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Abstract Alzheimer’s disease (AD) is the most common

neurodegenerative disease. Although a major cause of AD

is the accumulation of amyloid-b (Ab) peptide that induces

neuronal loss and cognitive impairments, our understand-

ing of its neurotoxic mechanisms is limited. Recent studies

have identified putative Ab-binding receptors that mediate

Ab neurotoxicity in cells and models of AD. Once Ab
interacts with a receptor, a toxic signal is transduced into

neurons, resulting in cellular defects including endoplasmic

reticulum stress and mitochondrial dysfunction. In addi-

tion, Ab can also be internalized into neurons through

unidentified Ab receptors and induces malfunction of

subcellular organelles, which explains some part of Ab
neurotoxicity. Understanding the neurotoxic signaling ini-

tiated by Ab-receptor binding and cellular defects provide

insight into new therapeutic windows for AD. In the

present review, we summarize the findings on Ab-binding

receptors and the neurotoxicity of oligomeric Ab.
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Introduction: Ab oligomers in neurotoxicity

Extracellular plaques and neurofibrillary tangles (NFTs)

are histological hallmarks found in the brains of patients

with AD and are mainly composed of Ab and tau

proteins, respectively. AD is characterized by learning

and memory deficits largely attributed to the neuronal

degeneration and cell death of affected neurons in the

hippocampus and cerebral cortex. Ab is a 4-kDa peptide

that is a proteolytic product of amyloid precursor protein

(APP). The extracellular region of APP is cleaved by a

group of metalloproteases called a-secretases and the

remaining fragment undergoes intramembrane proteolysis

by the c-secretase protein complex [1]. This process

generates the peptide fragment p3 that is not toxic. In

contrast, APP is sequentially processed by b-site APP

cleaving enzyme (BACE) and c-secretase in AD brains

[2]. This ‘‘amyloidogenic pathway’’ liberates Ab, which

is regarded as a main culprit in AD etiology because it

forms insoluble deposits by self-aggregating. Mutations

in APP and presenilin (PS), a catalytic unit of c-secre-

tase, elicit familial AD by driving the amyloidogenic

pathway [3]. Cleavage of Ab by c-secretase determines

its amino acid length from 37 to 43 amino acids long

[4]. Among them, Ab40 and Ab42 are the major Ab
species. Longer Ab42 is more prone to form aggregates

than Ab40 and is regarded as a major mediator of

neurotoxicity. An elevated ratio of Ab42 to Ab40 is also

found in AD brains [5]. Mutations located immediately

after the C-terminus of Ab induce greater Ab42 pro-

duction and result in familial AD [6, 7]. Together, strong

evidence points to Ab42 as the critical Ab isoform in

AD pathology.

Interestingly, recent reports support the idea that Ab
oligomers, which assemble with a few Ab monomers less

than 20, exert more toxicity to neurons than fibrillar Ab
deposits [8]. Ab oligomers are produced in vitro by

incubating synthetic Ab under certain conditions [9, 10].

Although molecular features of synthetic Ab oligomers

are consistent and adjustable, oligomeric conformations
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differ from each other depending on the preparation

conditions. Furthermore, it is unclear whether synthetic

Ab oligomers accurately reflect the features of Ab found

endogenously in AD brains, such as mutations in Ab
sequences, posttranslational modification including phos-

phorylation and pyroglutamylation, and interaction with

divalent metal ion [11–13]. Nevertheless, physiological

Ab oligomers mimicking natural Ab found in vivo can

be prepared from cells and AD tissues. Mutant APP-

expressing cells secrete Ab oligomers that impair neu-

rons and brain tissues [14]. Soluble Ab oligomers

extracted from the brains of AD mouse models and

postmortem AD brain tissue also damage neurons [15,

16]. On the contrary, insoluble amyloid prepared from

AD brains fails to impair neuronal function in brain

slices, underscoring the role of soluble Ab oligomers in

AD pathology [16]. To delineate the mechanism(s) of Ab
neurotoxicity, we first provide an overview of Ab-bind-

ing partners.

Ab-binding receptors in AD pathology

Because Ab peptide is generated and released into extra-

cellular region, it first challenges to generate toxic signal

into neurons passing through plasma membrane. Ab itself

can directly bind to cell membranes and form ion channels

or pores that induce membrane disruption and thus neu-

ronal damage. Many observations show pore-like structure

of Ab in vitro and in the cell membrane of the AD brains

and mice [17–20]. In addition, soluble Ab oligomers, but

not monomers or fibrils, increase membrane permeability

and thus dysregulate Ca2? signals for neurotoxicity [21].

More recently, emerging insight into the mechanistic link

between Ab and its binding proteins highlights the poten-

tial role of ‘‘Ab receptors’’ in AD. A number of Ab-binding

proteins have been identified on the plasma membrane of

neurons that may have an important role in Ab-induced

neurotoxicity. These proteins include the receptor for

advanced glycation end products (RAGE), N-methyl-D-

Fig. 1 Ab-binding receptors in neurotoxicity. Ab low-n or high-n

oligomers bind to cognate Ab receptors, such as RAGE, NMDAR (its

direct binding is not clear), a7 nAChR, FccRIIb, PirB, PrPc, or

EphB2. This Ab-receptor interaction generates and transduces

neurotoxic signal into neurons, which causes cellular defects, such

as mitochondrial dysfunction and ER stress response. In addition,

some Ab receptors are most likely to internalize Ab into neurons to

display distinct cellular defect. Please see main text for details
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aspartate receptor (NMDAR), a7-nicotinic acetylcholine

receptor (a7 nAChR), cellular prion protein (PrPc), ephrin

type B receptor 2, immunoglobulin G Fc gamma receptor

IIb (FccRIIb), and paired immunoglobulin-like receptor B

(PirB) (Fig. 1) [22–28].

RAGE

RAGE is a multi-ligand receptor that binds to advanced

glycation end product (AGE), amphoterin and S100/cal-

granulins [29], and AGE is observed in senile plaque and

NFTs in AD brains [33]. RAGE is also known as a cell

surface receptor for Ab in neurons and microglia that

mediates AD-related Ab neurotoxicity, including oxidative

stress, synaptic dysfunction, and eventually neuronal cell

death [24, 30]. Indeed, the expression of RAGE is signif-

icantly increased in the brains of patients with AD,

especially in blood vessels [24, 31, 32]. In genetic studies,

AD mice (PDAPP J20) crossed with RAGE transgenic

mice show early abnormalities in spatial learning and

memory, while the mice harboring dominant-negative

forms of RAGE are resistant to such neuropathological

alterations [34]. RAGE also functions in Ab transport

across the blood–brain barrier (BBB) and Ab accumulation

in the brain by binding to soluble Ab [31].

Treatment of AD mice with soluble RAGE or a RAGE-

specific antibody not only improves impaired long-term

potentiation (LTP) and cognitive dysfunction, but also

prevents the entry of Ab into the brain [31, 35]. Moreover,

a multimodal RAGE-Ab interaction blocker reduces the

level of Ab in the brain and neuroinflammatory response

and thus prevents cognitive impairment in AD mice [36],

indicating that the interaction between RAGE and Ab is

critical for AD pathogenesis. Currently, RAGE is consid-

ered as an advanced therapeutic target among Ab receptors.

The orally bioavailable and BBB-permeable PF-04494700,

which inhibits the interaction between RAGE and Ab, is

tested for phase II clinical trial. Although low-dose (5 mg/

day) test shows a good safety profile and decreased decline

on the Alzheimer’s disease assessment scale-cognitive

(ADAS-cog) in mild AD patients, it still needs further

investigation because of high dropout and discontinuation

rates [37].

NMDAR and a7 nAChR

Several reports suggest that Ab interacts with NMDARs at

postsynaptic terminals. Antibodies against the GluN1 or

GluN2B subunit of NMDARs markedly block the binding

of Ab oligomer to neurons [38, 39] and Ab oligomers

partially colocalize with GluN2B subunits of NMDARs at

the cell surface [13]. Indeed, through NMDAR activation,

Ab oligomers induce Ca2? dysregulation, neuronal death

[40], and synaptic dysfunction [41, 42]. However, it is still

unclear whether Ab directly binds to NMDAR subunits

[43, 44]. In addition, Ab oligomers promote the endocy-

tosis of NMDARs, which requires the activation of a7

nAChR signaling [45]. The a7 nAChR is another candidate

Ab-binding receptor and binds to soluble Ab with high

affinity [23, 45]. The a7 nAChR mediates Ab-induced tau

phosphorylation via ERK and JNK [46]. Although a7

nAChR-expressing neuroblastoma cells are susceptible to

Ab-induced toxicity in vitro [47], the in vivo neurotoxic

role of this receptor is inconsistent. For instance, a7

nAChR deficiency improves cognitive deficits and synaptic

pathology in PDAPP J9 mouse model of AD, while it

exacerbates AD pathology in Tg2576 mouse model [48,

49].

PrPc

PrPc was identified to have a high-affinity binding site for

Ab oligomers [25]. Subsequently, it was shown that PrPc

deficiency prevents Ab oligomer-induced neuronal cell

death [50] and inhibits Ab oligomer-induced LTP blockade

[25]. The role of PrPc in the inhibition of LTP was also

illustrated using synthetic Ab oligomers called Ab-derived

diffusible ligands (ADDL) and Ab oligomers derived from

human AD brains [51, 52]. In addition, the deletion of PrPc

expression in APPswe/PS1DE9 mice rescues the loss of

synaptic markers and the impairment of spatial learning

and memory [53]. Further, treatment of APPswe/PS1

M146L mice with anti-PrPc antibodies, which block the

binding of Ab oligomer to PrPc, rescues the decreased

synapse density and cognitive deficits [54].

Because PrPc is anchored to the cell surface with a

glycosylphosphatidylinositol anchor, Ab-induced neuro-

toxic signaling is unlikely to be transduced only by PrPc

itself. Recently, the metabotropic glutamate receptor

mGluR5 was identified as a neurotoxic mediator at the

postsynaptic density that couples the Ab–PrPc complex

with Fyn and disrupts neuronal function [55, 56]. Fyn

interacts with and localizes tau to the dendritic compart-

ment and facilitates NMDAR–PSD95 interaction, thereby

mediating Ab neurotoxicity at the postsynaptic membrane

in AD [57]. In contrast, there is a report showing that PrPc

may not be essential for Ab neurotoxicity. Kessels et al.

[58] observed that PrPc is not required for Ab-induced

synaptic depression, reduction in spine density, and

blockade of LTP. In addition, the ablation or overexpres-

sion of PrPc has no effect on the impairment of

hippocampal synaptic plasticity in APPswe/PS1 L166P or

PDAPP J20 AD mice [59, 60]. Further, cognitive impair-

ment is not ameliorated in Ab-injected mice lacking PrPc

[61]. Thus, the role of PrPc in Ab neurotoxicity remains

controversial.
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FccRIIb and PirB

Recently, two immune receptors, FccRIIb and PirB

which were originally believed to function exclusively in

the immune system, were shown to have neuropathic

roles as Ab receptors in AD brains [27, 28, 62]. Kam

and Song et al. showed that FccRIIb binds to oligomeric

Ab with high affinity (Kd = 56.7 nM) in vitro and in the

brains of patients with AD. They also found that the

expression of FccRIIb is increased in the brains of AD

mice and patients with AD and that FccRIIb deficiency

rescues Ab-induced neurotoxicity, including cell death,

decreased LTP, spine density, as well as memory

impairment in AD mice (PDAPP J20). Inhibiting

FccRIIb–Ab interaction using synthetic peptides also

prevents Ab-induced neurotoxicity in cultured neurons

and memory impairment in the mice as assayed with

intracerebroventricular-injection [27]. Similar to FccRIIb,

PirB deletion in mice suppresses the deleterious activity

of Ab oligomers on LTP and rescues impaired ocular

dominance plasticity and behavioral deficits in AD mice

(APP/PS1) [28].

Interestingly, these two proteins show similarity in

their structure and in the binding affinity with Ab olig-

omers. Both have immunoglobulin (Ig) domains on their

extracellular regions and immunoreceptor tyrosine-based

inhibitory motifs (ITIM) on their intracellular regions.

FccRIIb has two Ig domains and an ITIM, whereas PirB

has six Ig domains and four ITIMs. FccRIIb interacts

with low-n oligomers via its second Ig domain and PirB

binds to high-n oligomers via its first two Ig domains.

Like FccRIIb, PirB binds to Ab with high affinity

(Kd = 110 nM). One major difference between FccRIIb

and PirB is the requirement of ITIM in the neurotoxic

signaling. While tyrosine phosphorylation in the ITIM of

FccRIIb mediates Ab neurotoxicity, it is apparently not

involved in Ab signaling in the case of PirB. It will be

interesting to examine this difference in ITIM to mediate

the neurotoxicity.

Overall, we now require more detailed studies to clarify

distinct roles and signaling of these Ab receptors in Ab
neurotoxicity as well as their neuronal expression patterns.

Unlike FccRIIb and PrPc that bind to Ab low-n oligomers

and high n-oligomers, respectively, other receptors have

not been characterized for their binding preferences to

those Ab. The binding regions in the receptors as well as in

Ab have not been identified in most cases. In addition, a

possibility for protein–protein interaction among those

receptors that may function together in Ab neurotoxicity or

for the roles of those receptors in various cell types remains

to be addressed.

Cellular defects in Ab neurotoxicity

Endoplasmic reticulum stress response for Ab toxicity

ER senses and responds to various changes in cellular

circumstances to maintain the protein folding capacity

through the unfolded protein response (UPR) [63]. The

UPR is a cellular recovery system in response to ER stress

and relieves ER overload. The UPR is composed of three

main pathways induced by inositol requiring kinase 1

(IRE1), protein kinase R-like ER kinase (PERK), and

activating transcription factor 6 (ATF6). Among the three

arms of UPR, PERK phosphorylates eukaryotic translation

initiation factor 2 subunit a (eIF2a) and this phosphory-

lation prevents recycling of the eIF2 complex to its active

GTP-bound form [64], lowering overall protein translation

and ER overload. On the other hand, prolonged activation

of PERK elicits cell death by expressing C/EBP-homolo-

gous protein that inhibits the transcription of anti-apoptotic

B cell lymphoma 2 (Bcl-2) [65]. Therefore, tight regulation

of the PERK pathway is required for appropriate modula-

tion of ER stress. The effect of the PERK pathway on AD

pathogenesis is controversial. Administration of salubrinal,

a selective inhibitor of protein phosphatase 1 that coun-

teracts PERK by dephosphorylating eIF2a, is protective

against Ab neurotoxicity [66, 67]. On the contrary, fore-

brain-specific knockout of PERK in APP/PS1 AD mice

recovers cognitive defects [68]. The latter study identified

systematic aspects of the PERK pathway on protein

translation, especially synaptic proteins, reflecting different

patterns of UPR modulated by the duration of Ab toxicity.

In AD, the ER in neurons is also burdened by other

pathologic conditions, such as Ca2? dysregulation.

Because the function of ER chaperones is affected by ER

Ca2? level, disrupted ER Ca2? triggers ER stress [69].

These features are connected to genetic factors of AD. For

example, mutant PS1 upregulates ER ryanodine receptor 3

(RyR3), which mediates ER Ca2?-induced Ca2? release;

mutant PS1-expressing PC12 cells and cortical neurons

exhibit increased levels of RyR3 and concomitant

enhanced responses to intracellular Ca2? [70]. The

increased expression of RyR3 is also seen in AD model

mice harboring mutant PS1 [71]. Interestingly, the level of

RyR3 is elevated in TgCRND8 mice containing no PS

mutation but KM670/671NL and V717F mutant APP

transgenes [72]. In addition, Ab neurotoxicity is prevented

by decreased expression of RyR3 through X-box binding

protein 1 (XBP1), which undergoes alternative splicing by

IRE1 during ER stress [73]. It is likely that PS and Ab
regulate the expression of RyR3 to affect ER stress

responses. In addition to ER RyR3, inositol 1, 4, 5-tri-
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phosphate receptor (IP3R) is also linked to ER Ca2?

release by Ab [74].

Another factor involved in Ab neurotoxicity and medi-

ating ER stress is ER-resident caspase-12. Sustained ER

stress over the capacity of UPR induces cell death inde-

pendent of typical intrinsic cell death pathways. While ER

stress as well as Ab stimulates murine caspase-12, cell

death-inducing stimuli usually do not. Primary neurons

from caspase-12-knockout mice show resistance to Ab
neurotoxicity [75]. Mechanistically, proteolytic activation

of caspase-12 is achieved by the Ca2?-activated protease

calpain and tumor necrosis factor-associated factor 2 under

IRE1 [76, 77]. In response to Ab-induced ER stress, E2-

25K, an E2 conjugating enzyme in ubiquitin–proteasome

system (UPS), activates calpain to process caspase-12 [78].

Unlike in rodents, however, caspase-12 in the human

genome cannot be translated due to a frame-shift mutation

and premature stop codon in the transcripts of all variants

[79]. Interestingly, sequence comparison analysis among

caspases illustrates that human caspase-4 is a homolog of

murine caspase-12 with 57 % sequence identity. Consis-

tently, human caspase-4 was shown to be involved in

intracellular Ab-induced neuronal cell death with ER stress

[80]. Like caspase-12, human caspase-4 is activated by

calpain through increased intracellular Ca2? triggered by

Ab [78, 81]. It is now clear that the prolonged and aberrant

ER stress response mediates Ab neurotoxicity by triggering

Ca2? dysregulation and ER caspase activation.

The studies on Ab receptors that induce neurotoxic ER

stress, deregulation of Ca2? flux, and ER-caspase activa-

tion have not been active yet, while these signals are

strengthened by the interaction of Ab with its receptors.

Currently, limited information on the receptors is available.

For Ca2? dysregulation and ER stress, it was reported that

Ab oligomers induce plasma membrane localization of the

GluN2B subunit of NMDAR and leads to Ca2? dysregu-

lation and neuronal death through activation of the

ionotropic glutamate receptors [40]. Ab oligomer also

leads to clustered assembly of mGluR5 cluster, which is

possibly mediated by interaction with PrPc [56, 82]. In

addition, FccRIIb was recently shown to play an essential

role in the activation of ER-resident caspase-12 during Ab
neurotoxicity [21].

Mitochondrial dysfunction

Mitochondria generate cellular energy in most cells, and

in neurons, mitochondria use glucose sources almost

exclusively. Interestingly, mitochondrial defects are found

in the neurons of patients with AD and in many cases of

Ab-treated neural cells and AD mice, and the key

enzymes involved in glucose metabolism and the respi-

ratory chain in mitochondria are impaired. For example,

the enzyme activities of pyruvate dehydrogenase and a-

ketoglutaraldehyde dehydrogenase in the citric acid cycle

and cytochrome C oxidase, and the expression of respi-

ratory chain complexes I, IV, and V are all reduced [83–

87]. However, it is uncertain what causes their reduction

in the mitochondria of AD neurons. In addition, the

expression of enzymes mediating antioxidant functions

like catalase is also altered [88]. All these features are

associated with metabolic abnormalities of mitochondria,

impairing energy production frequently observed during

AD pathogenesis.

The presynaptic terminal demands high levels of energy

required for sustained neurotransmitter release [89] and

requires well-organized Ca2? regulation machinery for

activity-dependent synaptic transmission [90]. To meet

these challenges, neuronal mitochondria are moved to the

synapse by anterograde axonal transport and build a syn-

aptic mitochondrial pool [91]. Therefore, tight regulation

of anterograde mitochondrial axonal transport is critical for

adequate synaptic output as well. Consequently, dysfunc-

tion of axonal transport is coupled with many neurological

disorders and Ab often induces impairment of anterograde

mitochondrial movement [92, 93]. While it is not much

known, Ab likely inhibits axonal transport through NMDA

receptor and glycogen synthase kinase 3b (GSK3b) [94]

and impairs cargo recognition of microtubules by phos-

phorylating kinesin light chain through casein kinase 2

[95]. Collectively, these studies delineate the role of Ab in

the failure of axonal delivery of mitochondria in AD

pathogenesis.

Besides the impairment in metabolism and axonal

transport, alteration in structural dynamics of mitochondria

is also observed in AD. In most studies, Ab shortens

mitochondrial length and increases the amount of frag-

mented mitochondria by modulating the expression of

mitochondrial fusion/fission-related proteins [96, 97]. In

the brains of patients with AD, phosphorylation and

S-nitrosylation of dynamin-related protein 1 (DRP1),

which is a critical factor for mitochondrial fission, is

increased, likely impacting mitochondrial structure [96,

98]. In addition, mortalin seems to function in Ab-medi-

ated mitochondrial fragmentation and dysfunction through

DRP1 [99]. On the other hand, a recent report showed an

opposite result that elongated mitochondria may contribute

to neurodegeneration [100]; mislocalization of DRP1 trig-

gered by tau-mediated F-actin stabilization leads to

elongated mitochondria to promote neurodegeneration.

This inconsistent effect of mitochondria dynamics on the

neurotoxicity needs to be clarified. In addition, coupling of

Ab membrane receptors to mitochondrial damage remains

to be addressed.
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Intracellular Ab and neurotoxicity

For a long time, extracellular Ab generating neurotoxic

signals through the aforementioned receptors has been

blamed as the major cause of AD. However, a growing

body of evidence suggests that intracellular accumulation

of Ab also has a potential role in AD pathogenesis. Ab
immunoreactivity was first observed inside neurons with

the neurofibrillary tangles of both patients with AD and

normal individuals [101]. Intracellular Ab is widely

detected in patients with mild cognitive impairment, AD

[102] and down’s syndrome [103]. The accumulation of

intracellular Ab precedes the formation of Ab deposits and

the development of pathologies in these diseases [104].

Consistently, accumulation of intracellular Ab appears

prior to neuronal degeneration and neurofibrillary tangle

formation in AD mice, including APP/PS1 [105], 3xTg-AD

[106], and 5xFAD [107]. Especially, age-related loss of

synaptophysin-immunoreactive presynaptic boutons within

the hippocampus occurs before extracellular Ab deposits

are observed in APP/PS1 mice [108]. In addition, intran-

euronal accumulation of Ab is also observed in 4-month-

old 3xTg-AD mice which have no detectable Ab plaques

and hyperphosphorylated tau yet but are in the beginnings

of cognitive deficits [109], implicating that accumulation

of the intraneuronal Ab is an early event in the progression

of AD.

Receptors for Ab internalization

Because APP localizes to several subcellular compart-

ments, including ER, endosomes, and plasma membrane,

Ab could accumulate intracellularly after its production

inside cells. However, it is known that most Ab produced

at the plasma membrane or secretory vesicles is secreted

extracellulary [110]. Thus, it is reasonable to believe that

the main source of the intracellular Ab pool would result

from internalization of the extracellular Ab, though clear

evidence for this is insufficient yet. As a possible way for

the internalization of Ab, it was shown that Ab might

directly interact with lipids, cholesterols, or proteoglycans

in extracellular regions and that membrane-bound Ab
oligomers are recruited into lipid rafts by a fyn-dependent

manner [11, 112, 113]. In addition, reduction of cellular

cholesterol and sphingolipid levels decrease Ab uptake

[114]. More directly, treatment of lipid raft-dependent

endocytosis inhibitor or inhibition of clathrin-dependent

endocytosis decreases Ab uptake [47, 115, 116]. Collec-

tively, such direct interaction with lipid rafts and clathrin-

mediated endocytosis may provide way(s) for Ab uptake.

Alternatively, Ab can actively be uptaken by Ab-bind-

ing proteins, including a7 nAChRs, LRP1, and RAGE.

Intracellular Ab colocalizes with a7 nAChRs in AD brains

and overexpression of a7 nAChR in neuroblastoma cells

leads to intracellular accumulation of Ab [47]. LRP1, a

classic endocytosis receptor that uptakes extracellular

ligands, also internalizes Ab into cultured neurons [116]

and AD mice [117]. Interestingly, LRP1 cooperates with

PrPc to internalize Ab oligomers for cytotoxicity [118]. In

addition, RAGE colocalizes with intraneuronal Ab in the

hippocampus of AD mice and RAGE-knockout neurons

display reduced uptake of Ab [119]. However, the route of

Ab uptake into neurons is still unresolved. While Ab
internalized by RAGE accumulates in mitochondria and

thus induces mitochondrial dysfunction, Ab internalized by

other receptors, such as a7 nAChRs, localizes to endo-

somal or lysosomal compartments [47, 119, 120].

Moreover, whether the receptors responsible for Ab
uptake in neurons or non-neurons function for either Ab
neurotoxicity or clearance remains to be further clarified.

For example, microglial Toll-like receptor (TLR) 2 and 4

are also known as potential Ab receptors which directly

interact with Ab and mediate microglial activation [121,

122]. These interactions can lead to either neuronal death

through TLR-mediated neuroinflammatory response or

neuroprotection by clearing the intracellular Ab after its

uptake [123, 124]. Unlike neuronal Ab receptors whose

inhibition prevents neuronal uptake of Ab and neurotox-

icity, the destructive mutation of TLR4 in AD mice

exhibits a decrease of Ab uptake in microglia and an

increase of Ab deposits in brains, thus leading to cognitive

dysfunction [125, 126]. In addition, similar function of

TLR2 in Ab phagocytosis is shown in TLR2-deficient AD

mice which accelerate memory impairments with the

increases of Ab load [122, 127]. Thus, Ab receptors found

in different cell types display distinct functions in the

progression of AD pathogenesis.

Cellular defects by intracellular Ab

How the intraneuronal accumulation of Ab causes neuro-

toxicity and AD neuropathology is largely unknown. Most

studies indicate that intracellular Ab leads to the mal-

function of many intracellular organelles. The stable

expression of human intracellular Ab increases the number

of Golgi apparatus elements, lysosomes, and lipofuscin

bodies in the hippocampus of APP/PS1 double mutant

transgenic rats [128]. Endosomal and lysosomal accumu-

lation of Ab leads to increase of lysosomal membrane

permeability, resulting in the release of lysosomal prote-

ases, especially cathepsins, to trigger neuronal cell death

[129]. Mitochondria are another subcellular compartment

for Ab accumulation and neuronal dysfunction in AD [130,

131], as damaged and dysfunctional mitochondria are fre-

quently observed in the AD brain. In particular,

interactions between Ab and mitochondrial resident
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proteins, such as Ab-binding alcohol dehydrogenase

(ABAD) and cyclophilin D, were reported to mediate

mitochondrial and neuronal stress exerted by Ab [130,

131]. In addition, intraneuronal Ab42 accumulates in

multivesicular bodies (MVB) in transgenic mice and AD

brains and thus impairs the MVB sorting pathway in AD

[102, 132]. Intracellular Ab is also observed in the nucleus

and increases neuronal apoptosis [133]. Because of these

compelling findings, it is now crucial to uncover the

receptors driving Ab internalization and the pathological

significance of the internalized Ab, in parallel to the

intense study on Ab receptors for neurotoxic signaling

cascade.

Concluding remarks

Extracellular Ab interacts with several recently identified

receptors to transduce neurotoxicity in cultured neurons

and AD mice. With recent advances in identifying those

receptors, we now better understand the neurotoxicity of

Ab which elicits diverse cellular defects, including ER

stress and damage to mitochondria. However, the connec-

tion of those receptor functions to the cellular defects, the

signal selectivity and cell-type specificity of the receptors,

and cooperative interactions among the receptors need

more characterization. In addition, a role of intracellular

Ab in neurotoxicity and AD pathogenesis, which further

complicates AD pathogenesis, remains ripe for

investigation.
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