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DLC	� Dynein light chain
LINC	� Linker of nucleoskeleton and cytoskeleton
MTOC	� Microtubule-organizing center
PC	� Pairing center
SPB	� Spindle pole body
γ-TuC	� γ-Tubulin complex

Introduction

During meiosis, eukaryotic organisms recombine homolo-
gous chromosomes to generate chromosomes that harbor 
new sets of the genes, and partition the recombined homol-
ogous chromosomes to halve the chromosome number in 
the gametes. Both recombination and segregation of the 
homologous chromosomes depend on physical interac-
tion of the chromosomes along their entire length, which 
is termed “homologous chromosome pairing” (it is also 
known as “synapsis”, but “pairing” is used in this review). 
How the homologous chromosomes approach each other 
and undergo pairing has been one of the major questions in 
the field of meiosis.

During the period of homologous chromosome pairing, 
telomeres become clustered at the nuclear periphery [1, 2]. 
This telomere clustering was noted more than 100  years 
ago, and has been observed in various types of meiotic cells. 
The chromosome arrangement with clustered telomeres is 
called a “bouquet,” because it resembles a bouquet of flow-
ers. It has long been predicted that the bouquet arrangement 
of the chromosomes contributes to homologous chromo-
some pairing, because the formation of the bouquet arrange-
ment coincides with homologous chromosome pairing. 
Recent studies have shown that this is indeed the case.

The molecular mechanism of telomere clustering has 
been recently revealed. Telomere clustering has been 
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shown to depend on two different types of nuclear mem-
brane proteins, which respectively contain the conserved 
Sad1/Unc-84 (SUN) and Klarsicht/ANC-1/Syne homol-
ogy (KASH) domains [3–5]. The SUN and KASH domain 
proteins form linker of nucleoskeleton and cytoskeleton 
(LINC) complexes [6] and connect the telomere with the 
cytoskeleton (Fig.  1). It has been speculated that LINC-
mediated cytoskeletal forces move and gather the telom-
eres, and a recent study of fission yeast has demonstrated 
that the LINC complex induces telomere clustering by 
forming a microtubule-organizing center (MTOC) at the 
telomere [7]. In this review, I present an overview of the 

current understanding of the telomere clustering mecha-
nism. I also describe the effects of the finding of the telom-
eric MTOC on MTOC studies, and discuss the universality 
of the MTOC-dependent clustering mechanism.

The role of telomere clustering in homologous 
chromosome pairing

Before addressing the telomere clustering mechanism in 
detail, I will briefly discuss the role of telomere clustering 
in homologous chromosome pairing. The role of telomere 
clustering is described in greater detail elsewhere [2, 4, 
8–10].

The first implication of the significance of telomere clus-
tering in homologous chromosome pairing was probably 
brought about through studies of fission yeast, Schizosac-
charomyces pombe. This organism normally propagates 
in the haploid state [8, 11]. Under nitrogen-starved condi-
tions, S. pombe cells with opposite mating types fuse to 
form a diploid cell and immediately enter meiosis. The 
diploid cells undergo two meiotic divisions and eventually 
form four spores. During the majority of the period that 
precedes meiotic division (thereafter, this period is com-
prehensively called “meiotic prophase”), telomeres remain 
clustered at the spindle pole body (SPB; a fungal centro-
some) while centromeres are located away from it, result-
ing in the typical bouquet arrangement of chromosomes 
(Fig.  2a) [12]. During this stage, the nucleus becomes 
elongated and moves back and forth between the cell ends 
(Fig. 2b) [12]. This nuclear oscillation is called “horsetail 
nuclear movement” because of the horsetail-like nuclear 
shape. The horsetail nuclear movements are driven by cyto-
plasmic microtubules that extend from the SPB located at 
the nuclear membrane [13]. The cytoplasmic microtubules 
interact with the cell cortex, and the minus end-directed 
microtubule motor, cytoplasmic dynein, accumulates at the 
cortical interaction sites and generates pulling forces via 
the microtubules that drive nuclear movements (Fig.  2b) 
[14–18]. A combination of nuclear movements and tel-
omere clustering leads to chromosome movements led by 
the bundled telomeres [12]. It has been proposed that the 
telomere-bundled chromosome movements bring about 
the alignment of homologous chromosomes from the tel-
omeres and the frequent contact of homologous regions, 
promoting homologous chromosome pairing [8, 12, 14, 
19]. This view is supported by the impairment of homolo-
gous chromosome pairing in mutants that are defective in 
nuclear movements or telomere clustering. Because nuclear 
movements are dependent on cytoplasmic dynein, the loss 
of dynein function leads to defective nuclear movement. 
Cytoplasmic dynein is a large complex, and dynein heavy 
and light chains (DHC and DLC) act respectively as motor 

Cytoskeleton

Lamin, chromosome

SUN domain

CC

TM

Variable domain

KASH domain 

TM

Variable domain

Outer NE

Inner NE

Nucleoplasm

Cytoplasm

Fig. 1   Schematic structure of the LINC complex. A SUN domain 
protein (blue) has a coiled-coil region (CC) that extends into the 
nuclear lumen and a transmembrane region (TM) that resides in the 
inner nuclear envelope (NE), while a KASH domain protein (brown) 
has a TM that resides in the outer NE. Both proteins form trimers, 
and SUN and KASH trimers interact with each other via their SUN 
and KASH domains in the nuclear lumen. The SUN trimer interacts 
with nuclear lamins or chromosomes with its domains plunged into 
the nucleoplasm, while the KASH trimer interacts with cytoskeleton 
with its domain exposed to the cytoplasm
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and regulatory subunits of dynein. The depletion of either 
Dhc1 (S. pombe DHC) or Dlc1 [S. pombe Tctex-1 (t-com-
plex testis-expressed-1)-type DLC] eliminates or severely 
compromises nuclear movements in S. pombe [14, 20]. In 
these cells, homologous chromosome pairing is severely 
impaired [14, 19, 20]. Telomere clustering, on the other 
hand, depends on factors that are required for telomere 
integrity or SUN/KASH nuclear membrane proteins (see 
below), and the loss of any of these factors leads to defec-
tive telomere clustering [21–26]. Similar to the nuclear 
movement-defective mutants, telomere clustering mutants 
fail to establish proper homologous chromosome pairing 
[19, 27].

The importance of telomere clustering is also recog-
nized in budding yeast, Saccharomyces cerevisiae. As in 
S. pombe, telomeres gather during meiotic prophase [28]. 
However, the telomere cluster is not stable in S. cerevisiae: 

telomeres frequently form small aggregates of various 
sizes, and these aggregates associate and dissociate repeti-
tively [29–31]. In addition, the whole nucleus does not 
move around inside the cell, and telomeres move around 
solely at the nuclear periphery, driving chromosome move-
ments inside the nucleus. Despite these differences, tel-
omere clustering and chromosome movements appear to 
promote homologous chromosome pairing in S. cerevisiae, 
as in S. pombe. Depletion of the meiosis-specific telomere-
binding factor Ndj1 impairs telomere clustering and chro-
mosome movements, and homologous chromosome pair-
ing is compromised in Ndj1-depleted cells [28, 30–35]. 
However, because telomere clustering is not stable and 
impairment of the clustering and/or chromosome move-
ments leads to the association of non-homologous regions 
[36, 37], it has also been proposed that repeating associa-
tion and dissociation of the telomeres is required in order 

Fig. 2   Meiotic chromosome 
arrangement and dynamics in 
S. pombe and C. elegans. a 
Telomere clustering and chro-
mosome arrangement during 
meiotic prophase in S. pombe. 
Telomeres are clustered at the 
SPB while centromeres are 
located away from it, resulting 
in a bouquet-like chromosome 
arrangement. b Chromosome 
and nuclear dynamics during 
meiotic prophase in S. pombe. 
Microtubules extending from 
the SPB interact with the cell 
cortex, and pull the nucleus, 
causing back-and-forth nuclear 
movements between the cell 
ends. Telomere clustering and 
nuclear movements promote 
side-by-side alignment of 
homologous chromosomes from 
the bundled telomeres and con-
tact of homologous regions. c 
Dynamics of PCs in C. elegans. 
PCs move along the nuclear 
periphery by interacting with 
cytoplasmic microtubules via 
the LINC complexes. The PCs 
repeatedly associate and dis-
sociate, and eventually interact 
with their homologous partners. 
Black arrows indicate PC move-
ments. In a and c, blue or red 
lines indicate respective pairs of 
homologous chromosomes. NE 
nuclear envelope
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to resolve the non-homologous interaction and/or chromo-
some entanglement [10, 30, 31].

A similar kind of story has also been observed in the 
nematode Caenorhabditis elegans. In C. elegans, instead 
of telomeres, special chromosomal regions called “pair-
ing centers (PCs)” play a critical role in homologous chro-
mosome pairing (Fig.  2c) [38, 39]. During the period of 
homologous chromosome pairing, the PCs are attached 
to the nuclear membrane and gather as meiotic telomeres 
do. As in S. cerevisiae, the PCs do not form a stable single 
cluster; small aggregations of PCs associate and dissoci-
ate repetitively, and move around at the nuclear periphery 
without movements of the whole nucleus (Fig. 2c) [40–42]. 
The PCs are essential for homologous chromosome pair-
ing, as demonstrated by the fact that homologous chromo-
somes that lack the PCs fail to pair properly [38]. Based on 
these observations, it has been proposed that PC clustering 
and PC-led chromosome movements induce homologous 
chromosome pairing and eliminate the entanglement or 
improper association of chromosomes, like telomeres do in 
S. cerevisiae [40, 43].

Telomere clustering and telomere-led chromosome 
movements are also observed in mammalian cells. In 
mouse and human spermatocytes, telomeres become clus-
tered at the nuclear periphery during the period of homol-
ogous chromosome pairing [44]. In addition, telomeres 
move around at the nuclear periphery in mouse spermato-
cytes, much like telomeres/PCs do in S. cerevisiae or C. 
elegans [45]. Telomere clustering also occurs in maize 
cells [46–48]. Collectively, these observations show that 
telomere clustering and telomere-led chromosome move-
ments are conserved biological events that are essential for 
proper homologous chromosome pairing.

Telomere clustering and the LINC complex

SUN and KASH domain proteins are essential proteins for 
telomere clustering [3–5]. X-ray analysis of a crystal struc-
ture of the LINC complex revealed that three SUN domains 
firmly interact with three KASH domains (Fig. 1) [49, 50]. 

By forming a firm complex, the LINC complexes con-
nect the nucleus to various types of cytoskeleton, such as 
microtubules, actin filaments, and intermediate filaments. 
The LINC complexes originally attracted attention owing 
to their essential roles in the migration of the nucleus dur-
ing the development of various tissues, including the mus-
cle and the brain [3–5, 51–53]. SUN proteins have also 
been shown to interact with nuclear lamins [54–59], whose 
defects lead to a type of cardiac and skeletal muscle dys-
function called Emery-Dreifuss muscular dystrophy [60, 
61]. Furthermore, it was very recently found that the LINC 
complexes drive biased sister chromatid segregation during 
stem cell division [62, 63].

The significance of the LINC complexes in telomere 
clustering has been well recognized in S. pombe (Table 1). 
In this organism, a SUN domain-containing protein, Sad1, 
is localized at the SPB and plays a pivotal role in spindle 
formation during mitosis [64]. However, when telomere 
clustering occurs, Sad1 also becomes localized at telom-
eres, which are tethered to the nuclear membrane by Bqt3 
and Bqt4 [65, 66] (Fig.  3). Sad1 telomere localization is 
dependent on the meiosis-specific proteins Bqt1 and Bqt2 
[65]. Bqt1 localizes to the telomeres by forming a complex 
with Bqt2 and the telomere-binding protein Rap1, and teth-
ers Sad1 to the telomeres by interacting directly with it. 
When either Bqt1 or Bqt2 is depleted, Sad1 fails to accu-
mulate at telomeres, and the telomeres do not form a clus-
ter [65–67]. Like Sad1, S. pombe KASH proteins Kms1 
and Kms2 (which are localized at the SPB during mitosis) 
also become co-localized with telomeres during meiosis [7, 
21]. In addition, Kms1 depletion compromises telomere 
clustering. These results indicate that recruitment of the 
LINC complex to telomeres is an essential step to induce 
telomere clustering.

Similar stories have also emerged in other organisms. In 
S. cerevisiae, a SUN protein, Mps3, is localized at the SPB, 
and additionally becomes co-localized with telomeres when 
telomere clustering occurs, as seen for Sad1 in S. pombe 
(Table  1) [30, 68, 69]. Mps3 interacts with the telomere-
binding protein Ndj1, and depletion of an Ndj1-interacting 
domain of Mps3 causes defects in telomere clustering.  

Table 1   Comparison of elements required for meiotic clustering of chromosomal domains in various organisms

U unidentified

Fission yeast Budding yeast Worm Mouse Human Plant

Clustered chromosomal domains Telomere Telomere Paring center Telomere Telomere Telomere

SUN-domain protein Sad1 Mps3 Metafin/SUN-1 SUN1, SUN2 U U

KASH-domain protein Kms1, Kms2 U ZYG-12 KASH5 U U

Cytoskeletal motor Dynein
Kinesin

U Dynein Dynein U U

Cytoskeleton Microtubule Actin filament Microtubule Microtubule U U
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In C. elegans, SUN protein Metafin/SUN-1 and KASH pro-
tein ZYG-12 are distributed throughout the nuclear mem-
brane in germ cells; however, when the PCs aggregate, 
these proteins concomitantly accumulate at the sites where 
the PCs are located (Table 1) [40, 43, 70]. Mutations in the 
genes encoding Metafin/SUN-1 and Zyg12 or RNAi deple-
tion of Metafin/SUN-1 lead to defective aggregation of the 
PCs [43, 70]. Metafin/SUN-1 becomes phosphorylated 
during meiotic prophase in a manner that is dependent on 
the meiosis-specific CHK-2 kinase and Polo-like kinases, 
PLK-1 and PLK-2; the loss of Metafin/SUN-1 phosphoryla-
tion impairs aggregation [40, 71–73]. In mouse spermato-
cytes, SUN proteins SUN1 and SUN2 and KASH protein 
KASH5 become co-localized with telomeres during meiotic 
prophase; the loss of SUN1 or KASH5 impairs homologous 
chromosome pairing (Table 1)  [45, 74–76]. All of these 
observations made in different organisms indicate that the 
clustering process depends on the LINC complexes.

Consistent with an essential task of the LINC com-
plexes (that is, connecting the nuclear structure and/or 

chromosomes to the cytoskeleton), accumulating lines of 
evidence demonstrate that the LINC complexes induce 
telomere clustering via the cytoskeleton. In S. pombe, C. 
elegans, and mice, aggregation of the telomeres or the PCs 
is abolished by the disruption of microtubules [7, 43, 45]. 
In contrast, in S. cerevisiae an actin-depolymerizing drug 
inhibits telomere clustering, and telomeres become co-
localized with actin filaments and move with the filaments 
[29, 31]. These results provoked the idea that the LINC 
complexes connect telomeres/PCs with the cytoskeleton, 
enabling LINC-mediated cytoskeletal forces to drive tel-
omere/PC clustering.

Cytoskeleton‑dependent telomere clustering mechanism

How the LINC-mediated cytoskeletal forces drive telomere 
clustering is not fully understood. Cytoplasmic dynein is a 
cytoskeletal motor protein that generates LINC-mediated 
cytoskeletal forces. In S. pombe, cytoplasmic dynein is 

Fig. 3   A model for molecular 
organization of the telocen-
trosome. Telomere-recruited 
SUN/KASH recruits the γ-TuC 
to form the telocentrosome 
(dashed purple circle). It also 
recruits cytoplasmic dynein 
together with dynactin, which 
aids dynein function. Recruited 
subunits of dynein [dynein 
heavy chain (DHC) and dynein 
light chain (DLC)] and dynactin 
(Ssm4) are shown in green, and 
the SUN and KASH LINC com-
ponents are shown in orange
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co-localized with telomeres, and simultaneous depletion 
of a motor subunit Dhc1 and a regulatory subunit Dlc1 
impairs telomere clustering [7, 20]. In C. elegans, PC 
movements are dependent on cytoplasmic dynein, which 
is co-localized with the PCs [42, 43]. In mice, dynein-
associated factors become co-localized with telomeres 
during meiotic prophase [45, 76]. Based on these observa-
tions, it has been suggested that cytoplasmic dynein teth-
ered to telomeres/PCs directly transports those telomeres/
PCs along the cytoplasmic microtubules towards the minus 
ends, inducing their clustering. This model seems to fit rea-
sonably well with the case of S. pombe, in which telom-
eres remain clustered at the SPB that is associated with the 
microtubule minus ends [12]. However, the following two 
facts do not fit with the model. First, dynein is unnecessary 
for the clustering process. A loss of dynein motor subunit 
Dhc1 alone does not compromise telomere clustering in S. 
pombe [14]. Similarly, RNAi depletion of DLC together 
with the temperature-sensitive allele of the DHC-encoding 
gene does not eliminate the association of the pairing cent-
ers in C. elegans, although it significantly reduces their 
movements [42]. Second, in C. elegans, PC aggregates 
form independent of the centrosome, and repetitively dis-
sociate and associate [40–42]. Apparently, dynein motor-
dependent transport of telomeres/PCs on microtubules 
alone is not sufficient to support the observed telomere/PC 
clustering.

A very recent study of S. pombe has provided a break-
through in understanding of the cytoskeleton-dependent 
telomere clustering mechanism. The study showed that 
cytoplasmic dynein and dynactin, which aids dynein func-
tions, are tethered to telomeres and contribute to telomere 
clustering [7]. It also demonstrated that, in addition to cyto-
plasmic dynein, several different kinesin motors (including 
those that move in the same direction as dynein) contrib-
ute to telomere clustering. In addition, it was observed that 
when cells were treated with a microtubule depolymer-
izer and subsequently allowed to reform microtubules by 
removal of the inhibitor, telomeres moved along the micro-
tubules directly towards the nucleation sites. This observa-
tion supports the dynein-dependent transport of telomeres 
along microtubules. More importantly, however, it was 
observed that microtubules nucleated from the dispersed 
telomeres in the cells, and that telomeres drifted inside the 
cell and gathered once they were connected with the tel-
omere-nucleated microtubules. This observation indicates 
that the MTOC is formed at the telomere, and that telomere 
clustering is driven by the telomere-nucleated microtu-
bules. This novel telomeric MTOC has been named the 
“telocentrosome” after the telomere and the centrosome. 
Consistent with the microtubule nucleation activity, a com-
ponent of the γ-tubulin complex (γ-TuC) that is respon-
sible for microtubule nucleation is co-localized with the 

telomeres. Telocentrosome formation depends on Kms1, 
a KASH protein. The telocentrosome is essential for tel-
omere clustering, because the loss of Kms1 leads to severe 
telomere clustering defects in addition to defective telocen-
trosome formation [21].

Based on these findings, the following model has been 
proposed. Upon entering meiosis, the LINC complex 
recruits the γ-TuC to telomeres to form the telocentrosome 
(Fig.  3). Next, oligomerized, minus end-directed microtu-
bule motors crosslink the telocentrosome- and the SPB-
nucleated microtubules and gather the telomeres by mov-
ing along the microtubules towards the nucleation sites 
(Fig.  4a). The kinesin and dynein motors may also coop-
erate to regulate the polymerization and/or bundling of 
microtubules to promote connection between telomeres and 
the SPB and to promote drift of the telomeres inside the 
cell to facilitate the encounter of telocentrosome- and SPB-
nucleated microtubules. In addition, cytoplasmic dynein 
becomes tethered to telomeres and directly transports the 
telomeres towards the nucleation sites to aid telomere 
clustering.

The telocentrosome-dependent model solves a spatial 
problem that has previously been unexplained. If the SPB 
were the sole MTOC, then the SPB-telomere connection 
would not be easily established, because it is difficult for 
microtubules, which extend straight from the SPB, to reach 
the telomeres, which are attached to the spherical nuclear 
membrane. For instance, if telomeres are located on the 
opposite side of the nucleus from the SPB, then the SPB-
nucleated microtubules probably never reach them. How-
ever, the situation is different if telomeres simultaneously 
nucleate microtubules. Both SPB-nucleated and telomere-
nucleated microtubules can easily interact with each other 
and establish SPB-telomere connections, even when the 
SPB and telomeres are on opposite sides of the nucleus 
(Fig. 4a). It is also apparent that mutual microtubule nucle-
ation is more efficient for establishing a connection than 
nucleation from the SPB alone. By nucleating microtu-
bules, the SPB and the telomere mutually search for each 
other and efficiently establish their connection.

The telocentrosome-dependent clustering mechanism 
does not appear to function only during the telomere-clus-
tering stage. During nuclear movements, a small fraction of 
wild-type cells exhibit the dissociation of some telomeres 
from the SPB during meiotic prophase [7]. It appears that 
telomeres sometimes fall off of the SPB, but move back to 
it during nuclear movements. It is likely that the telomere-
clustering mechanism also functions during nuclear move-
ments and maintains telomere clustering at the SPB.

These new findings in S. pombe revealed that the LINC 
complexes induce MTOC formation in addition to tether-
ing cytoplasmic dynein. Once the MTOC is formed, several 
different microtubule motors cooperate to move and gather 
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the telomeres by acting on the microtubules that nucle-
ated from the LINC-induced MTOC. This mechanism can 
account for microtubule-dependent telomere clustering in 
other organisms. In particular, it can account for the centro-
some-independent formation of small aggregates of the PCs 
in C. elegans (Fig.  4b). By nucleating microtubules, the 
PCs gather by themselves independently of the centrosome. 
Furthermore, the opposing motile activities of kinesin and 
dynein motors might be able to drive the repeated asso-
ciation and dissociation of the small aggregates. Indeed, 
LINC-dependent antagonistic participation of dynein and 
kinesin has been observed in the nuclear migration of vari-
ous organisms. During the development of C. elegans, a 
distinct type of the LINC complex (UNC-84/UNC-83) 

tethers the nucleus to microtubules via both cytoplasmic 
dynein and kinesin, and the tethered dynein and kine-
sin drive bidirectional nuclear migrations by generating 
forces in opposite directions [77–79]. A similarly antago-
nistic type of motor participation has also been observed 
in LINC-dependent nuclear migration during eye develop-
ment in Drosophila melanogaster [80] and muscle develop-
ment in mice [81]. During meiosis in C. elegans, the LINC 
complex (SUN-1/ZYG-12) may tether kinesin in addition 
to dynein, and the tethered kinesin and dynein may induce 
bidirectional movements of the PCs (Fig. 4b). It is also pos-
sible that oligomerized kinesin and dynein contribute to 
bi-directional movements by linking and moving along the 
PC-nucleated microtubules. Because telomere movements 
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telomere aggregation, bottom). As a consequence of telomere cluster-
ing together with centromere dissociation from the SPB, a bouquet 
chromosome arrangement in meiotic prophase is established (meiotic 
prophase). b MTOC-dependent clustering and dispersal of telomeres/
PCs. MTOCs are formed at telomeres/PCs by telomere-localized 
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MT microtubule motor; NE nuclear envelope. Yellow arrows indicate 
movements of telomeres/PCs. Blue and red arrows indicate move-
ments of minus- and plus-end-directed MT motors, respectively
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are similar in mouse spermatocytes [45], a similar mecha-
nism might also drive telomere movements in mammals.

Although the telomeric MTOC-dependent mechanism 
accounts for the telomere clustering that has been observed 
in different organisms, it is not the only mechanism that 
induces meiotic telomere clustering. In S. cerevisiae, actin 
filaments drive telomere clustering instead of cytoplasmic 
microtubules [29, 31]. Telomere clustering also appears 
to be independent of cytoplasmic microtubules in plant 
cells, because depolymerization of cytoplasmic microtu-
bules does not inhibit telomere clustering [82]. Therefore, 
at least in these organisms, telomere clustering is driven 
by a different mechanism(s). In S. cerevisiae, because the 
telomere appears to be associated with the same point on 
the lateral side of the actin filament during its movements, 
it is unlikely that telomere movements are driven by actin 
motor-dependent transport along the actin filaments [31]. It 
is also unlikely that actin filaments nucleate from the tel-
omere, as observed regarding cytoplasmic microtubules in 
S. pombe. A “piggy-backing” mechanism has been pro-
posed for telomere movements, in which telomeres are 
hooked to the actin filaments and moved by the elongation 
or shortening of the filaments. Although the major mecha-
nism that drives telomere clustering is different in S. cer-
evisiae, a microtubule-dependent mechanism might still be 
involved in telomere clustering, because telomere cluster-
ing tends to occur around the SPB [31] and the depletion of 
microtubule motor Kar3 affects meiotic telomere dynamics 
[83].

Additional effects of the finding of the telocentrosome

MTOC regulation

The study of the telocentrosome has provided new infor-
mation about MTOC regulation. During interphase of the 
vegetative cell cycle in S. pombe, the MTOCs are formed 
at the nuclear surface, and these MTOCs form parallel 
arrays of cytoplasmic microtubules together with the SPB 
[84–86]. MTOCs are also formed at the equatorial region 
where the septum is assembled during telophase [87]. Dur-
ing meiotic prophase, in addition, the SPB forms radial 
microtubules [13]. These MTOCs are respectively termed 
iMTOC, eMTOC, and rMTOC [88, 89], and their forma-
tion is dependent on Mto1, which interacts with the γ-TuC 
and is a potential conserved constituent of the centrosome 
[7, 90–93].

Telocentrosome formation also depends on Mto1, and 
Mto1 depletion severely compromises both telocentrosome 
formation and telomere clustering [7]. However, regulatory 
mechanisms of the telocentrosome and mitotic MTOCs are 
different. Dlc1 contributes to telocentrosome formation 

independently of a dynein motor [7], while it does not con-
tribute to iMTOCs or eMTOCs, as shown by the lack of 
detectable defects on mitotic division in Dlc1-lacking cells 
[20]. The dynein-independent involvement of Dlc1 in telo-
centrosome formation is probably a reason for the severe 
telomere clustering defects that have been observed in cells 
lacking both Dhc1 and Dlc1.

In contrast, the telocentrosome and the rMTOC likely 
share the same mechanism for their formation, because the 
rMTOC is formed by gathering the telocentrosomes and 
the SPB. Indeed, simultaneous depletion of Dhc1 and Dlc1 
compromises rMTOC formation as well as telocentrosome 
formation; in cells that lack both Dhc1 and Dlc1, a radial 
microtubule array is frequently dissociated from the SPB 
during meiotic prophase [7]. Because dissociation has not 
been observed in cells lacking either Dhc1 or Dlc1 [14, 20], 
a reasonable interpretation is that Dhc1 and Dlc1 indepen-
dently contribute to the anchoring of the radial microtu-
bule array to the SPB to form the rMTOC. The fact that the 
radial microtubule array can be formed without attaching 
to the SPB also implies that oligomerization of γ-TuC and 
tethering of the γ-TuC to the SPB are distinctly regulated, 
and Dhc1 and Dlc1 are likely dispensable for γ-TuC oli-
gomerization. Dlc1 appears to be required only during the 
later stage of telocentrosome formation, and dispensable in 
the early stage [7]. Because the telocentrosome is formed 
in cells that contain an interphase-like microtubule array, 
the same mechanism that generates the iMTOC might 
induce telocentrosome formation at the beginning; sub-
sequently, the meiosis-specific, Dlc1-dependent MTOC-
forming mechanism (perhaps the rMTOC-forming mecha-
nism) might take over to induce MTOC maturation and/or 
perform MTOC maintenance.

MTOC aggregation and spindle formation

In addition to MTOC formation, the study of MTOC-
dependent telomere clustering is informative for the study 
of other MTOC-dependent events. The gathering of multi-
ple MTOCs is not a process unique to telomere clustering 
and has been observed in various other biological events. 
Although centrosomes are absent during oogenesis of ani-
mal cells, a bipolar spindle is still formed in a centrosome-
independent manner [94, 95]. Studies of the formation of 
the acentrosomal spindle in mouse oocytes showed that 
multiple MTOCs are formed in the cytoplasm, and these 
MTOCs gather to form spindle poles, like telocentrosomes 
do in S. pombe [96]. The centrosome-independent spindle 
formation mechanism also functions in mitosis [97]. Inter-
estingly, in Xenopus egg extracts, acentrosomal spindle 
pole formation depends on cytoplasmic dynein, like tel-
omere clustering [98, 99]. These similarities suggest that 
acentrosomal spindle pole formation is driven by a similar 
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mechanism that drives meiotic telomere clustering. In sup-
port of this view, SUN domain proteins (Sad1 in S. pombe 
and Mps3 in S. cerevisiae) are required for spindle integ-
rity and telomere clustering in yeasts [64, 100], although 
the present available evidence denies involvement of the 
SUN/KASH proteins in spindle formation in higher eukar-
yotes. Furthermore, in S. pombe cells that are defective in 
meiotic telomere clustering, meiotic spindle integrity is 
compromised in addition to homologous chromosome pair-
ing [101]. This fact shows the presence of a link between 
telomere clustering and spindle formation, and further sup-
ports the idea that telomere clustering and spindle forma-
tion share a common mechanism.

An MTOC‑dependent connection between the centrosome 
and cellular organelles

The MTOC-dependent clustering mechanism appears to 
function in other biological events. Various organelles are 
connected with the centrosome via microtubules, and some 
connections are dependent on MTOCs formed on the orga-
nelles, as observed in telocentrosome-dependent telomere 
clustering at the SPB. Microtubules extend from the orga-
nelle MTOCs, as well as the centrosome (Fig.  5a). The 
organelles and the centrosome are connected with each 
other through centrosome-nucleated and organelle-nucle-
ated microtubules, and are subsequently brought into prox-
imity by those microtubules.

An example of the MTOC-dependent centrosome-
organelle connection is observed in the interaction of 
chromosomes with the centrosome during mitotic divi-
sion (Fig. 5b, Kinetochores in human and budding yeast). 
During chromosome segregation, chromosomes interact 
with microtubules extending from the centrosome via the 
kinetochore and are pulled towards the centrosome by the 
microtubules. Recent studies have shown that the kine-
tochore itself nucleates microtubules, and kinetochore-
nucleated microtubules interact with centrosome-nucle-
ated microtubules to establish the centrosome-kinetochore 
connection [102–106]. It has been shown in human cells 
that the Nup107-160 nuclear pore subcomplex is recruited 
to the kinetochore and induces microtubule nucleation by 
forming a complex with γ-tubulin; the Ran GTPase acti-
vator RanGAP1-RanBP2 regulates Nup107-160-depend-
ent microtubule nucleation and the spindle attachment of 
chromosomes [106–109]. The Nup107-160 complex also 
interacts with CENP-F [110], which binds to the cyto-
plasmic dynein regulators NudE/NdeI and NudEL/NdelI, 
as well as microtubules [111, 112]. CENP-F may also 
contribute to the nucleation of kinetochore microtubules, 
because it has been shown to regulate microtubule nuclea-
tion at the centrosome in mouse cells [113]. In S. cere-
visiae, the kinetochore has also been shown to nucleate 

microtubules with the plus ends distal to the kinetochore, 
although microtubule nucleation is dependent not on 
γ-tubulin, but on the microtubule-plus-end-tracking pro-
tein Stu2 (an yeast ortholog of vertebrate XMAP215/
TOG) [105]. Detailed analysis of kinetochore and micro-
tubule dynamics in this organism provided evidence that 
the kinetochore-nucleated microtubules facilitate the 
establishment of the centrosome-kinetochore connec-
tion. Nucleation of kinetochore microtubules has not been 
detected thus far in S. pombe; however, this process may 
also be involved in the centrosome-kinetochore interac-
tion, because Dlc1 (which is involved in telocentrosome 
formation) contributes to the kinetochore-spindle interac-
tion [114, 115].

The MTOC-dependent mechanism is also likely to 
facilitate the connection between the Golgi appara-
tus and the centrosome (Fig.  5b, Golgi in human). The 
Golgi, which is composed of stacks of membrane cister-
nae, is required for the modification and sorting of vari-
ous proteins synthesized in the endoplasmic reticulum. It 
is located near the centrosome during interphase and dis-
perses to form small vesicles during mitotic division [116, 
117]. After mitotic division, the scattered Golgi vesicles 
gather to reform the membrane cisternae structure near 
the centrosome. The interphase centrosomal location of 
the Golgi cisternae and its reconstitution after mitotic 
division are thought to depend on microtubules and cyto-
plasmic dynein, because microtubule disruption or dynein 
depletion cause fragmentation and dispersal of the Golgi 
cisternae [117–121]. The Golgi vesicles attracted atten-
tion as cargoes that were transported on the microtubules 
to the centrosome via cytoplasmic dynein [116]. However, 
it has been demonstrated that the Golgi vesicle itself accu-
mulates γ-TuC at its surface in a manner that is depend-
ent on the microtubule-associated protein GMAP-210 
and microtubule-plus-end-tracking proteins, CLASPs; in 
addition, the Golgi has microtubule nucleation activity 
[122–124]. The centrosomal protein myomegalin, which 
is likely responsible for microtubule nucleation, is also 
co-localized with the Golgi apparatus [125]. Because of 
the similarity to the kinetochore, it has been proposed that 
the Golgi-nucleated microtubules facilitate establishment 
of the connection between the centrosome and the Golgi 
[123]. Furthermore, because the fragmented Golgi cister-
nae that are formed by microtubule disruption gather by 
themselves independently of the centrosome after micro-
tubule reformation, it has also been proposed that the 
Golgi-nucleated microtubules induce self-gathering of the 
fragmented Golgi, as has been proposed for meiotic tel-
omere clustering [123, 126].

The MTOC-dependent mechanism may also con-
tribute to the centrosome-nucleus attachment (Fig.  5b, 
Nucleus in human, mouse, worm, and fly). In eukaryotic 
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organisms, the centrosome interacts with the nuclear sur-
face [127]. This interaction is essential for the develop-
ment of various tissues, including brain, muscle, and eye 
[127], as well as for efficient breakdown of the nuclear 
envelope during mitotic division [128, 129]. A centro-
some-nucleus connection depends on the LINC com-
plexes, microtubules, and cytoplasmic dynein [3–5, 52, 
53, 127, 130–133]. In the C. elegans embryo, the SUN 
domain protein SUN-1 and the KASH domain protein 
ZYG-12 are required for centrosome-nucleus attachment 
[134]. ZYG-12 contributes to centrosome-nucleus attach-
ment by tethering cytoplasmic dynein to the nuclear 
envelope. During Drosophila eye development, the SUN 
domain protein Klaroid and the KASH domain protein 
Klarsicht are required for centrosome-nucleus attach-
ment and nuclear migration [54, 135]. During Drosophila 
spermatogenesis, cytoplasmic dynein likely contributes 
to centrosome-nucleus attachment, because Asunder, 
which tethers cytoplasmic dynein to the nuclear enve-
lope, is essential for centrosome-nucleus attachment 
[136, 137]. Similarly, human Asunder recruits dynein to 
the nuclear envelope and tethers the centrosome to the 
nucleus [138]. In mice, the SUN domain proteins SUN1 
and SUN2 and KASH domain proteins Syne/Nesprin-1 
and Syne/Nesprin-2 form complexes and connect the 
centrosome to the nucleus during neurogenesis and neu-
ronal migration, and Syne/Nesprin-2 interacts with cyto-
plasmic dynein together with dynactin [139]. The kine-
tochore proteins responsible for microtubule nucleation 
also contribute to centrosome-nucleus attachment. In 
human cells, the components of the nuclear pore com-
plex (Nup133 and RanBP2) and the centromere com-
ponent (CENP-F) are required in order to tether the 
centrosome to the nucleus [140, 141]. Similar to other 
centrosome-nucleus attachments, the dynein regulators 
NudE, NudEL, and Lis1, are also involved [140–142].

Because SUN/KASH proteins, the nuclear components 
Nup133 and RanBP2, and CENP-F potentially contribute 
to microtubule nucleation, it is possible that these factors 
induce microtubule nucleation from the nuclear surface 
to facilitate interaction between the nucleus and the cen-
trosome. Indeed, the nucleus has a γ-tubulin-dependent, 
microtubule nucleation activity at its surface in plant cells 
[143]. One might think that nuclear microtubule nucleation 
may not be necessary for centrosome-nucleus attachment, 
because the nucleus itself is a large organelle and can be 
easily captured by centrosomal microtubules. However, 
because many centrosomal microtubules probably must 
attach to the nucleus to move such a large organelle, it is 
reasonable to think that cells might utilize the MTOC-
dependent mechanism to efficiently establish and/or main-
tain numerous attachments.

Conclusions and perspectives

It is currently evident that telomere clustering is required 
for meiotic homologous chromosome pairing. The LINC 
complex induces telomere clustering by forming the telo-
centrosome in S. pombe. However, the molecular mecha-
nism that induces telocentrosome formation remains poorly 
understood. What molecules induce telocentrosome forma-
tion together with the LINC complex and how telocentro-
some formation is regulated are the next challenging ques-
tions in the field. Similarly, how clustered telomeres are 
released from the SPB before meiotic division is a future 
question to be solved. In addition, it is of great interest to 
examine whether the MTOC-dependent telomere cluster-
ing observed in S. pombe is common to other organisms. 
Molecular mechanisms of microtubule-independent tel-
omere clustering in budding yeast and plant cells also must 
be elucidated. Clarifying these points is critical to an inte-
grated and comprehensive understanding of meiosis and of 
various LINC-dependent activities, such as nuclear migra-
tion, nuclear positioning, and biased sister chromatid seg-
regation during stem-cell division. It would also contribute 
to a general understanding of the regulatory mechanisms of 
MTOC, MTOC-dependent centrosome-organelle connec-
tion, and DLC functions. Finally, it is clinically important 
to understand these mechanisms because the impairment of 
LINC complexes in human cells is involved in Emery-Drei-
fuss muscular dystrophy, and defective telomere clustering 
causes improper homologous chromosome segregation that 
might be a cause of miscarriage or Down’s syndrome. The 
mechanism of meiotic telomere clustering is undoubtedly 
one of the most exciting biological subjects to be studied in 
greater depth in the future.
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