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in human serum being released from skin fibroblasts [1, 
2]. In 1985, a protein described to stimulate the growth 
of erythroid progenitor cells was cloned and found to be 
identical to TIMP-1 [3–5]. Between 1985 and 1996, the 
other three members of the TIMP family were identified by 
molecular cloning and characterization at the protein level 
[6–8]. The four human TIMPs are the natural endogenous 
inhibitors of the matrix metalloproteinases (MMPs), a fam-
ily of endopeptidases that regulate the turnover of extracel-
lular matrix (ECM) and cleave various bioactive molecules 
including cytokines, chemokines and growth factors [9, 
10]. Changes in TIMP expression levels were shown to cor-
relate with the occurrence and progression of various dis-
eases including cancer and heart failure [11–14].

Over a long period of time, TIMPs have been almost 
exclusively examined in their function as MMP inhibitors.  
Accumulating evidence from the past decade however 
clearly indicates that TIMPs have additional biological 
activities by acting as signaling molecules in their own 
right. This occurs independent of metalloproteinase inhibi-
tion by direct binding to specific surface receptors to induce 
cellular responses. These cytokine-like activities of TIMPs  
include the modulation of cell proliferation, apoptosis, dif-
ferentiation, and angiogenesis [15]. The development of 
specific TIMP mutants devoid of MMP-inhibitory activity  
has facilitated a clear distinction of direct cytokine-like 
effects from indirect influence through TIMP inhibition 
of protease activity. By this means, substantial informa-
tion has accumulated for cytokine functions of TIMP-1 as 
well as TIMP-2 [16]. In contrast, less data are available on 
TIMP-3 and TIMP-4 in terms of cellular effects induced 
by direct signaling. The present review summarizes recent 
progress in the understanding of TIMP-1’s activity as a 
cytokine with a focus on signaling pathways mediating its 
multiple effects in cells. Increased comprehension of the 
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Introduction

Tissue inhibitor of metalloproteinases (TIMP-1) was dis-
covered in 1975 in form of a collagenase inhibitor present 
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pleiotropic activities of TIMPs in tissue homeostasis and 
increased knowledge of the molecular mechanisms that 
control these functions would help to develop novel strate-
gies in the treatment of cancer and other chronic diseases.

The TIMP family

The human genome has four genes encoding TIMPs des-
ignated as TIMP-1, TIMP-2, TIMP-3, and TIMP-4 [17]. 
They are 22–28  kDa proteins depending on the presence 
and degree of glycosylation. Structure, function and evo-
lution of TIMPs have been recently reviewed in detail by 
Brew and Nagase [18]. TIMPs are expressed by a variety 
of cell types and present in most human tissues and body 
fluids. All four TIMPs act as potent regulators of the pro-
teolytic activity of MMPs and, in some instances, of the 
disintegrin metalloproteinases (ADAMS) and the disin-
tegrin metalloproteinases with thrombospondin motifs 
(ADAMTS) by forming non-covalent 1:1 stoichiometric 
complexes with their target proteases [18]. TIMPs com-
prise two distinct domains that are each stabilized by three 

disulfide bonds: an N-terminal domain of about 125 amino 
acids and a C-terminal domain of about 65 residues. Both 
domains have the ability to function independently; the 
N-terminal domains are fully active as inhibitors of MMPs, 
and the C-terminal domain is important in complex forma-
tion with pro-enzymes (proMMPs) [19]. Although TIMPs 
are about 40  % identical in amino acid sequence to each 
other, they differ in many aspects including solubility, 
interaction with proMMPs and regulation of expression. 
TIMP-1, for instance, is present in a soluble form while 
TIMP-3 is tightly bound to the ECM. In terms of MMP 
inhibition, TIMP-1 specifically interacts with proMMP-9 
while TIMP-2 preferentially binds to proMMP-2. Moreo-
ver, TIMP-1 expression in cells is significantly regulated by 
growth factors and cytokines, whereas TIMP-2 biosynthe-
sis is constitutive and less sensitive to external stimuli [15]. 
The characteristic features of the four human TIMPs are 
summarized in Table 1.

Orthologs of TIMPs have been identified in various ani-
mal species ranging from molluscs, worms and insects to 
vertebrates such as fish and birds, but they are absent in 
plants. The four human TIMPs appear to be expressed in 

Table 1   Molecular characteristics and properties of human TIMPs [17, 18]

ADAM a disintegrin and metalloproteinase domain protease, ADAMTS a disintegrin and metalloproteinase domain protease with thrombospon-
din motifs, ECM extracellular matrix, EFEMP1 EGF-containing fibulin-like extracellular matrix protein-1, LRP-1 low density lipoprotein recep-
tor-related protein-1, VEGFR2 vascular endothelial growth factor receptor 2

Property TIMP-1 TIMP-2 TIMP-3 TIMP-4

Mature protein (kDa) 28 22 22 or 27 22

N-glycosylation sites 2 0 1 0

Amino acid residues 184 194 188 194

pI 8.5 6.5 9.1 7.2

Protein expression Inducible Constitutive Inducible Inducible

proMMP binding proMMP-9 proMMP-2 proMMP-2/-9 proMMP-2

MMP inhibition All All All Most

MT-MMP inhibition Weak Yes Yes Yes

ADAM inhibition ADAM10 ADAM12 ADAM10/12/17/19/33; 
ADAMTS-1/-2/-4/-5

ADAM17/28

Protein localization Soluble, cell surface Soluble, cell surface ECM bound, cell surface Soluble, cell surface

Cell surface localization Yes Yes Yes Yes

Surface binding partners CD63, LRP-1/MMP-9 α3β1 integrin, LRP-1 VEGFR2, Angiotensin-IIR, 
EFEMP1

Effect on proliferation Positive and negative Positive and negative Positive Positive and negative

Effect on apoptosis Negative Positive and negative Positive Negative

Effect on differentiation Positive and negative Positive Positive and negative

Tumor angiogenesis Positive and negative Negative Negative

Angiogenesis in 3D collagen or 
fibrin gels

No effect Negative Negative Negative

Chromosomal location Xp11.23-11.4 17q23, 17q25 22q12.1, 22q13.2 3p25

mRNA (kb) 0.9 1.0 and 3.5 5.0 1.4

Nested synapsin gene SYN1 n/a SYN3 SYN2

Genetic disorder Idiopathic scoliosis Sorsby fundus dystrophy Kawasaki disease
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all mammalian species [18]. However, their orthologs are 
not present in all vertebrates and TIMPs from invertebrates 
show increased variability in sequence and structure [18]. 
Several studies have demonstrated developmental defects 
in TIMP-deficient organisms in both mammalian and non-
mammalian systems, indicating the importance of these 
proteins during embryonic development [20, 21].

TIMP regulation of cell functions: 
metalloproteinase‑dependent 
and metalloproteinase‑independent mechanisms

The four TIMPs inhibit the activity of all 23 MMPs found 
in humans. MMPs are secreted as soluble proteins or 
expressed on the cell surface regulating cellular interac-
tions with the ECM [9]. The ECM is a dynamic network of 
macromolecules such as collagens, fibronectin, laminin and 
proteoglycans that represents an environment influencing 
the fate and behavior of cells. After disruption from their 
association with ECM, cells lose their differentiated phe-
notype and undergo anoikis (apoptotic cell death induced 
by loss of cell adhesion) [22, 23]. MMPs are key regulators 
of ECM turnover during normal and pathological processes 
including development, tissue remodeling and cell growth 
as well as tumor cell invasion and metastasis [24, 25]. The 

activities of MMPs that include collagenases, gelatinases, 
stromelysins, matrilysins and membrane-type MMPs are 
under tight control through inhibition by TIMPs. A fine-
tuned balance between levels of MMPs and TIMPs con-
trols the extent of local ECM degradation in the periphery 
of cells and thereby influences cellular processes such as 
migration, proliferation and survival. Moreover, MMPs as 
well as the membrane-anchored ADAMs affect the behav-
ior of cells also by cleavage of cell surface-bound mole-
cules including cytokines, chemokines, receptors and adhe-
sion factors involved in cell growth and survival [10, 26]. 
As a matter of fact, a certain proportion of the previously 
reported TIMP activities on cell function can be explained 
by metalloproteinase inhibition (Fig. 1a).

However, an increasing number of TIMP-ascribed 
effects on cell proliferation, apoptosis, differentiation, and 
angiogenesis have been clearly demonstrated to be inde-
pendent of MMP inhibition. This became possible by utili-
zation of TIMP mutants that do not inhibit MMPs but still 
exhibited similar activity on cell function. Stetler-Steven-
son and colleagues [27] were the first to describe the prepa-
ration of a TIMP variant devoid of MMP inhibitory activity 
nevertheless retaining its other biological activities. Basi-
cally, these TIMP mutants are engineered by appending one 
or two amino acid residues to the amino-terminal cysteine 
in position 1, which is conserved in all four human TIMPs. 

Fig. 1   Principal ways by which TIMPs can regulate cell functions. 
a By means of metalloproteinase-dependent mechanisms, TIMPs 
interact with soluble or membrane-bound MMPs or other metallopro-
teinases in the cellular periphery and thereby modulate the cleavage 
of ECM proteins including collagens, laminin and fibronectin or bio-
active molecules such as cytokines, chemokines, and growth factors 

which activate or suppress receptor-mediated signaling in the cells. 
b By means of metalloproteinase-independent mechanisms, TIMPs 
similar to cytokines directly interact with specific surface-receptors 
that initiate intracellular signaling cascades resulting in altered gene 
expression and changes in cell behavior
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This modification results in a loss of inhibitory activity by 
disrupting the cysteine-1 interaction with the active zinc 
atom in the catalytic domain of metalloproteinases. These 
TIMP variants have become most helpful tools for investi-
gators to assess whether TIMP effects are unique biological 
activities of this protein or dependent on MMP inhibition 
[28]. In fact, recent work by several laboratories has identi-
fied a general mechanism for members of the TIMP family 
to induce cellular response involving specific cell surface 
binding partners and downstream signaling pathways, simi-
lar to cytokine-mediated effects in cells (Fig. 1b).

TIMP‑1 influence on cell growth

When the TIMP-1 cDNA was first cloned and sequenced 
[4], it was found to be identical to a protein that exhibits 
erythroid potentiating activity (EPA) [5]. EPA was identi-
fied as a T lymphoblastic factor present in serum, which 
promotes the growth of early erythroid progenitor cells by a 
mechanism involving direct cell surface binding [29]. EPA 
potentiates erythropoietin-stimulated colony formation by 
erythroid precursor cells. Beyond that activity, TIMP-1 
was shown to have cell growth promoting properties in a 
wide array of cell types including keratinocytes, fibroblasts, 
chondrocytes, epithelial cells, breast carcinoma cells and 
various leukemic cell lines [30–32]. Interestingly, TIMP-2 
had no influence on cell growth in these experiments, sug-
gesting that these effects are TIMP-1 specific. Later studies 
revealed TIMP-2 to also have growth-promoting activity in 
erythroid precursors and other cell types [32–34]. TIMP-
1’s stimulatory impact on cell proliferation is independent 
of its ability to inhibit MMPs. This has been demonstrated 

by use of TIMP-1 mutants that lack MMP inhibitory activ-
ity but fully retained erythroid potentiating activity, which 
was not the case by application of synthetic MMP inhibi-
tors [35]. Stimulation of cell division was shown to require 
free TIMP-1 because its growth promoting activity was 
abolished by complex formation with either proMMPs 
or active MMPs [31]. In addition, former binding stud-
ies in keratinocytes indicated the presence of high affinity 
cell receptors with KD values in the low nanomolar range 
for TIMP-1 [30]. These findings strongly suggest that the 
effects of TIMP-1 on cell growth are mediated by direct 
binding to the cell surface through a cell receptor mecha-
nism that remains to be identified. Binding of TIMP-1 to 
the cell surface is not competed by TIMP-2 suggesting that 
TIMP-1 and TIMP-2 have their own specific receptors [34].

Several distinct signaling pathways have been impli-
cated in TIMP’s growth promoting activity. Both TIMP-1 
and TIMP-2 were shown to activate the G protein Ras by 
increasing Ras-GTP but utilizing different signaling path-
ways; TIMP-1 engages the classical mitogen activated pro-
tein kinase (MAPK) pathway involving receptor tyrosine 
kinase (RTK) activity and phosphorylation of Raf, whereas 
TIMP-2 signaling is mediated via protein kinase A activa-
tion and Ras/PI3-K complex formation [36]. These find-
ings demonstrate that the mitogenic activities of TIMP-1 
and TIMP-2 require different receptors and signaling path-
ways explaining the contextual functions of TIMPs in the  
promotion of cell growth. TIMP-1 but not a synthetic MMP 
inhibitor stimulates proliferation of aortic smooth muscle 
cells in association with activation of Ras, increased phos-
phorylation of extracellular signal-regulated kinase (ERK) 
and enhanced cyclin D1 expression involving the phospho-
inositide 3-kinase (PI3-K) pathway [37], indicating these 

Fig. 2   Signaling pathways 
involved in TIMP-1-mediated 
promotion (a) and inhibition (b) 
of cell proliferation independent 
of MMP-inhibition
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effects to be independent of MMP-inhibition. In fibroblasts, 
TIMP-1 increases proliferation through activation of PI3-K 
and phosphorylation of Akt thereby upregulating cyclin D1 
and downregulating the cyclin D kinase (CDK) inhibitors 
p21 and p27, which promotes cell cycle progression [38] 
(Fig. 2a). Consistent with this model, TIMP-1 stimulation of 
growth in hepatic stellate cells correlates with Akt phospho-
rylation [39]. Moreover, TIMP-1 deficiency in hematopoi-
etic stem cells isolated from TIMP-1-null mice display a 
dysregulated cell cycle distribution at the G1 phase accom-
panied with increased levels of p21, p53 and p57 [40].

Recent findings indicate that TIMP-1 is important in the 
regulation of neural cell function involving metalloprotein-
ase-dependent pathways because TIMP-1 interaction with 
MMPs was shown to modulate the outgrowth of cortical 
neurons and proliferation of astrocytes [41, 42].

Beside TIMP-1’s growth-promoting effects, there is evi-
dence that TIMP-1 can also act as an inhibitor of cell pro-
liferation. In mice deficient for TIMP-1 expression, mam-
mary epithelial cell proliferation is upregulated and can 
be restored to basal level by the introduction of exogenous 
TIMP-1 into the animals [43]. In vitro studies in human 
MCF10A breast epithelial cells demonstrated that TIMP-1 
downregulates the growth rate by inducing cell cycle arrest 
at G1 associated with a decrease in cyclin D1 and a simul-
taneous increase in the CDK inhibitor p27 [44]. This inhib-
its phosphorylation of the retinoblastoma (Rb) protein, 
which is important for cell cycle progression (Fig. 2b).

Together, these studies show that TIMP-1 regulates cell 
division by direct engagement of signaling pathways that 
affect the expression and activity of nuclear factors such as 
cyclin D1, p21, and p27. Further investigations on partici-
pating TIMP-1 surface receptors and intracellular signaling 
factors would greatly improve the understanding of positive 
and negative mechanisms by which TIMP-1 modulates cell 
proliferation.

TIMP‑1 influence on apoptosis

In addition to its effects on cell growth, TIMP-1 is reported 
to suppress the process of programmed cell death. Burkitt’s 
lymphoma cell lines that express TIMP-1 are resistant to 
extrinsic and intrinsic (cold-shock, serum deprivation and 
γ-irradiation) apoptosis, whereas TIMP-1-negative cells are 
not [45]. In these studies, addition of recombinant TIMP-1 
and transgenic expression of TIMP-1 in a TIMP-1 negative 
cell line reduced the susceptibility to induction of apop-
tosis through CD95-dependent and CD95-independent 
pathways involving diminishment of caspase-3 activity. 
This anti-apoptotic effect is not observed with TIMP-2 or 
application of a synthetic MMP inhibitor, indicating that 
the mechanism is receptor-specific and independent of 

MMP inhibition [45]. Furthermore, TIMP-1 suppression 
of apoptosis in lymphoma cells correlates with increased 
expression of the pro-survival protein B-cell lymphoma-
extra large (Bcl-xL) and inhibitor of nuclear factor kappa 
B alpha (IκBα) protein as well as decreased nuclear factor 
kappa B (NFκB) activity [45], suggesting that these effects 
are mediated by a specific anti-apoptotic signaling path-
way (Fig.  3). The survival-promoting activity of TIMP-1 
is not restricted to tumor cells. In rat pancreatic islets, the 
expression of TIMP-1 but not TIMP-2 prevents cytokine-
mediated apoptosis involving inhibition of NFκB [46]. In 
germinal center B cells, TIMP-1 upregulates the expression 
of survival factors including interleukin 10 that contributes 
to cell survival [47]. Besides that, TIMP-1 has anti-apop-
totic activity in normal human granulocytes and endothelial 
cells although these effects were not shown to be MMP-
independent [48, 49].

For a long time, a putative receptor responsible for 
TIMP-1 binding on the cell surface and subsequent intra-
cellular signaling was not characterized. In 2006, Jung 
and colleagues [50] reported that TIMP-1’s anti-apoptotic 
activity in MCF10A human breast epithelial cells is medi-
ated through its binding to CD63, a member of the tetraspa-
nin family. CD63 interacts with the β1 subunit of integrins 
and the TIMP-1-CD63-integrin β1 complex thus constitu-
tively turns on survival signals via activation of focal adhe-
sion kinase (FAK), PI3-K and ERK pathways [51, 52]. 
This TIMP-1-initiated mechanism protects the cells from 
intrinsic and extrinsic cell death in a fashion that is inde-
pendent of its metalloproteinase inhibitory activity [51, 
52]. Recently, TIMP-1 complex formation with CD63 and 
β1 integrin was reported to increase adhesion, migration 
and resistance to apoptosis in CD34+ hematopoietic stem/
progenitor cells [53]. CD63 is a ubiquitous protein that is 
localized not only at the cell surface but also within the 
endosomal system after endocytosis via AP-2 and clathrin-
coated pits [54]. This enables regulation of TIMP-1/CD63-
mediated effects also through sequestration mechanisms.

In addition to complex formation with CD63, TIMP-1 
binds with high affinity to proMMP-9. Both interactions 
are mediated by the C-terminal domain of TIMP-1 [18]. 
Thus, CD63 expressed on the cell surface and proMMP-9 
present in the cell periphery compete for binding to the 
C-terminal domain of TIMP-1. As a consequence, elevated 
concentrations of proMMP-9 act as a sink by reducing free 
TIMP-1 limiting its interaction with CD63 that results in an 
attenuation of TIMP-1-mediated signaling and gene expres-
sion in these cells. This mechanism represents an important 
method in the control of TIMP-1’s cytokine activities.

Recent studies indicate that TIMP-1 suppression of 
apoptosis in UT7 erythroid cells is mediated through 
binding of TIMP-1 to proMMP-9 in complex with CD44 
on the cell surface and involves signaling through the 
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Janus kinase 2 (JAK2)/PI3-K/Akt/Bcl-2-associated death 
promoter (Bad) pathway [55–57]. TIMP-1 engagement 
of this pathway is independent on MMP-9 inhibition but 
requires proMMP-9 as an adaptor for binding to CD44 
and subsequent intracellular signaling [56]. The authors 
demonstrate that sequential activation of Lyn, JAK2 and 
PI3-K plays a crucial role in the initial steps of this path-
way resulting in the phosphorylation of Akt and Bad that 
eventually increases the release of anti-apoptotic Bcl-xL 
in the cells [55, 58] (Fig.  3). Consistently, upregulation 
of Bcl-xL was found to be associated with TIMP-1 pro-
tection from apoptosis in lymphoma cells [45]. Another 
anti-apoptotic protein of the Bcl-family, Bcl-2, increases 
TIMP-1 expression in breast epithelial cells, and TIMP-1 
then promotes survival in these cells [59]. TIMP-1 pro-
tection of neurons from apoptosis induced by stauro-
sporine and human immunodeficiency virus-1 is asso-
ciated with stabilization of Bcl-xL and Bcl-2 protein 
in these cells and shown to be MMP-independent [60]. 
Treatment of bone marrow stromal cells with TIMP-1 
preserves from intrinsic apoptosis via activation of PI3-K 
and c-Jun N-terminal kinase (JNK) pathways result-
ing in an upregulation of Bcl-2 and decrease of the pro-
apoptotic Bcl-2-associated X (Bax) protein [61]. Similar 
to PI3  K/Akt, the ERK and JNK pathways are reported 
to phosphorylate Bad thereby preventing Bad associa-
tion with anti-apoptotic Bcl-xL and Bcl-2 at the mito-
chondrial membrane [62, 63]. Together these findings 
indicate a central role of Bad and its interaction with 
Bcl-xL/Bcl-2 in the final steps of TIMP-1-promoted cell 

survival irrespective of the underlying upstream signaling 
pathways (Fig. 3).

A pro-apoptotic function of TIMP-1 is not reported. 
However, TIMP-3, which is unique amongst the TIMP fam-
ily in that it specifically interacts with the ECM, was shown 
to promote Fas-dependent cell death in various cell types 
through inhibition of metalloproteinases [64, 65]. In con-
trast, TIMP-1 prevents this process independent of MMP-
inhibition [52]. This indicates opposite roles and different 
mechanisms for TIMP-1 and TIMP-3 in the regulation of 
extrinsic apoptosis. The effect of TIMP-2 on programmed 
cell death has not been well characterized with conflicting 
reports in the literature and hitherto no clearly defined sign-
aling pathways [66, 67].

Cell survival in general is significantly influenced by 
interactions of the cells with the ECM. Interruption of cell-
matrix interaction in anchorage-dependent cells results in 
apoptotic cell death [22, 23]. Consistently, mammary epi-
thelial cells overexpressing MMP-3 were shown to undergo 
programmed cell death, which was rescued by simultane-
ous production of TIMP-1 in these cells [68, 69]. TIMP-1 
attenuation of apoptosis in activated hepatic stellate cells is 
dependent on MMP inhibition as demonstrated by utiliza-
tion of non-MMP-inhibitory TIMP-1 mutants [70].

Taken together, TIMP-1 can regulate cell survival 
through direct engagement of receptor-mediated signaling 
and by indirect mechanisms based on the inhibition of met-
alloproteinases. These TIMP-1 pathways co-exist and their 
individual activities depend on the cellular and molecular 
context. This includes the ECM composition in the cellular 

Fig. 3   Signaling pathways 
involved in pro-survival activi-
ties of TIMP-1 independent of 
MMP-inhibition
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environment, the presence of apoptotic stimuli, the avail-
ability of TIMP-1 receptors on the cell surface, and the lev-
els of (pro)MMPs that bind to TIMP-1 and thereby limit 
the interaction of free TIMP-1 with its cell surface recep-
tors. In fact, the TIMP-1/proMMP-9 complex binds to 
low density lipoprotein (LRP-1) on the surface of mouse 
embryonic fibroblasts and is subsequently internalized 
[71], representing a mechanism that modulates the amount 
of free TIMP-1 available for receptor binding and direct 
signaling. Further studies are required to evaluate whether 
cell type-specific differences may account for qualitative 
and quantitative variations in cellular response to TIMP-1.

TIMP‑1 influence on cell differentiation

The inhibitory functions of TIMP-1 on cell growth and 
apoptosis are in close relationship to TIMP-1’s role as a 
promotor of cell differentiation. Early studies in eryth-
roleukemic cells showed that TIMP-1 in addition to its 
growth stimulatory activity also influences the maturation 
of these cells [72]. More recent data reported by Petitfrere 
and colleagues [73, 74] demonstrate TIMP-1 to induce the 
differentiation of erythroid UT-7 cells, myeloid 32D cells 
and normal erythroid progenitors implicating p38 MAPK 

activity. In this cell model, TIMP-1 leads to the activation 
of caspase-3 that cleaves and thereby activates MEKK1, 
which phosphorylates MEK6 enabling its complex forma-
tion with p38α [74] (Fig. 4a). Remarkably, the TIMP-1-me-
diated caspase-3 activation in hematopoietic cells does not 
increase apoptotic cell death, which is thought to be a con-
sequence of TIMP-1’s survival promoting effects in these 
cells [55].

Several studies reported by Stetler-Stevenson’s group 
[75, 76] demonstrate that TIMP-1 promotes survival and 
affects differentiation in normal and neoplastic B-cells. 
Because TIMP-1 is secreted from hematopoietic and stro-
mal cells in the bone marrow, TIMP-1 can function as a 
regulator of hematopoiesis in both autocrine and parac-
rine fashion. TIMP-1 controls the differentiation of ger-
minal center B-cells to plasma cells involving upregula-
tion of Il-10 in these cells [47]. The TIMP-1-promoted 
plasmacytic/plasmablastic differentiation of Burkitt lym-
phoma cells is accompanied by activation of signal trans-
ducer and activation of transcription 3 (STAT-3) and switch 
to cyclin D2 expression without altering proliferation in 
these cells [76, 77]. During late stages of TIMP-1-induced 
differentiation of Burkitt lymphoma cells, CD44 surface 
expression is upregulated and the activity and nuclear 
localization of protein-tyrosine phosphatase 1 (SHP-1) 

Fig. 4   Signaling pathways 
involved in TIMP-1-modulated 
differentiation of hematopoietic 
progenitor cells (a) and mesen-
chymal stem cells (b) independ-
ent of MMP-inhibition
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is increased in these cells [78] (Fig.  4a). This is consist-
ent with findings in hematopoietic stem cells showing that 
TIMP-1-deficiency reduces CD44 expression and cell cycle 
arrest at the G1 phase [40].

Besides hematopoietic stem cells, mesenchymal stem 
cells (MSCs) represent another stem/progenitor cell popu-
lation residing in bone marrow. MSCs are multipotent stro-
mal cells that can differentiate into a variety of cell types 
including osteoblasts (bone cells), chondrocytes (cartilage 
cells) and adipocytes (fat cells), in response to stimulation 
by various environmental factors [79]. Our own previous 
results demonstrated that human MSCs (hMSCs) constitu-
tively release high amounts of TIMP-1 [80], which led to 
the assumption that TIMP-1 might act as an endogenous 
growth factor in these cells. Hence, Egea and colleagues 
[81] introduced a specific knockdown of TIMP-1 expres-
sion in hMSCs by RNA interference and observed an 
increase in proliferation, metabolic activity and potential 
for osteogenic differentiation. This is in line with the obser-
vation that overexpression of TIMP-1 decreases osteoblas-
tic proliferation and differentiation in vivo [82, 83]. Further 
studies on the underlying mechanisms in hMSCs eluci-
dated that endogenous and exogenous TIMP-1 affects the 
activity of the Wnt/β-catenin signaling pathway in a MMP-
independent manner as shown by use of a non-inhibitory 
TIMP-1 mutant [81]. The Wnt/β-catenin pathway is closely 
associated with growth and development of stem cells [84] 
and also regulates proliferation and migration of hMSCs 
[85]. High levels of TIMP-1 expression in hMSCs contrib-
ute to a low stability of cytosolic β-catenin, the key effector 
of this pathway [81]. Low levels of TIMP-1 expression in 
hMSCs increase β-catenin stability and nuclear transloca-
tion. This upregulates the transcription of the Wnt/β-catenin 
target genes cyclin D1 and MT1-MMP in these cells [81]. 
Moreover, CD63 was established as a TIMP-1 recep-
tor on the surface of hMSCs involved in TIMP-1 attenua-
tion of β-catenin activity. Additional investigations of the 
mechanisms by which TIMP-1 mediates the suppression 
of β-catenin activity in hMSCs revealed the involvement of 
microRNAs in this process. This group of RNA molecules 
represses or cleaves target mRNAs and thereby controls 
the biosynthesis of the respective proteins [86]. Blockage 
of TIMP-1 expression in hMSCs alters the levels of sev-
eral miRNAs within cells, with let-7f showing the strong-
est increase in expression [81]. Inhibition of let-7f sup-
presses the increase in β-catenin activity normally observed 
in TIMP-1-depleted hMSCs, indicating let-7f to impact 
Wnt/β-catenin signaling in these cells. Both in silico analy-
sis and in vitro studies identified the mRNA of axin 2 as a 
true target of let-7f [81]. Because axin 2 is a component 
of the complex responsible for degrading β-catenin, down-
regulation of axin 2 by increased let-7f can explain the 
enhanced β-catenin activity observed in TIMP-1-depleted 

cells (Fig.  4b). In fact, modulation of intracellular let-7f 
levels in hMSCs enhanced or diminished the osteogenic 
differentiation of these cells [81]. These findings indicate 
that TIMP-1 interaction with CD63 attenuates Wnt/β-
catenin pathway activity in hMSCs by means of posttran-
scriptional and posttranslational regulatory mechanisms 
lately promoting a quiescent state in these cells (Fig. 4b). 
Interestingly, TIMP-1 also preserves quiescence in hemat-
opoietic stem cells [40], underlining its important role in 
the function of stem cells derived from bone marrow.

When compared to TIMP-1, which is well described for 
positive and negative effects on differentiation depending 
on the cellular context, less is known about TIMP-2’s influ-
ence on this process. Results obtained in neural cell mod-
els indicate that TIMP-2 promotes neuronal differentiation 
through TIMP-2 interaction with surface α3β1-integrins 
and enhanced ERK pathway activity accompanied by cell 
cycle arrest resulting from decreased expression of cyc-
lins B/D and increased production of p21 [87, 88]. Recent 
studies show that TIMP-3 affects proliferation, differentia-
tion and trafficking of hematopoietic stem cells [89], and 
suppresses differentiation of pre-adipocytes by an auto-
crine mechanism [90]. This suggests that TIMP-3 similar 
to TIMP-1 is an important regulator in hematopoietic and 
stromal stem/progenitor cell function.

TIMP implications in angiogenesis

The biological process of vasculogenesis (de novo devel-
opment of an organized vascular system from endothelial 
stem/progenitor cells) is functionally distinct from angio-
genesis (formation of new vessels from existing vascula-
ture). Angiogenesis especially requires local endothelial 
cell proliferation and migration through existing ECM 
structures. The newly formed microvessels are then stabi-
lized by association with pericytes and subsequent inhibi-
tion of endothelial proliferation and basement membrane 
formation [91]. Because several MMPs are involved in 
endothelial cell migration and capillary formation, the inhi-
bition of MMPs by TIMPs can prevent angiogenesis [92]. 
TIMP-1 was first described to decrease angiogenesis by use 
of a chick yolk-sac experimental model system [93]. Inhi-
bition of MMP activity by TIMP-1 and a synthetic MMP 
inhibitor has anti-angiogenic effects in the cornea and in a 
murine hemangioma model in vivo, respectively [94, 95]. 
Pre-adipocytes that overexpress TIMP-1 contribute to a 
decreased de novo blood vessel formation in adipose tissue 
in vivo [96]. Moreover, TIMP-1 overexpression in pancre-
atic cancer cells attenuates angiogenesis [97].

Besides that, studies on molecular mechanisms of 
TIMP-1 suppression of angiogenesis revealed that TIMP-1 
blocks the migration of microvascular endothelial cells 
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independent of MMP inhibition through upregulation of 
phosphatase and tensin homolog (PTEN) and an increase in 
downstream FAK activity [98].

In the case of TIMP-2 and TIMP-3, several reports 
describe their roles as cytokines in angiogenesis as previ-
ously reviewed [99].

TIMP‑1 in cancer and other diseases

Numerous clinical studies demonstrated significantly 
increased TIMP-1 concentrations in tumor patients and 
showed the utility of TIMP-1 as a biomarker or independ-
ent prognostic factor in several types of cancer such as 
breast cancer [13, 100], colorectal cancer [14], prostate 
cancer [101], lung cancer [102], gastric cancer [103], glio-
blastoma [104], melanoma [105] and multiple myeloma 
[106, 107]. The TIMP-1 correlation with poor survival 
in cancer patients may be at least partially explained by 
TIMP-1’s growth-promoting and anti-apoptotic impact in 
tumor cells. Hayakawa and colleagues [31] were the first 
to report that TIMP-1 present in blood serum acts as a 
growth factor to support proliferation of several tumor cell 
lines. Furthermore, TIMP-1 is a suppressor of apoptosis in 
a variety of cell types including Burkitt lymphoma cells 
[45, 47, 77] and breast cancer cells [44, 50–52], although 
these effects appear to be cell type-specific. The clinical 
observations that TIMP-1 is frequently overexpressed in 
tumor tissue [100] and FAK activity is often upregulated in 
tumor cells [108] supports the hypothesis that the TIMP-1/
CD63/FAK/Akt signaling pathway is involved in the sup-
pression of tumor cell apoptosis in breast cancer. Recent 
findings indicate that the elevated expression of nitric oxide 
synthase (NOS2) in breast tumor tissue enhances TIMP-
1-mediated pro-survival signaling via increased Akt phos-
phorylation after interaction of nitric oxide with TIMP-1/
CD63 on the cell surface [109]. This mechanism is sup-
posed to be one explanation for the poor clinical outcome 
in breast cancer patients expressing high levels of NOS2 
and TIMP-1.

In addition to promoting growth and survival in tumor 
cells, TIMP-1 has additional oncogenic activities. In non-
malignant kidney epithelial MDCK cells, overexpression of 
TIMP-1 triggers epithelial-mesenchymal transition (EMT) 
by increased production of EMT transcription factors and 
facilitates cell invasion by upregulation of MMP expression, 
effects that are independent of TIMP-1’s MMP-inhibitory 
domain [110]. Consistently, overexpression of TIMP-1 
in MDA-MB-231 breast cancer cells alters expression of 
numerous tumor associated genes including MMPs [111].

Inhibition of metalloproteinases by TIMP-1 increases 
hepatocyte growth factor (HGF) signaling in stromal cells 
through blocking the activity of ADAM10, a sheddase of 

the HGF receptor cMet, resulting in enhanced liver metas-
tasis by lymphoma cells [112, 113]. The authors also 
show that HGF/cMet signaling is dependent on TIMP-1 
upregulation of hypoxia-inducible factor 1α (HIF-1α) 
[114]. These mechanisms make the liver more suscep-
tible to metastasis and provide one explanation for the 
association of elevated TIMP-1 levels with poor clinical 
outcomes in cancer patients. Studies in breast cancer cells 
revealed that TIMP-1 confers resistance to anti-tumor 
drug induced apoptosis by promoting the degradation of 
cyclin B1 [115].

Linkage of recombinant TIMP-1 to a glycosylphosphati-
dylinositol (GPI) anchor (GPI-TIMP-1) and addition to 
cells allows efficient insertion of the fusion protein into the 
plasma membrane, which then displays differential effects 
on cell proliferation and migration [116]. The exogenous 
application of GPI-TIMP-1 to renal cell carcinoma cells, 
melanoma cells and colon carcinoma cells inhibits growth 
and increases susceptibility to FAS-induced apoptosis 
involving regulation of Bcl-2 family proteins [117–119]. 
This suggests that the recombinant GPI-TIMP-1 fusion 
protein may represent a potential therapeutical agent to 
limit tumor regrowth after surgery. The cellular effects of 
GPI-TIMP-1, however, are in contrast to the growth-pro-
moting and anti-apoptotic activities of endogenous TIMP-1 
indicating different regulatory mechanisms for the mem-
brane-inserted GPI-TIMP-1 and the natural soluble form 
of TIMP-1. The effects of GPI-TIMP-1 may be mediated 
in part through the biology of transforming growth factor 
(TGF)-β1. Proteases including MMP-2 and MMP-9 acti-
vate TGF-β1 through proteolytic degradation of the latent 
TGF-β1 complex. TIMP-1-GPI treatment appears to result 
in an effective blockade of MMP-2 and MMP-9 activity at 
the cell surface leading to a reduction in TGF-β1 process-
ing with corresponding effects on paracrine and autocrine 
TGF-β1 signaling [120].

In addition to its role in cancer, TIMP-1 is a poten-
tial plasmatic biomarker for prognosis in various other 
pathophysiological conditions including psoriasis [121], 
liver fibrosis [122], hypertension [12], heart failure [11] 
and myocardial infarction [123]. Cytokine functions of 
TIMPs have been implicated in the physiological and 
pathological remodeling of the myocard induced by 
physical stress, ischemia and infection (for review see 
[124]). Myocardial remodeling is the result of highly reg-
ulated interactions between fibroblasts, smooth muscle 
cells, endothelial cells, cardiomyocytes, and infiltrating 
leukocytes, which are modulated by TIMP-1. As dem-
onstrated in a cell therapeutical study, TIMP-1 released 
from embryonic stem cells implanted for the treatment 
of myocardial infarction inhibits apoptosis in cardiomy-
ocytes and thus improves cardiac remodeling following 
myocardial infarction [125, 126].
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Conclusions and future prospects

Research of the last two decades significantly improved the 
understanding of TIMP’s action as cytokines in the regu-
lation of cell growth, apoptosis, differentiation and angio-
genesis. It is clear that the pleiotropic activities of TIMPs 
are complex and depend upon subtle interactions with 
other extracellular components especially MMPs, as well 
as direct interactions with binding partners on the cell sur-
face. Important progress has been made through identifica-
tion of TIMP receptors, particularly CD63 for TIMP-1 [50], 
α3β1 integrin for TIMP-2 [127] and VEGF receptor 2 for 
TIMP-3 [128]. LRP-mediated endocytosis of TIMPs and 
TIMP/MMP complexes add further complexity to TIMP-
mediated regulation of cell behavior. The molecular dissec-
tion of signaling events associated with the cytokine func-
tions of TIMP-1 revealed diverse signaling molecules and 
pathways to be activated dependent on cell type and biologi-
cal context. TIMP-1/CD63-mediated growth-promoting and 
anti-apoptotic effects involve PI3-K/Akt signaling in many 
different cell types including cancer cells. Distinct signaling 
pathways comprising miRNA-mediated post-transcriptional 
mechanisms participate in TIMP-1 regulation of cell dif-
ferentiation; in mesenchymal stem cells, TIMP-1/CD63-
induced signaling promotes quiescence by attenuating let-
7f-controlled Wnt/β-catenin activity that is reversed upon 
TIMP-1 deficiency facilitating the transition of these cells 
into an active cell state with increased capacity for differen-
tiation. This indicates the importance of post-transcriptional 
and post-translational mechanisms in TIMP-1 regulation of 
cell functions. Furthermore, the TIMP-1 interaction with 
cell surface receptors and subsequent gene regulation is 
markedly modulated by pericellular levels of proMMP-9, 
the major target protease of TIMP-1. The bifacial property 
of TIMP-1 acting as cytokine and metalloproteinase inhibi-
tor underlines its crucial role in the communication between 
intracellular signaling networks and the ECM. Further stud-
ies on the molecular mechanisms of TIMP’s cytokine activi-
ties in different cell types would improve the understanding 
of TIMP-controlled cellular processes under physiological 
and pathological conditions. This information may be help-
ful in the development of rational, mechanism-based thera-
pies in the treatment of cancer and other chronic diseases.
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