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are synthesized by the thyroid gland and this process is 
regulated through the hypothalamus–pituitary–thyroid axis 
[3]. The levels of circulating THs are not, however, indica-
tive of a specific cellular TH status. In fact, hormone trans-
port and metabolism determine the intracellular levels of 
l-thyroxine, or T4, and 3,5,3′-l-triiodothyronine, or T3. 
Both of these hormones are actively transported across the 
cell membrane by specific transporter proteins, of which 
monocarboxylate transporter-8 and organic anion-trans-
porting polypeptide-1c are the best-characterized [4–7]. 
Three iodothyronine deiodinase selenoenzymes (Dio1, 
Dio2, and Dio3) regulate TH’s activation and catabolism 
[8]. Dio1 and Dio2 catalyze the 5′-deiodination of T4 to 
its active metabolite T3. Conversely, Dio3 catalyzes the 
irreversible 5-deiodination of T4 and T3 to their inactive 
metabolites rT3 (3,5,5′-T3, or reverse T3) and 3,3′-T2 [8].

The thyroid hormone T3 is considered the active form of 
THs, because of its binding to the thyroid hormone nuclear 
receptors (TRs) that are transcription factors belonging to 
the nuclear receptor superfamily [9]. The main character-
istic of the TRs is the presence of a DNA- and a hormone-
binding domain, known as DBD and HBD, respectively 
(Fig. 1a). Two genes, TRα and TRβ, code for the TRs, each 
of them is responsible for the production of different iso-
forms (Fig. 1a) by alternative splicing or the use of differ-
ent promoters [1]. TRα1, TRβ1, and TRβ2 are bona fide 
nuclear receptors (i.e., presence of DBD and HBD), while 
the TRα2 isoform retains the DBD but lacks the HBD, then 
behaving as a dominant negative vis-à-vis of the receptor 
[10]. The TRs bind specific DNA sequences named thy-
roid hormone response elements (TRes), which are gener-
ally located within the genomic non-coding regions of the 
target genes. The canonical TRe consensus is a tandem of 
AGGTCA sequences in direct repetition that are separated 
by four base pairs, named the Direct Repeat 4 (DR4) [1]. 
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Introduction

Thyroid hormones (THs) are key regulators of several 
aspects of development and homeostasis [1, 2]. The THs 
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However, the TRes present in the promoters of the target 
genes often differ from the consensus sequence in terms of 
their arrangements as palindromes or inverted palindromes 
or in the number of nucleotides that separate the tandem 
sequences (Fig. 1b) [11]. The existence of this variety of 
TRes may help explain the different modalities of tran-
scriptional modulation by TRs (tissue-specificity or activa-
tion vs. repression) [1].

Recent reviews, including ours, have summarized the 
characteristics and mode of action of the TRs [12–20]. For 
the specific aim of this review, we will focus on the current 
knowledge of the functions of THs and TRs on intestinal 
progenitor/stem cell biology. In fact, there is a compelling 
interest in the field of intestinal stem cell biology for sev-
eral reasons. First, from a fundamental point of view, the 
mammalian intestinal epithelium is the fastest renewing 
tissue in homeostatic condition, and this process depends 
on stem cell activity [21]. Second, new data showed that 
cancer stem cells derive from physiological stem cells and 
described them as the cells at the origin of cancer devel-
opment and maintenance [22]. These last findings are of 
importance for translational research aimed at develop-
ing new therapeutic approaches in patients. In both cases, 
understanding how the intestinal stem cells are able to 
receive, integrate, and respond to specific stimuli, such as 
THs, is of fundamental importance to better define their 
physiology and to understand the mechanisms of stem cell 
transformation leading to cancer.

Thyroid hormones and the TRs on intestinal physiology

even if there is no clear-cut demonstration of TH/TR action 
on stem cell biology, there are increasing data in this direc-
tion, and several reports demonstrated that THs could influ-
ence somatic stem cell biology and affect progenitor cell 
fate [20]. The THs and their receptors TRs control the bal-
ance between cell proliferation and cell differentiation in 
several organs and tissues during development as well as in 
adulthood [23]. The paradigm is the amphibian metamor-
phosis that is triggered by an increase of circulating THs 
levels and of TRβ expression [24]. In mammals, among the 
organ targets, we recall the nervous system where THs and 
TRs play multiple actions [25]. Regarding their involve-
ment in precursor cell biology, it has been shown that they 
are involved in neurogenesis during development [26], by 
controlling the correct number of progenitors in specific 
areas such as the fetal neocortex [27] or the telencephalon 
[28]. Moreover, a major role for the liganded TRα1 recep-
tor has been unveiled in the adult neurogenic areas such as 
the subventricular zone [29, 30] or the hippocampus [31, 
32]. Other well-characterized progenitor/stem cell targets 
include those of the skin [33], and intriguingly the embry-
onic stem cells that upon T3 treatment can massively dif-
ferentiate toward a cardiomyocyte lineage [34].

Last but not least, a well-established target of the THs 
and TRs is the developing and the adult gut [24, 35]. we 
will summarize in this section the current knowledge 

Fig. 1  Schematic representa-
tion of the various isoforms 
encoded by TRα or TRβ genes 
and of their DNA binding 
motifs. a The upper panel 
shows the different domains 
involved in TR function. 
These include the DNA-
Binding Domain (DBD) and 
the Hormone-Binding Domain 
(HBD), which are specifically 
present in the TRα1, TRβ1 and 
TRβ2 proteins, which are bona 
fide T3 nuclear receptors. The 
TRα2 isoform lacks the HDB. 
Other functional regions of the 
TRs include cofactor-binding 
domains (located in A/B, D, and 
e) and dimerization domains 
(located in C and e). AF-1 and 
AF-2 domains are important for 
transcriptional activation. b Dif-
ferent arrangements of thyroid 
hormone responsive elements 
(TRe). The TRes are consti-
tuted by repetitions of two half-
sites (upper panel) in different 
arrangements as indicated
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concerning the intestinal epithelium organization and archi-
tecture as well as the action of THs and TRs on intestinal 
development and homeostasis with a particular emphasis 
on stem cell biology.

The intestinal mucosa structure and function

Investigations into amphibian metamorphosis during the 
early 20th century offered the first evidence of THs’ key 
role in the regulation of gastrointestinal development. In 
fact, THs trigger and control the whole metamorphosis pro-
cess. Indeed, the gastrointestinal tract undergoes dramatic 
remodeling, which includes a phase of apoptosis followed 
by a burst in cell proliferation [35, 36]. Comparative stud-
ies, focused on the intestinal postnatal development in 
mammals, have also shed light on THs’ central role during 
the maturation at weaning time [35]. Notably, in mammals, 
THs and the TRα gene have an important function in both 
development and in the homeostatic control of this organ 
[37, 38].

In both mammals and amphibians, the intestine pre-
sents a tubular morphology developed along its proximo-
distal axis, composed of three tissue layers. The outer 
layer is constituted by smooth muscles organized in cir-
cular-inner and longitudinal-outer layers. These muscles 
are mainly involved in the peristalsis, under the control of 
the parasympathetic nervous system. The middle layer, or 
submucosa, consists of fibrous connective tissue. Finally, 
the inner surface is constituted by the epithelium, organ-
ized as a sheet of polarized columnar cells [39]. The intes-
tinal epithelium is in charge of processing and absorbing 
nutrients. In mammals, the absorptive surface of the small 
intestine (SI) is strongly enhanced by the presence of pro-
trusions into the lumen and by invaginations into the sub-
mucosa, respectively the villi and crypts of Lieberkühn 
(Fig. 2a). At least seven different cell types have been 
identified in this tissue but only four are considered the 
main cytotypes: (1) the enterocytes, responsible for nutri-
ent absorption that represent the vast majority of villous 
cells; (2) the goblet cells, which produce a protective 
mucus layer and are scattered throughout the epithelium; 
(3) the enteroendocrine cells, which secrete digestive hor-
mones, and (4) the Paneth cells, present only in the SI, 
which reside at the bottom of the crypts and provide anti-
microbial peptides [40].

The main characteristic of the intestinal epithelium is 
its rapid and continuous renewal; its homeostasis involves 
several processes and the integration of multiple signal-
ing pathways. This renewal is maintained by the pres-
ence of a proliferative compartment that is located in the 
interfold regions of the intestine, where the stem cells are 
located. In mammals, these regions are defined as crypts 
of Lieberkühn, and the stem cells reside near their bottom 

(Fig. 2b) [41]. These cells self-renew and give rise to prolif-
erative progenitors that differentiate as they migrate along 
the vertical axis. Finally, the cells are exfoliated into the 
lumen after death by apoptosis [21, 41]. In amphibians, the 
adult epithelium renews along the trough-crest axis of the 
intestinal folds, with a mechanism that is similar to that of 
the mammalian crypt-villus axis [42]. Stem cells have also 
been described in the interfold regions of the adult amphib-
ian epithelium; these cells give rise to proliferating progen-
itors that differentiate, migrate, and die [42].

The continuous cell renewal of the intestinal epithelium 
is regulated by fine cross-regulations between several path-
ways, including wnt, Hedgehog, Notch, BMP, and THs 
[21, 42–44]. These pathways play a central role in intesti-
nal development and homeostasis, and the molecular basis 
of their action has begun to be characterized in both mam-
mals and amphibians [43–45]. However, our knowledge 
of the intra- and inter-regulations occurring between the 

a

c

Apoptosis

Differentiation

Proliferation

Stem-cell
zone 

Smooth muscle 

sm

c 

v 

TR -LacZ

sm

c 

v 

TR -LacZd 

b

Fig. 2  Organization of the adult mammalian small intestine and 
expression domain of the TR genes. a The scheme illustrates the 
intestinal epithelium organization into proliferative compartments 
(the crypts) and differentiated compartments (the villi). b In crypts, 
somatic stem cells are present, which self-renew and give rise to 
undifferentiated progenitors that proliferate, differentiate while 
migrating, and are eventually shed in the lumen after apoptosis. Yel‑
low, Paneth cells; Red, stem cells; Green, secretory progenitors; Blue, 
absorptive progenitors. TRα (c) and TRβ (d) driven LacZ expression 
on intestinal sections from TRα+/0 or TRβ+/- mice. Pictures show 
β-galactosidase activity in the different cell types; c crypts, sm smooth 
muscle, v villi. The dotted bars indicate the limit between the crypts 
and the villi. Bar 15 μm
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different signaling pathways or their specific functions is 
still unclear and sometimes puzzling.

The intestinal epithelial stem cells

As said, the intestinal epithelium is a highly dynamic tis-
sue with a rapid and perpetual renewal [43] that depends 
on the activity of somatic intestinal epithelial stem cells 
(ISCs) [46]. The ISCs are multipotent cells characterized 
by a very long self-renewal capability; their progeny fill 
in the so-called “transit-amplifying” zone (TA), composed 
of highly proliferating progenitors that differentiate while 
migrating. Proliferation ceases when cells reach the crypt–
villus boundary, thus the villi contain only post-mitotic 
cells [43, 46].

Studies on the ISCs started during the 1970s, when 
Cheng and Leblond [47] stated that all epithelial cell lin-
eages of the intestine are monoclonal populations are 
derived from a single stem cell; they defined the crypt base 
columnar (CBC) cells as ISCs based on morphological 
criteria and on their position at the bottom of the crypts, 
between the Paneth cells. Successively, [3H]-thymidine 
labeling retention experiments combined with bromodeox-
yuridine pulse showed that ISCs are prevalently quiescent 
(steady state) and that they are located at the +4 position 
counting from the crypt base, just above the Paneth cells 
[48]. This model was confirmed by other approaches [49] 
and supports the concept of “dormant” somatic stem cells. 
It was only in 1999 that Bjerknes and Cheng clearly dem-
onstrated that the ISCs are capable of generating all the 
intestinal cytotypes: by using chemical mutagenesis and 
following the inheritance pattern of specific mutations, they 
showed that the intestinal crypts contain a population of 
somatic multipotent stem cells that are located between the 
+1 and +4 positions from the bottom of the crypts [50]. 
The more recent identification of specific ISCs markers has 
led to important advances in the characterization of ISC 
biology and their role in intestinal homeostasis, repair, and 
cancer [46]. Currently, a dozen ISC markers have been pro-
posed but few of them have been characterized and vali-
dated as bona fide markers. Among them, the most stud-
ied is the leucine-rich-repeat-containing G-protein-coupled 
receptor 5 (Lgr5), which is a wnt target with an expression 
domain restricted to the crypts. Using reporter mouse lines, 
Barker and colleagues showed that (1) Lgr5-driven expres-
sion is initiated and confined to CBC cells, (2) CBCs are 
able to generate all epithelial lineages over a 60-day period, 
thus proving that they are multipotent ISCs; (3) contrari-
wise to the acquired notion on slow cycling somatic stem 
cells, they also provided evidence that CBCs cycle actively 
(every 24 h) and are responsible for epithelial homeostasis 
[51]. Finally, the isolation of Lgr5+ stem cells also dem-
onstrated that they contain significant telomerase activity, 

that progressively decreases in the TA progenitors and then 
is absent in differentiated cells [52]. On the other side, a 
subpopulation of slowly cycling ISCs located around the 
+4 position of the crypts and specifically expressing the 
reverse transcriptase component of murine telomerase 
(mTert), can also give rise to Lgr5+-CBC stem cells [53]. 
Lineage-tracing approaches demonstrated that mTert+ cells 
generate all differentiated intestinal cell types at low fre-
quency under basal conditions and at higher frequencies 
following injury [53]. Similar lineage-tracing strategies 
have been also used to follow the fate of the B lymphoma 
Mo-MLv insertion region 1 homolog (Bmi1)-positive cells. 
In fact, Bmi1-CreeR mice crossed with a lacZ reporter 
mouse model showed a specific activity restricted to the +4 
position above the Paneth cells [54]. Bmi1 belongs to the 
Polycomb group gene family, which was originally thought 
to regulate the self-renewal and proliferation of normal and 
leukemic stem cells [55]. Ablation of the Bmi1+ popula-
tion induces disorganized intestinal mucosa and the loss of 
crypts, supporting the hypothesis of an impaired stem cell 
function [54]. Both Lgr5+ and Bmi1+ cells share the abil-
ity to proliferate, expand, self-renew, and give rise to all 
the differentiated intestinal epithelium cell lineages. How-
ever, the expression of Bmi1 is observed in a minority of 
the crypts in the proximal small intestine but results absent 
from the rest of the intestinal tract [54]. According to the 
possibility that mammals use more than one molecularly 
distinguishable adult ISC population, the homeodomain-
only protein (Hopx) has been proposed as a new marker 
of +4 ISCs, which also shows a stem cell hierarchy and/or 
plasticity between CBCs and +4 stem cells [56]. In agree-
ment with these different observations, a new mouse model 
based upon the expression of the RNA-binding protein 
Musashi 1, confirmed the existence of two populations of 
ISCs, which differ for their position, ISCs marker expres-
sion and cell cycle activity [57].

Altogether, these different findings demonstrate the 
existence of a complex stem-cell zone within the intestinal 
crypts, where the cells are characterized by the expression 
of different markers and display diverse cell cycle and sym-
metric/asymmetric cell division properties [58, 59]. These 
observations clearly reveal a highly complicated scenario, 
far from being clearly understood.

TH and TRs in development, homeostasis, and cancer

In-depth studies of intestinal remodeling during amphib-
ians metamorphosis or mouse postnatal maturation at 
weaning have provided great insights into understand-
ing the function of THs and TRs in the intestine [12]. A 
large body of literature exists regarding the cellular and 
molecular mechanisms at the basis of the gut remodeling 
regulated by THs in amphibians. In particular, the increase 
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of THs levels induces a wave of massive apoptosis of the 
larval epithelium followed by a surge of cell proliferation 
within the surviving cells to generate an adult epithelium 
[60]. On the contrary, in mammals, no dramatic postna-
tal changes occur, and postnatal maturation consists of an 
increase in mucosal growth with a burst in cell prolifera-
tion [35]. Interestingly, THs level increase significantly in 
rodents during the second postnatal week, corresponding 
to the weaning period [61]. At that time, structural and 
functional intestinal remodeling takes place, and THs 
stimulate extensive mucosal growth and initiate the onset 

of adult-type digestive enzymes expression in the entero-
cytes [35].

TH signaling depends on the specific expression pattern/
domain of the different players involved in THs signal recep-
tion and metabolism. In amphibians, the intestinal expres-
sion of the deiodinase selenoenzyme Dio2 increases and that 
of the deiodinase selenoenzyme Dio3 decreases at the time 
of the climax [62], when the gut remodeling activity is very 
high [60]. This modulation of both Dio2 and Dio3 expres-
sion can correlate with the increased level of local T3 syn-
thesis and be responsible for the increased cell proliferation 

Fig. 3  TH signaling and TRα1-
dependent activation of the 
wnt pathway in the intestinal 
epithelial precursors. THs (T3 
and T4, green stars) enter the 
cells via specific transporters 
belonging to the monocar-
boxylate transporter (MCT) 
and organic anion-transporting 
polypeptide (OATP) protein 
families. Both T3 and T4 can be 
metabolized by the deiodinases. 
Dio1 and Dio2 catalyze the 
synthesis of T3 (red stars); 
Dio3 degrades both T4 and 
T3 into inactive forms. In the 
intestinal epithelium, only Dio1 
mRNA has been detected. Our 
work showed that T3 binding 
to TRα1 receptor induces the 
transcription of the Ctnnb1 
(encoding β-catenin) and of 
Sfrp2 (soluble-frizzled related 
protein 2) genes. The sFRP2-
secreted protein functionally 
interacts with frizzled (Fzd), 
alone or in combination with 
wnt, to stabilize β-catenin and 
to activate wnt target genes. 
The canonical wnt pathway acts 
via the formation of a complex 
between wnt/Fzd/LRP, lead-
ing to the transduction of the 
extracellular signal. This in turn 
blocks the degradation complex 
and stabilizes β-catenin, which 
shuttles into the nucleus and 
activates the wnt target genes
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in the neo-forming adult epithelium [60]. In mammals, the 
three deiodinases appear poorly expressed during intestinal 
development until the adult stages, suggesting limited deio-
dinase activity in this organ. In particular in rat, only Dio1 is 
expressed, and its levels are very low compared with those 
observed in liver or the skin [63]. Our own studies in mouse 
adult intestine further support this observation [64]. Regard-
ing the expression of the TRs, it has been reported that TRα 
is present at a low level in the pre-metamorphic intestine of 
tadpoles, whereas TRβ expression strongly increases after 
the surge of THs level [60]. Both TRs demonstrated to play a 
fundamental role during the process of gut remodeling [65]. 
The situation appears different in mammals, since a clear-cut 
function of TRβ in intestinal physiology has not been estab-
lished [66], even if TRβ locus is able to drive LacZ expres-
sion specifically in villi cells of TRβ+/− mice [67] (Fig. 2d), 
suggesting that TRβ is expressed in differentiated epithelial 
cells. Furthermore, data from Hodin and colleagues showed 
a developmental regulation of TRα1 and TRβ1 expression 
in the postnatal intestine [68], and we also confirmed these 
results and showed the dynamic expression of TRα1 during 
postnatal development [66, 69]. Moreover, we showed that 
TRα1 expression domain is restricted to the intestinal crypts 
[37, 69] and to the smooth muscle layers [66], as also illus-
trated in Fig. 2c by the β-galactosidase staining of intestinal 
sections from TRα+/0 animals that recapitulate TRα gene 
expression domain [70].

Our extensive analysis using engineered mice estab-
lished that THs mainly regulate the proliferation of crypt 
epithelial precursors during both maturation at weaning and 
homeostasis at adulthood [12]. Our data indicated that this 
function specifically depends on the TRα1 receptor [66], 
coherent with its restricted expression domain at the lev-
els of the crypts [69], and implicate the activation of spe-
cific gene networks [37]. These findings are summarized in 
Fig. 3. Intriguingly, from a molecular point of view, the TH-
dependent developmental programs of Xenopus and mouse 
show several similarities, as discussed in other reviews [44].

Until recently, only limited data described the role of 
THs in adult intestinal physiology, such as metabolic pro-
cesses of absorption and secretion of nutrients [35, 71, 72]. 
The recent description of mutations in the TRα1 receptor in 
patients provides a novel perspective on the role of TRα1 in 
this organ. These mutations result in a non-functional recep-
tor, which competes with the wild-type receptor [73, 74]. 
Patients present characteristics of hypothyroidism, including 
high levels of circulating TSH, delayed bone maturation, and 
impaired brain development. Together with these defects, 
they suffer from altered intestinal functionality characterized 
by reduced bowel movements. The enteric nervous system 
controls these movements through the smooth muscle tis-
sues [75], suggesting that the lack of TRα1 function affects 
the physiology of one or both mesenchymal derivatives. 

One of the reports mentions that there are no overt abnor-
malities of the colon mucosa upon histological examination 
[73], suggesting that detailed studies will be necessary to 
better define the origin of the reduced bowel motility due to 
the TRα1 mutation. Notably, reduced ileal muscular activity 
has been described in TRα−/− mice (which lack the expres-
sion of TRα1 and TRα2 but retain the expression of the short 
TRΔα isoforms [76]), together with a substantial reduction 
of crypt cell proliferation; this phenotype is stronger than 
those described for other TRα gene knockout mice [70, 77, 
78]. In the light of these observations, it is worth speculat-
ing that in the context of the TRα−/− background, the short 
isoforms could mimic the dominant negative action of the 
TRα1 mutations described in the patients. This hypothesis 
is consistent with the previously reported function of these 
short isoforms, as negative modulators of the TRs or of other 
nuclear receptors [79].

Several reports have indicated that mutant TRs or altered 
TH statuses are involved in various cancers [80–87]. Simi-
lar to their organ-/tissue-specific action [44], both tumor-
inducer or tumor-suppressor roles have been described 
[88], making it quite difficult to draw a general picture. 
Regarding an action of altered TH levels and cancers of the 
gastrointestinal tract, only in the case of hepatocarcinomas 
(HCC) a clear correlation has been established between 
hypothyroidism and HCC [88], whereas contrasting results 
in the literature described both increased and decreased lev-
els of hormones in the development of human breast and 
colon cancers [83, 85]. In HCC, it has also been shown that 
T3 controls Cathepsin H gene transcription [89]. The result-
ing up-regulation of Cathepsin H expression favors cancer 
cell migration and invasion, suggesting a link between THs 
and invasive cancer [89]. A similar regulation, however, 
has not been observed in normal intestinal crypts [37] or in 
intestinal tumors (our unpublished observations), indicat-
ing again the existence of a organ/tissue-specific regulation. 
The deiodinases appear important actors of THs activity [8] 
and a complex interplay between Dio2 (i.e., high cellular 
T3), Dio3 (i.e., low cellular T3) and sonic hedgehog [90] 
or wnt [91] has been described in skin tumors or in colon 
cancer cell lines, respectively. In this last case, Dio3 is up-
regulated by wnt signal resulting in a positive effect on 
cell proliferation. These results on colon cell lines appear 
in contradiction with our data that described a positive cor-
relation between TH levels and cell proliferation in mouse 
intestinal crypts both in vivo and in primary cultures [37, 
69]. This contradiction, however, may be quickly solved 
because a different biological status (i.e., physiological vs. 
pathological condition) can explain the different cellular 
outcomes downstream of TH’s signal. Concerning the TRs, 
it has been shown that their mutation [84, 86, 87] or aber-
rant expression [81, 84, 86, 87, 92] is associated with gas-
trointestinal tumors. In particular, TRβ gene is frequently 
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methylated and its expression strongly decreased in colon 
cancer [93], whereas it is still unclear whether in this same 
context TRα gene expression is altered. However, our own 
data on animal models strongly suggest that the pro-prolif-
erative action of THs and TRα1 on crypt cells may play a 
major role in tumor development. Taking together the lim-
ited, and sometimes contradictory, information regarding 
the function of THs and the control of their activity by the 
deiodinases [83, 85] or the mutation/altered expression of 
the TRs [81, 84, 86, 87, 92] in human gastrointestinal phys-
iopathology, we propose a model (Fig. 4) in which the sign-
aling by THs and TRs can have different outcomes when 
dealing with normal epithelial progenitors or with tumoral 
cells, as also suggested by Brown et al. [88]. Moreover, we 
also speculate that the action of the mutated TRα1 recep-
tors in patients might also result in a reduction of the intes-
tinal epithelial progenitor/stem cell proliferation. The inter-
ference with the functionality of the wild-type TRα1 can 
be particularly deleterious in pathological conditions when 
unaffected proliferative capacities of the precursor cells are 
absolutely required, such as epithelial regeneration after 
gut resection [94] or inflammation [95].

THs and TRs in stem cell biology

evidence supports the assumption that THs and TRα1 
are involved in intestinal epithelial progenitor/stem cell 

physiology, given that they can influence their proliferative 
capacity [12]. Moreover, the regenerative properties of the 
epithelium after γ-ray induced DNA damage, are strongly 
affected by the lack of TRα1 expression [96], and the tar-
geted overexpression of TRα1 in the intestinal epithelium 
(vil-TRα1 mice) induces crypt hyperplasia, hyperprolif-
eration, and adenoma development [38]. In particular, the 
induced aberrant villi architecture can be due to increased 
crypt fission [97], which reflects enhanced stem cell activ-
ity [98]. In favor of this assumption, TRα1 overexpression 
in a tumor-prone model (vil-TRα1/Apc mice) accelerates 
the intestinal tumorigenic process [38].

A specific mechanism of TH-TR action on the intestinal 
stem cell biology, which includes self-renewal and multipo-
tency, has not been described yet, whereas, as said, several 
findings in support of this action have been reported [12]. 
In particular, in Xenopus there is not a clearly defined stem 
cell population in the larval epithelium at the tadpole stage, 
but stem cells appear together with the generation of the 
adult epithelium; intriguingly, both processes are under the 
control of THs [99]. Moreover, several genes that are suit-
able or putative markers of ISCs in mammals are strongly 
and transiently up-regulated by the surge in THs levels dur-
ing this phase of stem cell appearance [100]. Among them, 
Musashi1 is regulated by THs in metamorphic gut in tad-
poles as well as in the developing mouse intestine [101]. 
This gene, however, is not directly regulated at the tran-
scriptional level, indicating that complex cell interactions 
or other mechanisms involving up-stream regulator(s), such 
as the wnt pathway, could control Musashi1 expression 
[101, 102].

Crosstalk between TH‑TRα1 and the Wnt pathway

The TRα1 receptor interacts at multiple levels with the wnt 
pathway in the intestinal epithelial precursors to control 
crypt proliferation in physio-pathological conditions [12].

The wnt pathway is essential for proper intestinal devel-
opment and homeostasis and its deregulation is strongly 
correlated to gut carcinogenesis [103]. The major actor of 
canonical wnt signaling is the β-catenin. The binding of 
wnt to the Fzd receptor leads to increased β-catenin stabi-
lization and to its translocation to the nucleus, where it acts 
as a transcriptional co-factor by associating with members 
of the Tcf/Lef (T cell factor/lymphoid-enhancing factor) 
family of transcription factors [104, 105]. Other signal-
ing pathways such as Notch [106] as well as extracellular 
secreted proteins, including wnt inhibitory factor (Dik-
kopf, Cerberus, and secreted Frizzled-Related Protein), can 
modulate the wnt signaling [107].

T3-liganded TRα1 activates the proliferation of the 
mouse intestinal epithelium precursors by modulating 
genes involved in cell cycle control and components of the 

TR 1 TR 1Sfrp2 

Cell proliferation

Dio3 

Development & homeostasis Cancer 

c-Myc, Cyclin D1 c-Myc, Axin2 WNT TARGET 

Ctnnb1 -catenin/Tcf4 WNT EFFECTOR 
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? 
? 

Fig. 4  Action of THs on intestinal epithelium in development and 
homeostasis versus cancer. The scheme summarizes the direct (arrow) 
and the indirect (connector) effects of THs via TRs on the wnt effec-
tors and targets, which in turn regulate cell proliferation. Intriguingly, 
increased levels of Dio3 have been shown in human colon cancer, 
possibly due to the increased wnt activity in those lesions. It remains, 
however, to be established whether a relation exist between Dio3 and 
TRs in this specific context
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wnt pathway [37, 69]. Indeed, the TRα1 receptor is a direct 
transcriptional regulator of the Ctnnb1 gene, which encodes 
for the β-catenin. The increased expression of β-catenin, 
in turn, activates its targets such as cyclins D1 and D2 as 
well as c-Myc [69]. Moreover, the secreted frizzled-related 
protein sFRP2 was also characterized as a direct target of 
TRα1, acting as a positive regulator of the canonical wnt 
pathway in intestinal progenitors in vitro, as summarized in 
Fig. 3 [37]. Given the role of the wnt pathway in gut tumo-
rigenesis [103], we tested the hypothesis that the alteration 
of TRα1 expression may have a tumor-inducer potential-
ity in mouse intestine [38]. Our results showed that TRα1 
overexpression in vil-TRα1 mice induced crypt hyperplasia 
and hyper-proliferation, but was not able per se to promote 
cancer. Conversely, it can cooperate with an activated wnt 
pathway (vil-TRα1/Apc mice) in the induction of aggres-
sive gut tumors [38]. In an effort to define the mechanisms 
involved in this cooperation, we also reported that TRα1 
and the β-catenin/Tcf4 complex can physically and func-
tionally interact, resulting in the reciprocal modulation of 
their activity [64].

This complex scenario of TRα1 and wnt cross-regula-
tions in the context of the intestinal epithelium underlines 
a key role of TRα1 at the level of the proliferative compart-
ment, including TA cells and ISCs, where wnt is strongly 
active [103] and TRα1 is specifically expressed [66].

Conclusions

The importance of THs in development and homeostasis 
has been first suggested in thyroid-related human patholo-
gies. In fact, the original name for hypothyroidism, myx-
edema, refers to the edema-like associated skin condition 
only subsequently connected to alterations in THs status 
[108, 109]. Insufficient TH levels during development 
were also shown to have clinical consequences such as 
neurological damage and cretinism [110], whereas det-
rimental effects of hyperthyroidism on the skeleton have 
been first described in 1891 [111]. Hypothyroidism has 
been commonly associated with intestinal constipation and 
recent papers described a TRα1 mutation in patients with 
severe peristalsis impairment [73, 74]. Noteworthy, to try 
to understand how THs alteration can influence a specific 
tissue/organ it is necessary to keep into account not only 
the expression pattern of the TR receptors but also the local 
availability of the hormone, which in turn depends on the 
abundance of the THs transporters and of specific deiodi-
nases expression.

we summarized here evidence that TH signaling 
through the TRs stimulates the proliferation of the intesti-
nal epithelial precursors in both amphibians and mammals. 
Moreover, this process is strongly correlated with a set of 

common regulated TH-target genes and signaling path-
ways [37]. However, discrepancies also exist when compar-
ing these two models [12, 44], indicating that an in-depth 
comparative analysis is still lacking. Nevertheless, despite 
this evident lack of knowledge, we underlined here several 
findings in favor of the existence of a TH-dependent sign-
aling on gut stem cell biology in both models. In fact, we 
described a certain number of similarities, strongly sug-
gesting a convergent molecular mechanism at the level of 
these peculiar cells. we believe that increasing the body 
of knowledge in this specific area will help to define the 
molecular basis of developmental abnormalities and of dis-
eases such as cancer.
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