste

bud contains multiple type II cells that are differentially

coded for bitter, sweet, or umami sensation. However, we

still do not yet fully understand how these three tastes are

discriminated, as some type II cells have been found to

express multiple types of receptors and respond to multiple

types of tastes [48–50].T
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Fig. 1 G-protein coupled receptors (GPCRs) involved in bitter,

sweet, and umami taste. a Bitter taste receptors are generally believed

to be primarily composed of homo- or hetero-oligomers of isoforms

of the taste receptor 2 (T2R) family [6, 27–31]. Most T2R isoforms

have been shown to co-immunoprecipitate with other T2R isoforms

co-expressed in heterologous expression systems [41, 42]. However,

while most bitter responsive type II taste cells express multiple T2Rs,

the state of T2R oligomerization in vivo is almost completely

unknown. Additionally, the EC50 values for receptors do not appear to

be shifted by co-expression of different T2Rs in the same cells, as

measured through calcium signaling in heterologous expression

systems in vitro [41, 42]. However, potential effects of T2R

oligomerization in type II taste cell signaling in vivo are unknown.

It remains unclear whether each T2R oligomer signals independently

or cooperatively. b, c Umami and sweet receptors are made up of

oligomers of the taste receptor 1 (T1R) family. T1R1 and T1R3

oligomers form umami receptors [14, 21–23], while T1R2 and T1R3

oligomers form sweet receptors [11–15]. Both T1R and T2R family

members are believed to have similar structures to other 7-trans-

membrane domain GPCRs, but T1Rs are believed to have more

extensive extracellular N-termini than do T2Rs. The N-termini of

T1Rs are thought to contain multiple ligand binding sites [12, 22, 31,

39, 47]
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It is important to note that the focus of this review is on

T1R sweet and T2R bitter taste GPCRs, which have been

implicated in innate immunity as described below. However,

other GPCRs are expressed on taste cells of the tongue. Most

notable are the free fatty acid receptor 1 (FFA1; also known

as GPR40) and GPR120, which detects omega-3 fatty acids

[51, 52]. These may even constitute a sixth taste sensation,

the taste of fats, which have previously been thought to be

mainly detected through texture. Fat preference may also

involve the glycoprotein CD36 (also known as fatty acid

translocase or FAT) [53–61]. However, the function of these

proteins in human fat taste and fat preference is not yet fully

understood and remains an active area of research. Any roles

for these fatty acid receptors or other taste cell GPCRs in

innate immunity have not been identified.

Extraoral taste receptors: identification and potential

roles in immunity

Recent studies have determined that the expression of T2R

bitter and T1R sweet taste GPCRs extends far beyond the

tongue (reviewed in [11, 44, 62–65]). These receptors have

been found in organs as diverse as the brain, pancreas,

bladder, and testes, and they have been termed ‘‘extraoral’’

taste receptors. A representative list of known extraoral

taste GPCR expression and some of the known roles of

these receptors are shown in Table 1. Research has eluci-

dated several of the downstream signaling pathways of

extraoral T2Rs and T1Rs, but for the most part their

physiological roles remain to be determined. We also lack

information about the identities of physiological ligands for

most of these receptors in other tissues. Oral T2Rs detect

poisonous ingested chemicals like toxic plant products, and

oral T1Rs detect sugar in nutrient-rich foods [11, 15, 27,

66, 67]; however, it is unclear what agonists might activate

extraoral receptors in tissues that do not come into direct

contact with ingested food. Nonetheless, because many

compounds used as medications are known to have a bitter

taste [67], one important implication of the discovery of

extraoral T2R bitter receptors is that extraoral T2Rs may be

a mechanism underlying some off-target drug effects [63],

reinforcing the need to better understand the role these

receptors play in human biology.

In the case of T2R bitter receptors, we and other

researchers have hypothesized that at least some extraoral

T2Rs may detect bitter components of products secreted by

pathogenic bacteria or fungi. The initial evidence for this

comes from studies of solitary chemosensory cells (SCCs) in

the mouse nose, which express both T2R and T1R receptors

[68–77]. The Finger lab at the University of Colorado

showed in 2010 that these SCCs exhibit intracellular calcium

signals in response to acyl-homoserine lactones (AHLs)

[72], which are quorum-sensing molecules secreted by gram-

negative bacteria such as the airway pathogen Pseudomonas

aeruginosa [78, 79]. As many lactones are known to be bitter

[80], this result suggested that AHLs activate one or more

extraoral T2R receptors, which has now been experimentally

confirmed [81, 82] and will be described in greater detail

below. It is highly likely that there are other bitter or sweet

products secreted by pathogenic microorganisms that are

detected by extra-oral T2Rs or T1Rs, respectively.

A role for T2Rs in innate immunity is particularly

intriguing, as T2Rs have a uniquely high density of natu-

rally occurring genetic variants [83]. This variation

contributes to the complex individual taste preferences for

bitter foods such as green leafy vegetables [84] as well as

beverages such as coffee [85], scotch [86], and beer [86].

We hypothesize that if T2Rs are important in innate or

adaptive immunity, the genetic variation that causes dif-

ferences in T2R receptor function governing taste

preferences may cause variation in how cells from different

individuals detect and respond to infection. In other words,

susceptibility to protection against infections might result

from genetic variations in T2Rs that cause reduced or

enhanced receptor function, respectively. It has long been

Fig. 2 Signal transduction pathway of bitter (T2R), sweet (T1R2/3),

and umami (T1R1/3) GPCRs in type II taste cells of the tongue. As

described in the text and reviewed in [11, 32], ligand binding to taste

GPCRs results in Ca2? signaling through two G-protein-coupled

pathways. Gbc activation of phospholipase C isoform b2 (PLCb2)

results in production of inositol 1,4,5-trisphosphate (IP3), which

activates the IP3 receptor (IP3R), an intracellular ion channel that

allows calcium (Ca2?) release from the intracellular endoplasmic

reticulum (ER) calcium stores [254]. Simultaneously, Ga-gustducin

activates phosophodiesterases (PDEs), which reduce the levels of

cyclic-AMP (cAMP) and decrease protein kinase A (PKA) activity

[28]. PKA can phosphorylate and inhibit the activity of the type III

IP3R [255, 256], the major IP3R isoform found in type II taste cells

[257–259], thus reduction of PKA activity can enhance IP3R3-

mediated calcium signaling. Calcium activates the plasma membrane-

localized cation channel TRPM5 [137, 138], causing depolarization

of cellular membrane potential, activation of voltage-gated sodium

(Na?) channels [260], and generation of an action potential that

results in ATP release [11] through the CALHM1 ion channel [45, 46]

and subsequent purinergic neurotransmission of taste sensations
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thought that genetic components underlie susceptibility to

certain types of infections [87], particularly respiratory

infections [88–90]. As we will discuss below, recent evi-

dence has now validated this hypothesis by demonstrating

that T2Rs do indeed recognize bacterial products and that

genetic variation in at least one human T2R isoform can

alter susceptibility to bacterial infection.

Role of bitter and sweet taste receptors in upper

respiratory innate immunity

Overview airway epithelial innate immunity

The upper respiratory tract consists of the nose and sinuses,

termed the sinonasal cavity. In addition to warming and

humidifying inspired air, the sinonasal cavity is also the

front line of defense of the respiratory tract [91–97]. Host-

pathogen interactions occur with every breath containing

aerosolized fungal spores, bacteria, and virus particles [94].

However, in most individuals, the upper and lower airways

remain free of pathological bacterial infection. This is lar-

gely due to the multiple first-line innate immune

mechanisms that work in concert to defend the sinonasal

epithelium (Fig. 3). The primary physical defense is the

process of mucociliary clearance [91, 92, 98–103]. The

airway surface is lined by a mucus gel made up of cross-

linked glycosylated mucin macromolecules produced by

airway secretory cells; the carbohydrate sidechains of the

mucins create ‘‘sticky’’ binding sites that trap airway

pathogens and particulates in the mucus [91, 92, 98, 103,

104]. The spatially and temporally coordinated beating of

ciliated epithelial cells then transports the debris- and

pathogen-laden mucus from the upper and lower respiratory

passages toward the throat, where the mucous/pathogens/

debris mixture is cleared by swallowing or expectoration

[91, 92, 98, 103]. Mucociliary clearance is complemented

by the secretion of antimicrobial compounds, including

proteins such as lysozyme, lactoferrin, cathelicidins, and

defensins [105], as well as the generation of reactive oxygen

and nitrogen species (ROS/RNS) that can have direct anti-

bacterial, anti-fungal, and antiviral effects [106, 107]. Nitric

oxide (NO) is thought to be a particularly important RNS

defense mechanism in the sinuses. High levels of nitric

oxide synthase (NOS), the enzyme that generates NO rad-

icals from arginine, are expressed in the sinonasal

epithelium [108, 109]. NO and its reactive derivatives have

direct bactericidal effects [106, 107], and it is thought that

NO produced by the sinuses diffuses through the mucous

and is important for preventing infection. Altered NO levels

have been linked to chronic rhinosinusitis and other airway

diseases [110–114]. Finally, when the above innate defen-

ses are not enough, epithelial cells can also secrete

cytokines and chemokines that can recruit dedicated

immune cells and activate inflammatory pathways [105].

When these upper respiratory innate defenses fail, infec-

tion can result. Chronic rhinosinusitis (CRS) is a disease of

chronic infection and inflammation of the nose and sinuses

[91, 92], frequently requiring prolonged medical therapy and

severely decreasing quality of life [91, 92]. In fact, CRS

patients report worse quality-of-life scores for physical pain

and social functioning than those suffering from chronic

obstructive pulmonary disease (COPD), congestive heart

failure, or angina [115, 116]. In addition to severely reducing

quality of life, sinus and nasal infections can ‘‘seed’’ lower

airway infections and/or exacerbate existing lower airway

diseases [117], making these infections an important public

health burden. Elucidating innate airway epithelial defense

mechanisms and identifying novel therapeutic targets is

particularly important in light of the rising prevalence of

antibiotic resistant bacteria in patients with upper airway

infections and CRS [97, 118–122]. Interestingly, as we will

describe below, many innate defense pathways in the sino-

nasal cavity are regulated by taste GPCRs.

The T2R38 bitter taste receptor in human upper airway

cilia detects bacterial quorum-sensing molecules

and stimulates nitric oxide (NO) production

In addition to being the ‘‘engines’’ driving mucociliary

clearance, airway ciliated cells have also long been known

Fig. 3 Mechanisms of epithelial innate immunity in the airway. As

described in the text and reviewed in [105, 261], inhaled viruses,

bacteria, and fungi are trapped by sticky mucus created by mucin

macromolecules secreted by secretory goblet cells. Trapped patho-

gens are removed from the airway by mucociliary transport, which is

driven by ciliary beating and is dependent upon regulation of ion and

fluid transport by epithelial cells that regulates the mucus viscosity. In

addition to mucociliary transport, direct pathogen killing or inacti-

vation can occur via the secretion of antimicrobial peptides as well as

the generation of reactive oxygen species (ROS) and reactive nitrogen

species (RNS). During longer-term exposure to pathogens, epithelial

cells can also secrete cytokines to recruit dedicated immune cells and

activate inflammatory pathways
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to function in immune detection through the expression of

Toll-like receptors (TLRs [96, 97, 123, 124]). TLRs rec-

ognize conserved structures called pathogen-associated

molecular patterns (PAMPs), including lipoteichoic acid

(LTA; recognized by TLR2) from gram-positive bacteria,

lipopolysaccharide (LPS; recognized by TLR4) from gram-

negative bacteria, and bacterial flagellin (recognized by

TLR5) [96, 97]. In 2009, the Welsh Lab at the University

of Iowa published the observation that human bronchial

epithelial cells also express T2R bitter taste receptors that

activate calcium responses to increase ciliary beating

[125], proposing that this process is a response that exists

to clear noxious chemicals. Interestingly, these bronchial

T2Rs were found to be localized within the motile cilia

themselves [125], demonstrating that motile cilia are

‘‘sensory organelles.’’ This finding was highly novel, as

traditionally there are two distinct classifications of animal

cell cilia. Primary or sensory cilia are expressed on nearly

every cell type in the body with one single primary cilium

per cell, containing a 9 ? 0 microtubule structure and

functioning in diverse sensory roles [126–128]. Motile

cilia, however, are expressed only in specialized epithelial

cells and exhibit a 9 ? 2 microtubule structure, occurring

at 100–300 per cell [129]. Motile cilia had long been

thought to be solely responsible for mechanical transport of

fluid/mucus, as in the airway epithelial (Fig. 2) and during

development of embryonic left–right asymmetry in verte-

brates [130]. However, the identification of chemosensory

taste receptors within motile cilia suggested that they, like

primary cilia, also serve a sensory role.

We examined the expression of bitter taste receptors in

motile cilia of the upper respiratory tract to determine if

they, too, express T2R receptors and whether these

receptors might detect bacterial products and play a role in

innate immunity. We found that human sinonasal ciliated

epithelial cells express the bitter taste receptor T2R38,

which was indeed localized to the motile cilia [81]. T2R38

function was studied in human tissue explants as well as

air–liquid interface (ALI) cultures of primary sinonasal

cells. ALI cultures are a state-of-the-art respiratory cell

culture model that mimics a polarized respiratory epithe-

lium with well-differentiated ciliated cells [131–135].

When ciliated epithelial cells were stimulated with T2R38-

specific agonists, such as phenylthiocarbamide (PTC), they

exhibited low-level calcium responses that activated NOS

to drive robust intracellular NO production [81]. This sig-

naling pathway depended on two important components of

the canonical taste signal transduction cascade, TRPM5

[11, 136–138] and phospholipase C isoform b2 (PLCb2)

[11] (Fig. 2), as shown by pharmacological inhibition [81].

High levels of NOS are expressed in the cilia and

microvilli of the sinonasal epithelium [108, 109], and NO

production is thought to be an important airway defense

mechanism [110, 139, 140]. NO released by the airway

epithelium is believed to be able to rapidly diffuse inside

bacteria, where its reactive derivative S-nitrosothiols and

peroxynitrites can damage DNA or membrane lipids and

inactivate enzymes containing sulfhydryl groups, thiol

groups, or metal cofactors [106, 107]. We found that the

NO produced during T2R38 activation acted in two ways.

First was as a second messenger to increase mucociliary

clearance through guanylyl cyclase and PKG activation,

which increases ciliary beating [129]. Secondly, the NO

also diffused into the airway surface liquid (ASL) and had

direct bacteridical effects against P. aeruginosa [81]. In

this study, we also identified the two major P. aeruginosa

AHLs, N-butyryl-L-homoserine lactone (C4HSL) and N-3-

oxo-dodecanoyl-L-homoserine lactone (C12HSL) [79] as

T2R38 agonists [81]. Using a Wt P. aeruginosa strain

(PAO1) as well as a strain mutated for the enzymes that

synthesize AHLs (strain PAO-JP2; DlasI, DrhlI; [141]), we

demonstrated that T2R38 detects physiological concentra-

tions of AHLs to activate calcium-dependent NO-

production, suggesting that T2R38 functions in airway

ciliated cells as a sentinel receptor to detect bacteria and

regulate innate immune responses. Because many types of

gram-negative bacteria secrete AHLs [142], this is likely a

general innate immune mechanism against many

Fig. 4 T2R38 bitter taste receptor regulation of airway epithelial

innate immunity. Reading from left to right, acyl-homoserine lactone

(AHL) molecules are secreted by gram-negative bacteria to regulate

quorum sensing. These AHL molecules activate T2R38 expressed in

human sinonasal cilia [81] and yet-unidentified T2Rs in mouse nasal

cilia [82], which results in activation of PLCb2, which liberates IP3

and causes initiation of a calcium (Ca2?) signal that activates nitric

oxide synthase (NOS)-dependent nitric oxide (NO) production.

Because the NOS activation is rapid (within seconds) and Ca2?-

dependent, it is likely that the NOS isoforms involved are of the

endothelial NOS (eNOS) family [262], known to be expressed in the

airway [263]. NO production has two distinct effects. The first is

activation of cellular protein kinase G (PKG), which phosphorylates

ciliary proteins [129, 264] to increase ciliary beating and mucociliary

transport [81, 82]. NO additionally diffuses directly into the airway

surface liquid, where it has direct bactericidal effects [81]
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pathogenic gram-negative bacteria. A diagram of T2R38

function in sinonasal ciliated epithelial cells is shown in

Fig. 4.

While there is no clear T2R38 homologue between

humans and mice, mice do express T2R receptors capable

of responding to PTC [71, 143–150]. We found that mouse

nasal ciliated epithelial cells likewise respond to PTC or

AHL stimulation with a calcium-dependent NO response

that increases mucociliary clearance [82]. The use of

TRPM5-/- and PLCb2-/- knockouts mouse cultures sup-

ported the requirement for these two signal transduction

components. Interestingly, the airway epithelial T2R38

response was completely intact in mice knocked out for the

Ga protein Ga-gustducin [82], an essential component of

taste signaling in the type II taste cells of the tongue [11,

14, 28, 151–154]. While taste-receptor signaling has been

previously observed to be partially intact in the absence of

Ga-gustducin [14, 21, 154–156], to our knowledge, this

finding that a T2R-receptor-linked signaling pathway is

completely independent of Ga-gustducin is unique [82].

Additional research is needed to more clearly determine the

signal transduction mechanisms of T2R38 and any other

T2Rs that are localized to airway cilia.

To determine if T2R38 may be a marker for bacterial

infection, we examined the effects of common human

polymorphisms in the TAS2R38 gene, which encodes

T2R38, on airway innate immune responses. TAS2R38 is

one of the most well-studied TAS2R genes [157–161].

TAS2R38 has 2 common polymorphisms in Caucasian

populations, one encoding a functional receptor and one

encoding a nonfunctional receptor. The differences in the

resulting proteins are at amino acid positions 49, 262, and

296. The functional T2R38 receptor contains proline (P),

alanine (A), and valine (V) residues while the nonfunc-

tional T2R38 contains alanine (A), valine (V), and

isoleucine (I) at these positions, respectively [157]. It has

been suggested that the loss of the valine at the third

position in the AVI variant prevents receptor activation

[162–164]. Homozygous AVI/AVI individuals (*30 %

frequency in Caucasian populations) are ‘‘non-tasters’’ for

the T2R38-specific agonists PTC (also known as phenyl-

thiourea or PTU) and 6-propyl-2-thiouracil (PROP) [157].

PAV/PAV individuals (*20 % frequency in Caucasian

populations [157]) are termed ‘‘super tasters’’ for these

agonists, while AVI/PAV heterozygotes have varying

intermediate levels of taste [157, 165].

We found that the AHL-induced antibacterial responses

of human sinonasal epithelial cells correlate with these

genetic polymorphisms. Epithelial cells derived from PAV/

PAV ‘‘supertaster’’ individuals exhibited markedly

enhanced NO production, mucociliary clearance, and bac-

terial killing compared with AVI/PAV heterozygote or

AVI/AVI ‘‘non-taster’’ cells [81]. Furthermore, preliminary

clinical data suggested that PAV/PAV T2R38 ‘‘supertas-

ters’’ are less susceptible to gram-negative sinonasal

infection than PAV/AVI or AVI/AVI patients who have

lower levels of T2R38 function [81]. Now, further clinical

studies have demonstrated that T2R38 supertasters are less

susceptible to CRS [166–168]. Prospective clinical studies

of T2R38 genotype and CRS/infection susceptibility,

including patient outcomes, are currently ongoing. How-

ever, these data have already established the T2R38

pathway as a potential therapeutic target to promote innate

immune responses in patients with upper respiratory

infections. However, there is a large subset of patients that

would be sub-optimally responsive to treatment with

T2R38 agonists (i.e., PAV/AVI and AVI/AVI individuals).

It is thus still necessary to further define the T2R38-med-

iated signaling pathway in airway epithelial cells as well as

identify other T2Rs that activate similar innate immune

responses. Additionally, more research is needed to deter-

mine whether AVI/AVI individuals are more susceptible to

infections in other tissues where taste receptors are

expressed and may contribute to innate immunity, includ-

ing the lungs or gut epithelium.

Solitary chemosensory cells (SCCs) use both T2R bitter

and T1R sweet taste receptors to regulate upper

respiratory innate immunity through antimicrobial

peptide secretion

Beyond the T2R bitter taste receptors in ciliated epithelial

cells, the upper airway also contains dedicated chemosen-

sory cells, known as solitary chemosensory cells (SCCs),

which express both bitter and sweet taste receptors [68, 69,

71–77, 169–171]. The term ‘‘solitary chemosensory cell’’

was first used to describe the chemosensory epithelial cells

found in fish [172–174], which exhibit an elongated mor-

phology with heavy neuronal innervation. Morphologically

similar cells were later discovered in the upper respiratory

tracts of alligators [175] and mammals, including mice,

rats, and humans [68, 70–75, 170, 176]. These cells have

been classified as SCCs based on their elongated mor-

phology as well as their expression of chemosensory signal

transduction components, including T2R bitter and T1R

sweet ‘‘taste’’ receptors [68–76, 171, 176, 177], as will be

described below.

Immunofluorescence, in situ hybridization, and imaging

of TRPM5-GFP-labeled and gustducin-GFP-labeled mouse

airways have demonstrated that mouse nasal SCCs express

important components of the canonical taste signaling

pathway that are known to be important for taste receptor

signaling in the cells of the tongue, including Ga-gust-

ducin, PLCb2, and TRPM5 [68, 71–73, 173]. When mouse

nasal SCCs are stimulated with bitter compounds such as

denatonium benzoate or with bacterial AHL quorum
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sensing molecules, they exhibit intracellular calcium

responses that cause ACh release to activate trigeminal

afferent nerves that are peptidergic nociceptors [68, 71,

72], resulting in breath-holding [72] and inflammatory

responses [77]. The breath-holding response, which pre-

sumably exists to limit further inhalation of toxic

compounds, is similar to what is observed with nasal

application of capsaicin, which directly activates the

TRPV1 ion channel localized to airway trigeminal noci-

ceptor neurons [72]. These trigeminal nociceptors can also

release several types of neuropeptides into the local airway

environment, including vasoactive intestinal peptide (VIP),

substance P, and calcitonin gene related peptide (CGRP)

[178–182]. It is thus very possible that SCC activation

in vivo also results in local responses such as enhanced

ciliary beating [98] or fluid secretion from submucosal

exocrine glands [183–186]. However, any ability of SCC-

activation to regulate these processes in vivo remains to be

experimentally confirmed.

SCCs have only recently been identified in humans [74–

76]. In addition to T2R38, which we showed is expressed

in ciliated cells [81], other researchers using reverse-tran-

scription (rt)-PCR initially demonstrated expression of

T2R4, T2R14, and T2R46 in preparations from the inferior

and middle turbinates, septum, and uncinate process of the

human sinonasal cavity [75]. SCC-like cells, expressing the

bitter receptor T2R4, the umami receptor component

T1R1, and the sweet receptor component T1R2, were ini-

tially found in the human vomeronasal duct [74]. More

recently, we used immunofluorescence microscopy to

identify T2R47- and T1R2/3-expressing SCC-like cells in

ALI cultures derived from cells isolated from surigical

specimens obtained from a variety of sinoasal anatomical

regions [76]. It remains to be determined whether there are

differences in SCC numbers or distribution throughout the

sinonasal cavity, but it appears that SCCs can be isolated

and cultured from many different regions of the sinonasal

cavity.

We studied SCC physiology in ALI cultures from

humans and mice as well as human sinonasal explants [76].

ALI cultures have been previously been shown to contain

ciliated, goblet, and basal cells [131–135], and we now

know that human and mouse ALIs also contain SCCs, as

described below. When human sinonasal ALIs or inferior

turbinate tissue explants were stimulated with denatonium

benzoate, a bitter agonist that was previously used to

stimulate mouse nasal SCCs [68, 71–73], an intracellular

calcium response was observed that originated from dis-

crete cells. This calcium response initiated a calcium wave

that spread to the surrounding cells through carbenoxolone-

sensitive and 18a-glycerrhetinic acid-sensitive gap junc-

tions [76]. Initiation of the calcium signal required

components of the canonical taste signaling pathway

including a-gustducin, PLCb2, the inositol 1,4,5-trisphos-

phate (IP3) receptor, and TRPM5, as demonstrated by both

pharmacology in human cultures as well as using cultures

from knock-out mice [76]. Injection of the human dena-

tonium-responsive cells with a fluorescent dye revealed a

morphology identical to SCCs [76]. Subsequent immuno-

fluorescence microscopy revealed the co-expression of

T2R47 and T1R3 in ALI cultures in cells with a similar

non-ciliated SCC-like morphology. The pharmacological

profile of the bitter agonists that induced human SCC

responses (denatonium benzoate, absinthin, parthenolide,

and amarogentin; [187]) suggested a role for T2R isoforms

T2R10, and T2R46, and T2R47 (also known as T2R30)

[76]. Interestingly, human SCC responses were activated

by neither T2R38-specific agonists nor P. aeruginosa

AHLs, as previously shown for mice SCCs [68, 71–73, 77,

176]. This may reflect a species-specific difference, with

T2R38-expressing ciliated epithelial cells mediating the

primary response to AHLs in humans rather than SCCs. It

is yet unknown which, if any, bacterial or fungal products

activate T2Rs in human nasal SCCs, though the strong

antimicrobial response evoked by their stimulation (dis-

cussed below) strongly suggests that they are activated in

response to infection. Microbes secrete numerous products

in addition to AHLs, including exotoxins, metabolic pro-

ducts, and other quorum-sensing molecules, such as

autoinducer 2 (AI-2 [188]) and various autoinducer pep-

tides [189, 190]. Further identification of T2R isoforms

expressed in SCCs as well as screening of these T2Rs with

bacterial and fungal compounds and/or conditioned-media

will likely elucidate more bitter products secreted by air-

way pathogens.

Surprisingly, it was noted that denatonium-induced

calcium responses in ALI cultures were blocked in a dose-

dependent fashion by apical sugars such as glucose and

sucrose [76]. This inhibition was mimicked by a non-

metabolizable artificial sweetener, sucralose, a potent

T1R2/3 agonist [14, 15, 22]. The glucose or sucralose

inhibition was reversed by the T1R2/3 antagonists lactisole

[12, 191, 192] and amiloride [193], but not by inhibitors of

glucose transporters such as phloretin and phlorizin [76].

The data were supported by studies using T1R3 knock-out

mice, which lack functional T1R2/3 receptors [194, 195];

ALI cultures derived from Wt mice exhibited sugar-med-

iated inhibition of T2R SCC calcium responses that were

abolished in cultures derived from T1R3 knock-out mice

[76]. Together, the immunocytochemical and physiological

data confirm that sinonasal SCCs express both bitter and

sweet taste receptors, which function in antagonistic

physiological roles. The physiological and clinical signifi-

cance of this finding will be discussed below.

Unlike T2R38, the SCC T2R stimulation did not acti-

vate nitric oxide production, nor did it activate cytokine
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secretion [76]. Instead, stimulation of SCC T2Rs activated

robust secretion of antimicrobial peptides, including b-

defensins 1 and 2. The defensin secretion required propa-

gation of the calcium signal to the surrounding epithelial

cells [76]. The secretion of these b-defensins appeared to

occur directly from the surrounding ciliated and non-cili-

ated epithelial cells, based on immunofluorescence

localization of b-defensins in ALI cultures and the loss of

the immunofluorescence signal after stimulation with the

bitter T2R agonist denatonium. The antimicrobial secre-

tions were found to have activity against a spectrum of both

gram-positive (Staphylococcus epidermis and methicillin-

resistant Staphylococcus aureus) as well as gram-negative

(Pseudomonas aeruginosa and Klebsiella pneumoniae)

bacteria [76]. The antimicrobial peptide secretion observed

during SCC T2R stimulation was immediate; the majority

occurred within 5 min. In contrast, enhanced antimicrobial

peptide secretion in response to stimulation of TLRs was

observed to take up to 12 h [76]. It has long been known

that TLRs in epithelial cells up-regulate mRNA for anti-

microbial peptides such as defensins [96, 97]. Based on

these observations, the TLR- and T2R-mediated defensin

responses are distinguished by very different time scales,

with T2Rs mediating a more rapid/immediate release of

already-synthesized antimicrobial peptides. Thus, while

TLRs are important for sustained responses through

enhanced antimicrobial production, T2Rs are important for

regulating rapid antimicrobial responses through more

immediate antimicrobial release.

Calcium imaging and quantification of b-defensin

release from human sinonasal explants suggest that ALI

cultures accurately reflected the in vivo responses of the

epithelial cells. Furthermore, the SCC/T2R-mediated epi-

thelial antimicrobial peptide secretion is unique to the

human upper airway; cultures derived from human bron-

chial tissue samples did not exhibit similar localized SCC-

mediated calcium signals or antimicrobial peptide secretion

[76]. Rather, the bronchial epithelial cell responses to bitter

agonist were more global, as previously reported by others

[125], likely reflecting the role of ciliated cells, rather than

SCCs, as the primary sites of expression of T2Rs in the

lower airway. Additionally, while many components of

T2R-initiated calcium signaling appeared to be similar in

human and mouse nasal ALI cultures, and stimulation of

mouse nasal SCCs yielded a calcium wave, it did not result

in release of antimicrobial peptides.

As described above, in the mouse, denatonium-respon-

sive T2R signaling in vivo is linked to activation of

trigeminal neurons and breath holding responses [68, 71–

73, 170, 173] and activation of inflammation [77]. The data

obtained so far suggest that human sinonasal SCCs and

denatonium-responsive T2Rs are linked to more local

responses regulating innate immunity. It cannot yet be

ruled out that a similar trigeminally-mediated response

exists in humans and mice, though the data so far suggest

that the localized SCC immune response via release of

antimicrobial peptides is not present in the mouse and thus

illustrate a major difference between human and mouse

SCCs. The role of SCCs in trigeminal activation in humans

awaits further investigation. Experiments in ALI cultures,

which lack neuronal innervation, cannot be used to deter-

mine whether SCCs activate trigeminal neurons in the

human upper airway. Further in vivo experiments are

required to determine if this is the case, but performing

such experiments in human subjects may prove difficult. It

is possible that clinically-relevant in vivo studies of SCCs

and their regulation of local immune pathways will require

the identification and use of an animal model that can

better recapitulate the human sinonasal physiology,

potentially the rabbit [196], sheep [197], or pig [198].

However, if human SCCs do activate trigeminal nerves,

they may likewise trigger the release of neuropeptides such

as substance P or VIP. Such neurotransmitters could trigger

airway submucosal gland secretion [185, 199, 200],

increase secretory or ciliary beating responses from airway

epithelial cells themselves [98], and/or activate inflamma-

tion [77].

Perhaps the most surprising revelation about human

SCC physiology was the inhibition of T2R bitter receptor

responses during T1R2/3 sweet receptor stimulation. As

mentioned above, T1R2/3 sweet receptor activation by

physiologically-relevant concentrations of glucose or by

artificial sweeteners inhibited both T2R-activated calcium

signaling as well as antimicrobial peptide secretion in both

ALIs as well as tissue explants [76]. Interestingly, the

concentrations of glucose normally found in the ASL

(*0.5 mM), which appear to be sufficient to activate

T1R2/3 expressed in human nasal SCCs, are 10-100-fold

lower than the concentrations required to activate T1R2/3

in in vitro heterologous expression systems [22] or to

activate T1R2/3-dependent sweet taste [201]. However,

like airway T1R sweet receptors, T1R sweet receptors

expressed in pancreatic b-cells [202] and gut endocrine

[203] also respond to lower sugar concentrations than oral

T1R2/3. While oral T1R2/3 sweet receptors appear to be

tuned to the higher concentrations of sugars found in foods,

extra-oral T1R2/3s appear to be tuned to sugar concentra-

tions that are physiologically relevant to the tissues in

which they are found. Whether the differences in extra-oral

and oral T1R sweet receptor sugar sensitivity are accounted

for by altered post-translational modification, changes in

stoichiometry, coupling to alternative signaling pathways,

or expression of tissue-specific accessory subunits remains

to be determined.

Nonetheless, T1R2/3 expression in the airway plays an

important role in attenuation of antimicrobial responses.
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We hypothesize that, in vivo, sinonasal T1R2/3 sweet

receptors are activated by glucose that is always present in

the airway surface liquid, albeit at low levels in healthy

individuals. Glucose is normally present in airway surface

liquid because it tonically leaks through the epithelium via

paracellular pathways. Glucose uptake via apical glucose

transporters such as facilitative-diffusion GLUT trans-

porters as well as sodium linked glucose transporters

(SLGTs) keep healthy airway surface liquid glucose around

0.5 mM or less, or approximately ten-fold below fasting

serum levels [204–206]. However, 0.5 mM glucose was

sufficient to partially attenuate the SCC T2R antimicrobial

response by approximately half [76]. We hypothesize that

T1R2/3 may act as a ‘‘rheostat’’ to control the magnitude of

the T2R response depending on the glucose concentration

in the airway surface liquid. Depletion of ASL glucose

concentration via bacterial glucose consumption may sig-

nal the onset of a bona fide infection and play a role in the

activation of T2R-mediated AMP secretion. The T1R2/3

sweet receptors in SCCs may function to desensitize SCC

T2Rs to bitter compounds secreted by some bacteria during

low-level colonization, but this desensitization is relieved

when bacterial numbers increase enough to cause depletion

of ASL glucose. A model of this proposed mechanism is

shown in Fig. 5.

While intriguing, this hypothesis requires further study

in vivo. However, if validated, it may have very novel

clinical implications. As stated above, normal ASL glucose

concentration from healthy individuals is approximately

0.5 mM or less [76, 204–206]. However, we found that the

mean glucose concentration in nasal secretions from

patients with CRS was approximately three to four fold

higher than healthy individuals (P \ 0.01) [76]. As dis-

cussed above, glucose homeostasis in the ASL is the result

of a balance of tonic glucose leakage through the airway

epithelium as well as uptake into the airway cells via apical

transporters [204–206]. Upsetting this balance can alter

ASL glucose concentration, as observed in diabetic patients

with elevated blood glucose levels (hyperglycemia) who

have a resulting increased flux of glucose into the ASL and

have elevated ASL glucose [206, 207]. CRS patients have

elevated ASL glucose independent of blood glucose levels.

It is likely that the higher CRS glucose concentrations

derive from increased leak caused by breakdown of the

epithelial barrier as a consequence of chronic infection and

inflammation [204], which likely varies with individual

patient disease [204]. It has been demonstrated in vitro that

pro-inflammatory mediators increase paracellular glucose

flux in human bronchial cells and disrupt tight junctions in

human sinonasal cells [208, 209].

The higher ASL glucose concentrations in diabetic

patients [204] may contribute to previous observations that

diabetics are more prone to some airway infections than

non-diabetics [204, 210]. Recently, in a retrospective study

of CRS patients, diabetics were found to be more likely to

have intraoperative microbiology cultures that included

gram-negative bacteria such as P. aeruginosa [211]. Pre-

viously, it has been speculated that keeping the ASL

glucose concentrations low is important for keeping the

airways sterile because it limits the nutrients available for

bacteria to consume [204–206]. However, high ASL glu-

cose in CRS or diabetic patients may actually facilitate

airway infections by an additional mechanism of repressing

T2R-mediated responses in SCCs through over-activation

of T1R2/3 sweet receptors. This could predispose patients

with elevated glucose levels to infection by limiting the

normal SCC responses to bitter molecules produced by

bacteria. Topical application of T1R2/3 antagonists like

lactisole may restore the ability of sinonasal epithelial cells

to mount an appropriate antimicrobial response to bitter

bacterial molecules secreted during infection, and may be a

Fig. 5 Nasal solitary chemosensory cell (SCC)- and taste receptor-

dependent regulation of airway innate immunity. Reading from left to

right, bitter chemicals are secreted by microbes during infection.

Some of these molecules, which are yet unidentified but are distinct

from AHLs, activate the T2R bitter receptors expressed in solitary

chemosensory cells (SCCs), which activates a Ga-gustducin (Ga-

gust.)-dependent and PLCb2-dependent calcium (Ca2?) response that

propagates to surrounding epithelial cells via gap junctions [76]. In

human, but not mouse, sinonasal epithelial cells, this calcium signal

causes the surrounding cells to secrete antimicrobial peptides

(AMPs), including b-defensins, which directly kill both gram-positive

and gram-negative bacteria. Airway surface liquid (ASL) glucose

(*0.5 mM in healthy individuals [76]) normally attenuates T2R-

mediated signaling through activation of T1R2/3 sweet receptors,

except during times of infection, when bacteria likely decrease ASL

glucose concentration by consuming and metabolizing the glucose.

Reduction of ASL glucose relieves the T1R2/3-mediated inhibition of

T2R signaling and AMP secretion [76]. In mice, SCC activation by

bitter compounds results in acetylcholine (ACh) release and activa-

tion of trigeminal neurons [77]; it remains to be determined if this

mechanism also exists in the human nasal epithelium. For purposes of

simplicity and clarity, T2R receptors present in nasal ciliated cells are

not shown in this figure
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useful therapy for some patients while avoiding conven-

tional antibiotics.

It also remains to be determined if there is any corre-

lation between susceptibility to airway infections and

polymorphisms in the TAS1R2 and TAS1R3 genes, which

encode T1R2 and T1R3. TAS1R polymorphisms have been

identified which alter the response of T1R2/3 receptors to

sugars [158, 160, 212]. Increased sugar sensitivity of

T1R2/3 in the airway might lead to increased repression of

T2R signaling in SCCs, potentially limiting antimicrobial

responses. The potential role of the T1R2/3 sweet receptor

polymorphisms in airway disease is strongly supported by a

recent study of Canadian CRS patients and healthy indi-

viduals showing allele frequency differences of[10 % for

16 different single nucleotide polymorphisms in TAS1R

genes [168]. Further genetic studies of TAS1R2/3 in airway

diseases are needed.

Taste receptors in other airway cell types

Airway taste receptor expression extends beyond ciliated

cells and sinonasal SCCs. There are also other chemosen-

sory cells identified in other regions of the mouse airway

that await further investigation in human. In mice, tracheal

chemosensory cells have been identified, which are called

‘‘brush cells’’ due to their apical tuft of microvilli [4, 177,

213–215]. Mouse tracheal brush cells express T2Rs that are

activated by AHLs, including C12HSL, to stimulate ACh

release that activates trigeminal-nerve-mediated breath-

holding responses [4, 177, 213, 214]. A chemosensory role

for human tracheal brush cells has not yet been identified,

but it is possible that human tracheal brush cells are linked

to local antimicrobial responses similarly to human nasal

SCCs. This requires further experimentation using human

tracheal ALI cultures and tissue explants. Bronchial

smooth muscle cells also express T2Rs that mediate

bronchodilation [216–219]. It is unknown whether smooth

muscle T2Rs respond to endogenous yet-unidentified host

signaling molecules or to bitter molecules from pathogens

that penetrate the epithelium. Further research is needed to

identify how T2Rs in both brush cells and smooth muscle

cells contribute to host-pathogen interactions as well as

airway innate immunity.

Conclusions and remaining questions

As described above, the emerging data suggest that T2R

bitter and T1R sweet taste receptors constitute a novel

sentinel detection system in the upper airway epithelium.

Multiple receptors are expressed in different airway cell

types, including T2R38 in ciliated cells and T2R47 and

T1R2/3 in SCCs. These two different cell types regulate

different antibacterial defense mechanisms [76, 81]. Of

particular interest are the differences between nasal and

bronchial taste receptor responses as well as the differences

between human and mouse SCCs, as described above. This

suggests that taste receptors have evolved to function in

highly specialized roles in different tissues as well as in

different species. The ability of human SCC T2R-activated

antimicrobial secretions to kill a broad range of bacteria,

including antibiotic-resistant S. aureus [76] suggests that

this antimicrobial pathway may be a promising therapeutic

target. It is also possible that the airway T2R pathways may

be involved in antifungal [220] or antiviral [221] responses

as well. Importantly, at least one of these taste receptors,

T2R38, appears to be part of an interkingdom ‘‘eaves-

dropping’’ system by which mammalian host cells can

intercept bacterial quorum sensing communications [81].

Research into determining whether other bacterial com-

pounds are perceived as bitter is ongoing. A better

understanding of the different T2R isoforms expressed in

ciliated cells and SCCs will speed identification of poten-

tial compounds that stimulate one or both of these

pathways.

Additionally, more research is needed to examine the

role of bitter and sweet taste receptors in other epithelia

beyond the airway (Table 1). It is very logical to hypoth-

esize that at least some extra-oral T1Rs and T2Rs receptors

play immune roles beyond the airway. Their roles in air-

way epithelial innate immunity may only represent the ‘‘tip

of the iceberg’’ of the true scope of the importance of taste

receptors to immunity. Supporting this, it was recently

demonstrated that chemosensory brush cells of the rodent

urethra, which express both T2R bitter and T1R1/3 umami

receptors, respond to the bitter compound denatonium and

the umami agonist monosodium glutamate, resulting in

release ACh to activate the bladder detrusor muscle [4].

Moreover, these chemosensory cells also respond to a heat-

inactivated uropathogenic E. coli strain, suggesting that

these chemosensory cells function to detect infecting bac-

teria and trigger their expulsion.

It is becoming increasingly clearer that taste receptors

have important roles beyond simply that of gustation. The

chemosensory functions of T1Rs and T2Rs as sentinels of

innate immunity may partly explain why these receptors

are so widely expressed throughout the body. While vari-

ations in the genes encoding these bitter and sweet GPCRs

have long been known to control human food and beverage

preferences, they may be even more important to human

biology than previously thought if these genes also impact

susceptibility to infection. It is very probable that future

studies of extra-oral taste receptors will reveal additional

novel insights into immune pathways as well as inter-

kingdom-signaling mechanisms that play key roles in host-
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pathogen interactions between mammalian cells and

invading pathogens. Differences in chemical signals and

activation of chemosensory receptors might also one day

be found to play a role in how host cells differentiate

between pathogenic and commensal or symbiotic bacteria.
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