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in vivo xenograft model. 9-cisRA significantly decreased 
cell viability and steroid hormone secretion in a concen-
tration- and time-dependent manner in the NCI-H295R 
cell line. Four major molecular pathways have been iden-
tified by the analysis of gene expression data. Ten genes 
have been successfully validated involved in: (1) steroid 
hormone secretion (HSD3B1, HSD3B2), (2) retinoic acid 
signaling (ABCA1, ABCG1, HMGCR), (3) cell-cycle dam-
age (GADD45A, CCNE2, UHRF1), and the (4) immune 
response (MAP2K6, IL1R2). 9-cisRA appears to directly 
regulate the cell cycle by network analysis. 9-cisRA also 
reduced tumor growth in the in vivo xenograft model. In 
conclusion, 9-cisRA might represent a promising new 
candidate in the treatment of hormone-secreting adrenal 
tumors and adrenocortical cancer.
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Introduction

Adrenocortical carcinoma (ACC) is a rare tumor with an 
estimated incidence of 0.5–2 cases per 1 million people 
per year and it has a poor prognosis with a 5-year sur-
vival rate below 15  % in advanced metastatic stages 
[1]. Treatment options in advanced, metastatic stages 
are limited, since the results of cytotoxic chemotherapy 
are mostly poor and radiotherapy is usually ineffective, 
as well [1–3]. Based on the results of the recent FIRM-
ACT trial involving the two most widely used cytotoxic 
regimens, the median duration of overall survival has 
been 14.8  months in the EDP-mitotane (etoposide–dox-
orubicin–cisplatin  +  mitotane), and 12  months in the 
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streptozotocin–mitotane groups [4]. The only adrenal spe-
cific drug that is currently licensed for the treatment of 
adrenocortical carcinoma is mitotane (o,p′-dichlorodiphe
nyldichloroethane (o,p′-DDD)). Mitotane has adrenolytic 
activity, and is used as a monotherapy, in combination 
with cytotoxic chemotherapy or as an adjuvant therapy 
after complete surgical resection [5]. The major drawback 
of mitotane is its toxicity, the narrow therapeutic window 
and frequent side effects (gastrointestinal, neurological, 
etc.) [6]. Given the high mortality and aggressiveness of 
ACC, more effective and specific treatment options would 
be needed. Intensive efforts are going on for finding novel 
therapeutic regimens, however, no breakthrough has been 
reported yet. Studies on the pathogenesis of ACC are 
therefore of pivotal relevance for establishing novel thera-
peutic targets.

In our previous meta-analysis study of adrenocortical 
tumor genomics data, retinoic acid signaling via retinoid 
X receptor was established as an important pathogenic 
pathway in ACC. These significant retinoic acid-depend-
ent pathways were: cholesterol and lipid metabolism 
(RXR/LXR and RXR/PPARG signaling) and the bacterial 
lipopolysaccharide (LPS) recognition via Toll-like recep-
tor 4 (TLR4) [7]. Moreover, ACC was associated with 
diminished retinoic acid production [7]. In a previous in 
vitro study on the NCI-H295R adrenocortical cell line, 
9-cis retinoic acid (9-cisRA) was able to reduce DNA syn-
thesis [8].

Retinoids are natural and synthetic derivatives of vita-
min A, which play fundamental roles in the regulation 
of cell growth, differentiation, and death. Retinoids act 
through two distinct nuclear receptors, the retinoic acid 
receptors (RARα, RARβ, RARγ) and the retinoic X recep-
tors (RXRα, RXRβ, RXRγ), which are ligand-inducible 
transcription factors [9, 10]. RARs bind both all-trans reti-
noic acid (ATRA) and 9-cis retinoic acid while RXRs bind 
only 9-cisRA [10].

Several studies demonstrated the antiproliferative effect 
of 9-cisRA treatment in different cancer types in vitro and 
in animal models (e.g., hepatocellular carcinoma [11, 12], 
breast cancer [13, 14]). 9-cisRA is used for the therapy of 
Kaposi’s sarcoma [15] and its antitumoral effect was also 
investigated in further clinical trials [16]. The purpose of 
the present study was to examine the in vitro effects of 
9-cisRA treatment on cell death, hormone secretion, and 
gene expression in the NCI-H295R cell line. Moreover, 
we applied systems biology approaches (pathway and net-
work analysis) for deciphering the molecular mechanisms 
involved in 9-cisRA action. To confirm our findings in an 
in vivo model, a pilot xenograft study has also been per-
formed. We hypothesized that 9-cisRA might inhibit hor-
mone secretion and cell proliferation in the NCI-H295R 
cell line, and induce gene expression changes.

Materials and methods

Cell culture and treatments

Human adrenocortical NCI-H295R cell line was obtained 
from the American Type Culture Collection (Manassas, VA, 
USA). Cells were cultured in Dulbecco’s modified Eagle’s 
medium/Nutrient Mixture F-12 Ham (DMEM: F12) supple-
mented with 6.25 ng/ml selenium (Sigma-Aldrich Chemical 
Co.), 0.00535 mg/ml linoleic acid, 0.00625 mg/ml insulin, 
0.00625  mg/ml transferrin (Sigma-Aldrich Chemical Co.), 
1.25  mg/ml bovine serum albumin and adjusted to a final 
concentration of 1 % HEPES, 1 % Penicillin/Streptomycin 
(Sigma-Aldrich Chemical Co., St. Louis, MO, USA), 2.5 % 
Nu-Serum (BD Biosciences, San Jose, CA, USA) and 2.5 % 
l-glutamine (Sigma-Aldrich Chemical Co.) at 37  °C in a 
humidified 5 % CO2 atmosphere. The medium was changed 
two to three times a week and subcultured every 7 days.

NCI-H295R cells were treated for 24, 48 and 72 h with 
9-cisRA (Sigma-Aldrich Chemical Co.) at final concentra-
tions of 10−5 M; 2.5 × 10−5 M; 5 × 10−5 M; 7.5 × 10−5 M 
and 10−4  M dissolved in absolute ethanol. The control 
groups were treated with the same amount of ethanol.

Cell viability analysis

Flow cytometry has been used for the analysis of cell 
viability based on our previous study of mitotane on NCI-
H295R cells showing a very good correlation of our flow 
cytometry protocol and the MTT (3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyl-tetrazolium bromide) assay [17]. NCI-
H295R cells were plated at a density of 1.5 × 105 cells per 
well into 12-well microplates in complete culture medium. 
After 48  h incubation, cells were treated with 9-cisRA at 
10−5 M; 2.5 × 10−5 M; 5 × 10−5 M; 7.5 × 10−5 M and 
10−4  M final concentrations and incubated for 24, 48, 
and 72  h. The control group was treated with an equiva-
lent amount of ethanol. Cells were trypsinized, collected in 
PBS, and measured with a FACSCalibur (BD Biosciences) 
cytometer. Data were analyzed using CellQuest ProTM 90 
software (BD Biosciences). At least 10,000 events were 
collected. Live and dead cells were discriminated on the 
basis of cell size (forward scatter, FSC) and cell granularity 
(side scatter, SSC) [18].

Steroid hormone secretion analysis

Dehydroepiandrosterone (DHEA), cortisol, and aldosterone 
concentrations were measured in cell culture supernatants. 
DHEA was measured by radioimmunoassay using DHEA 
RIA kit (Immunotech, Beckman Coulter Inc., Prague, 
Czech Republic) by RIA-mat280 (DiaSorin, Stillwater, 
MN, USA). Cortisol was determined on Cobas e411 (Roche 
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Diagnostics, Basel, Switzerland) by the Roche Cobas Cor-
tisol electrochemiluminescence immunoassay. Aldosterone 
was measured using the Aldosterone Radioimmunoassay 
Kit (DiaSorin) measured with RIA-mat280 (DiaSorin) 
according to the instructions of the manufacturer.

RNA isolation

Total RNA was isolated from 2  ×  106 9-cisRA treated 
(2.5 × 10−5 M; 5 × 10−5 M; 7.5 × 10−5 M for 24 h) and 
control NCI-H295R cells with Qiagen miRNeasy Mini Kit 
and RNase-Free DNase Set according to the manufactur-
er’s protocol (Qiagen, Hilden, Germany). RNA concentra-
tion was measured by NanoDrop 1000 Spectrophotometer 
(Thermo Fisher Scientific Inc., Waltham, MA, USA) and 
RNA integrity was determined by an Agilent 2100 Bio-
analyzer System (Agilent Technologies Inc., Santa Clara, 
CA, USA). Samples with an RNA integrity number (RIN) 
above 8.0 were used for further analysis. RNA was stored 
at −80 °C until use.

Messenger RNA expression profiling

Gene expression profiling was performed on 12 samples 
(3–3 samples of 2.5 × 10−5 M; 5 × 10−5 M, 7.5 × 10−5 M 
9-cisRA treated NCI-H295R cells and 3 control samples at 
24 h) using single-color array method by 4 × 44K Agilent 
Whole Genome Microarray slides (Agilent Technologies 
Inc.).

Total RNA (200  ng) was labeled and amplified using 
the Low Input Quick Amp Labeling Kit according to the 
instructions of the manufacturer. Labeled RNA was puri-
fied and hybridized to Agilent Whole Human Genome 
Microarray slides, according to the manufacturer’s pro-
tocol. After washing, array scanning and feature extrac-
tion was performed with default scenario by Agilent DNA 
Microarray Scanner and Feature Extraction Software 9.5.3. 
Total gene signal normalization at the 75th percentile of 
raw signal values and baseline transformation at the median 
of all samples was performed by GeneSpring software 10.1 
following Agilent’s recommendation. Genes were filtered 
by flag values (100 % of samples are present or marginal 
in at least one group) and raw data (expression is higher 
than 20 percentile in the 100 % of samples in at least one 
group). Fold change filter was set to twofold between 
9-cisRA-treated groups versus control cells and adenoma 
versus carcinoma in the public available datasets (Agilent 
Technologies Inc.).

Microarray datasets from previously published studies

To compare 9-cisRA-caused gene expression changes and 
results of previously published adrenocortical adenoma 

(ACA) and ACC microarray studies, whole-genome raw 
mRNA expression data of 154 tumor (87 ACA and 67 
ACC) samples from Gene Expression Omnibus (GEO,  
http://www.ncbi.nlm.nih.gov/geo) and ArrayExpress (http:// 
www.ebi.ac.uk) were obtained [19–21], reclassified and 
reanalyzed. Further significant gene sets from studies 
where raw gene expression data were unavailable have 
been collected from Oncomine Research (http://www.onco
mine.org) [22] and seven papers found by literature search 
(PubMed, http://www.ncbi.nlm.nih.gov/pubmed) [23–28], 
which included 182 ACA and 91 ACC samples. Altogether, 
microarray data from 269 ACA and 158 ACC samples were 
available.

Pathway analysis

Pathway analysis was performed by Ingenuity Path-
way Analysis (IPA) software (Ingenuity Systems, www.
ingenuity.com; Redwood City, CA, USA). All gene sets 
retrieved from the statistical analysis were loaded into the 
IPA software.

Gene expression network

IPA was also used for the generation of 35 member molec-
ular networks. We have searched for common significant 
gene expression changes between at least two independent 
9-cisRA treatments in the NCI-H295R cell line and at least 
two ACA versus ACC comparisons from previously pub-
lished microarray studies. Scale-free distribution of degree 
was investigated by linear regression following the loga-
rithmic transmission of values. Ten percent of nodes with 
the highest number of links were identified as hubs in the 
network [29]. For network hierarchization, vertex sort algo-
rithm [30] was used, and for the identification of network 
motifs, mFinder software [31] was used. Network analysis 
was performed by our own software written in Java pro-
gram language.

Quantitative reverse‑transcription PCR

To select the optimal treatment time, two known RXR target 
genes, ABCA1 and ABCG1 [32], were selected for the exam-
ination of 9-cisRA-induced gene expression changes by 
quantitative real-time reverse-transcription polymerase chain 
reaction (qRT-PCR) using TaqMan gene expression assays 
(Applied Biosystems): ABCA1 (Hs01059118_m1), ABCG1 
(Hs00245154_m1). ZNF625 (Hs00377010_m1) was used 
as a housekeeping gene, based on our previous study [17]. 
Total RNA (10  ng) was reverse transcribed using High-
Capacity cDNA Reverse Transcription Kit (Applied Bio-
systems, Foster City, CA, USA). Quantitative RT-PCR was 
performed by TaqMan Fast Universal PCR Master Mix (2x) 

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://www.ebi.ac.uk
http://www.ebi.ac.uk
http://www.oncomine.org
http://www.oncomine.org
http://www.ncbi.nlm.nih.gov/pubmed
http://www.ingenuity.com
http://www.ingenuity.com
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(Applied Biosystems) on a 7500 Fast Real-Time PCR Sys-
tem (Applied Biosystems) according to the manufacturer’s 
protocol. Gene expression differences between the investi-
gated groups were calculated using the ddCT method [33] 
according to the manufacturer’s instructions (SDS Program, 
Applied Biosystems). Calibration curves have also been 
taken [34] that showed 100 % efficiency of gene amplifica-
tion with the industrial primer pairs and reaction conditions 
used in our analysis. Samples were run in triplicate.

After mRNA expression profiling and pathway analy-
sis, eight genes were selected for validation. TaqMan Gene 
Expression Assays (Applied Biosystems) were used as fol-
lows: CCNE2 (Hs00180319_m1), GADD45A (Hs00169255_
m1), HSD3B1 (Hs00426435_m1), HSD3B2 (Hs00605123_
m1), HMGCR (Hs00168352_m1), IL1R2 (Hs01030384_m1), 
MAP2K6 (Hs00992389_m1), UHRF1 (Hs01086727_m1). 
To identify the most appropriate housekeeping gene in our 
analysis, we have used the criteria established by Cheng et al. 
[35]: (1) raw intensity value is higher than 20 % in at least 
80 % of samples in each group, (2) Coefficient of variation is 
lower than 0.3, and (3) fold change is lower than 1.2. Based 
on this method, R3HDM2 (Hs00248196_m1) was used as a 
housekeeping gene for the validation [35]. Gene expression 
differences were calculated as described above.

Xenograft model

For the xenograft model, six male nude mice aged 3 months 
were inoculated subcutaneously with 6 × 106 cells/100 μl 
PBS NCI-H295R cell suspension [36, 37]. Treatment 
was started as the solid tumor reached 5  mm mean diam-
eter (33  days after NCI-H295R incubation). 3–3 mice 
were injected intraperitoneally with 10 mg/kg/day 9-cisRA 
(Carbosynth, Compton, UK) or vehicle (DMSO diluted 
in PBS) for 28  days [38]. Tumors were measured twice 
a week by the same investigator using a digital caliper. 
Tumor volume was calculated by the following formula:  
V (mm3) =  (width2 (mm) ×  length (mm) × π)/6. Tumor 
volume was normalized to the first measurement in each 
case (Vt/V0). On day 29, mice were killed by cervical dis-
location in ether anesthesia. Tumors were removed, their 
weight was measured, and they were fixed in formalin. All 
animal experiments were conducted according to the ethical 
standards of the Animal Health Care and Control Institute, 
Csongrád County, Hungary, permit No. XVI/03047-2/2008.

Histology and Ki67 immunostaining

Ten-micrometer sections of formalin-fixed paraffin-embed-
ded tumors from nude mice were dewaxed with xylene 
and ethanol, and then processed either for hematoxylin and 
eosin (H&E) staining or Ki67 immunostaining. For antigen 
retrieval, sections were microwaved in 10 mM citrate buffer 

(pH 6) for 20 min. Next, the slides were blocked with 5 % 
bovine serum albumin dissolved in PBS for 30 min. Ki67 
primary antibody (Cat. No. M7240, DakoCytomation, 
Glostrup, Denmark) was diluted in 1 % BSA in a ratio of 
1:100, and applied overnight at 4 °C. The next day, the slides 
were washed three times with PBS and incubated with sec-
ondary antibody (anti-mouse immunoglobulins/HRP Cat. 
No. P0447, DakoCytomation) for 30  min. After washing, 
signals were developed using DAB + Substrate Chromogen 
System (Dako). Slides were counterstained with hematoxy-
lin. The Ki67 index was obtained by counting immunopo-
sitive cells of 3–3 random field from each tumor. Pictures 
were taken with a Zeiss Axioskop 2 Plus light microscope 
(Zeiss, Oberkochen, Germany) with an Olympus DP50 
camera (Olympus, Tokyo, Japan).

Statistical analysis

Statistical analysis of viability, hormone secretion, and 
qRT-PCR data was performed by Microsoft Office Excel 
2010 (Microsoft Corp., Redmond, WA, USA), and Statis-
tica 8.0 (StatSoft Inc., Tulsa, OK, USA) software. Viabil-
ity and hormone secretion data were subjected to two-way 
ANOVA and qRT-PCR data were subjected to one-way 
ANOVA each followed by Tukey’s post hoc test.

Statistical analysis of microarray data was performed 
by GeneSpring 10.1 (Agilent Technologies Inc.) software. 
Identification of differently expressed genes between 
9-cisRA treated groups and control cells were carried out 
by one-way ANOVA, followed by Tukey’s Honestly Sig-
nificant Difference post hoc test. For the identification of 
differently expressed genes between ACA and ACC groups, 
unpaired Student’s t test was used. Each test was followed 
Benjamini–Hochberg false discovery rate (FDR  <  0.25) 
calculation.

To correlate gene expression changes with the con-
centration of 9-cisRA, Spearman correlation was used (p 
value < 0.05, R2 > 0.7).

For in vivo studies, the Mann–Whitney U test was 
applied to reveal significances between control and 9-cis 
retinoic acid-treated groups.

Results

Selection of optimal treatment time and concentration

To select the optimal treatment time and concentrations, 
live–dead cell ratio, steroid hormone levels, and RXR tar-
get gene expression changes were measured.

A significant decrease in the living cell population 
was observed after 24  h at 10−4  M 9-cisRA treatment. 
After 48 and 72  h treatments at 7.5  ×  10−5  M 9-cisRA 
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concentration, the proportion of living cells was also sig-
nificantly reduced relative to the untreated control, but at 
lower concentrations, no significant cell death occurred 
(Fig.  1a). Significant reduction of cell viability has 
been observed between the 0 and 72  h time points at the 
7.5 × 10−5 M 9-cisRA concentration and at all time points 
at 10−4 M (Supplementary Figure 1).

Since NCI-H295R cells secrete several steroid hor-
mones (i.e., glucocorticoids, mineralocorticoids, and adre-
nal androgens [39], the measurement of cortisol, DHEA, 
and aldosterone levels was performed in both control and 
9-cisRA-treated cells after 24, 48, and 72 h. As shown in 
Fig.  1b, c, both cortisol and DHEA levels significantly 
decreased after 24 h in a concentration-dependent manner. 
Aldosterone concentration was under RIA detection level 

(<0.1 ng/dl) (data not shown). Whereas time-dependence of 
DHEA secretion inhibition by 9-cisRA at 5 × 10−5 M and 
7.5 ×  10−5  M has been noted (Supplementary Figure  1), 
cortisol levels could not be clearly associated with treat-
ment time (data not shown).

The expression of known RXR target genes: ATP-
binding cassette, sub-family A, member 1 (ABCA1) and 
ATP-binding cassette, sub-family G, member 1 (ABCG1) 
after 6 h treatment at 5 ×  10−5 M 9-cisRA concentration 
reached the maximal relative mRNA expression level. The 
significant overexpression of ABCA1 and ABCG1 has been 
observed from 2- and from 6-h treatment onward, respec-
tively (Fig. 1d).

We have selected the 24-h treatment time and 9-cisRA 
concentrations of 2.5  ×  10−5  M; 5  ×  10−5  M and 

Fig. 1   Effects of 9-cisRA on cell viability assay (a), on cortisol (b), 
and DHEA (c) secretion in five different concentrations and three dif-
ferent treatment periods and the relative mRNA expression level of 
ABCA1 and ABCG1 RXR target genes relative to the housekeeping 

gene ZNF625 in one concentration and four different treatment times 
(d) in NCI-H295R cells (n = 3, mean ± SD, *p < 0.05, **p < 0.01, 
***p < 0.001 relative to control)
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7.5  ×  10−5  M to investigate gene expression changes by 
microarray analysis. We have not observed a significant 
reduction in cell viability at our selected 24-h treatment 
time at any of these concentrations.

Microarray analysis

Altogether, 12 samples have been subjected to microar-
ray analysis: 3–3 samples of control and 2.5  ×  10−5  M; 
5 ×  10−5 M; 7.5 ×  10−5 M 9-cisRA-treated NCI-H295R 
cultures at 24 h. All results are available at Gene Expres-
sion Omnibus (http://www.ncbi.nlm.nih.gov/geo) under 
Accession Number: GSE43090.

We have identified 699, 2,320, and 2,303 significantly 
differentially expressed genes (p  <  0.05) by the statisti-
cal analysis of microarray data between control and the 
2.5 ×  10−5 M, 5 ×  10−5 M and 7.5 ×  10−5 M 9-cisRA-
treated cell cultures, respectively (Supplementary Table 1, 
and Supplementary Figure 2).

To identify genes that might be relevant in the poten-
tial antitumoral activity of 9-cisRA in adrenocortical can-
cer, we have compared the 9-cisRA-induced gene expres-
sion changes in the NCI-H295R cell line with established, 
already published gene expression pattern differences 
between benign and malignant adrenocortical tumors. We 
have searched for common, but inversely associated sig-
nificantly differentially expressed genes between 9-cisRA-
treated NCI-H295R cells and the adenoma-carcinoma com-
parison. We hypothesized that the potential antitumoral 
effects of 9-cisRA might be represented by genes that are 
underexpressed in ACC relative to adenomas, but whose 
expression is increased by 9-cisRA in the NCI-H295R 
cells, and vice versa. Thus, 9-cisRA treatment might 
“reverse” some gene expression changes characteristic for 
malignant tumors.

We detected 246 genes that were common in at least two 
comparisons of control and 9-cisRA treated groups and in at 
least two former ACA and ACC microarray studies [19–28]  
(Supplementary Table 2). Three genes were common in at 
least two 9-cis retinoic acid treated-control comparisons 
and six ACA versus ACC microarray studies: ATP-binding 
cassette, sub-family C (CFTR/MRP), member 3 (ABCC3), 
aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), 
sema domain, transmembrane domain (TM), and cytoplas-
mic domain, (semaphorin) 6A (SEMA6A).

Pathway analysis

Pathway analysis of the significant gene lists revealed 21 
canonical pathways in at least two comparisons of control 
and 9-cisRA-treated groups and in at least two ACA and 
ACC microarray studies [19–28]. These included steroid 
hormone metabolism (C21-Steroid Hormone Metabolism) 

(Fig.  2), retinoic acid signaling (LPS/IL-2 Mediated Inhi-
bition of RXR Function, LXR/RXR Activation, PXR/RXR 
Activation) (Fig. 3), cell-cycle regulation (ATM Signaling, 
GADD45 Signaling) (Fig. 4), (Aryl Hydrocarbon Receptor 
Signaling, Cyclins and Cell-Cycle Regulation and Estro-
gen-mediated S-phase Entry) (Supplementary Figure  3) 
and immune regulation (p38 MAPK Signaling, MIF Regu-
lation of Innate Immunity) (Supplementary Figure 4) (Sup-
plementary Table 3).

Gene expression networks

For the IPA network analysis, common genes in at least 
two comparisons of control and 9-cisRA-treated groups 
and in at least two ACA and ACC microarray studies [19–
28] were used. The top two networks were merged for the 
exploration of nodes with the highest number of connec-
tions. The merged networks were scale-free (R2 = 0.755, 
power parameter −0.844) and contained 72 nodes. 
Six genes (10  % of highest degree nodes) were marked 
as hubs: cyclin-dependent kinase 1 (CDK1), cyclin A 
(CCNA), E2F transcription factor (E2F), mitogen-acti-
vated protein kinase (ERK1/2), nuclear factor kappa-B 
(NFKB), retinoblastoma (RB). Following the hierarchiza-
tion process, nodes based on the direction of their edges 
were categorized into top, core, and bottom layers. As 
the top layer of the investigated network contained two 
9-cisRA receptor transcription factor complexes (LXR-
RXRA and NCOR-LXR-RXR), we concluded that the 
whole network is under 9-cisRA regulation. With the 
mFinder software, we have identified four significantly 
enriched motif types that contained 118 3-node motifs. 
The majority of these motifs were feed-forward loop 
(FFL), among these three FFL crossed each layer (Sup-
plementary Figure 5).

Gene validation by qRT‑PCR

Based on the microarray data and the pathway-analysis 
results, eight genes have been selected for further qRT-PCR 
validation and sample size extension. All eight genes were 
successfully validated: cyclin E2 (CCNE2), growth arrest 
and DNA-damage-inducible, alpha (GADD45A), hydroxy-
delta-5-steroid dehydrogenase, 3 beta- and steroid delta-
isomerase 1 (HSD3B1), hydroxy-delta-5-steroid dehydro-
genase, 3 beta- and steroid delta-isomerase 2 (HSD3B2), 
3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), 
interleukin 1 receptor, type II (IL1R2), mitogen-activated 
protein kinase kinase 6 (MAP2K6), ubiquitin-like with PHD 
and ring finger domains 1 (UHRF1) (Fig. 5). By Spearman 
correlation, all validated gene expression changes (except 
for IL1R2) correlated significantly with 9-cisRA concentra-
tion (Supplementary Figure 6).

http://www.ncbi.nlm.nih.gov/geo
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Xenograft model

Since there was no data on the dose of 9-cisRA for in 
vivo adrenocortical tumor xenograft models, we used 
the effective 9-cisRA dose (10  mg/kg) reported in 
breast cancer xenografts [38]. The growth of H295R-
derived tumors has been identical between the control 
and 9-cisRA-treated animals until day 15, but thereafter 
the tumors in the 9-cisRA-treated animals have grown 
to a lesser extent than the controls (Fig. 6a). At the end 
of treatment (day 28), a tumor volume normalized to 
the initial size increased 10.1  times in control animals 
versus 5.4 times in the mice treated with 9-cis retinoic 

acid (Fig.  6b). The weight of the excised tumors con-
firmed these results, as an average of 2.7 and 1.4 g was 
measured for control and retinoic acid-treated tumors, 
respectively (Fig.  6c). Due to the small number of ani-
mals included, these differences did not reach statisti-
cal significance, but the tendency seems to be clear-cut. 
Tumors of 9-cis retinoic acid-treated animals were more 
differentiated than those of control ones as observed on 
hematoxylin and eosin (H&E)-stained sections (Fig. 6d). 
Note the cord-like arrangement of the tumor cells, which 
reminds one of the normal structure of adrenal cortex in 
9-cis retinoic acid-treated tumors. Dividing tumor cells 
were seen in both cases, but with a higher number in the 

Fig. 2   Pathways with related gene expression patterns involved in the 
steroid hormone metabolism after 9-cisRA treatment in NCI-H295R 
cells (left sides of circular symbols representing gene expression) and 

investigated microarray studies in ACC (right sides of circular sym-
bols representing gene expression)
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control samples (Fig. 6d, arrows). Ki67 immunostaining 
revealed a significantly elevated number of proliferating 
tumor cells in the control sections compared to treated 

ones (130.8 vs. 50.4, p < 0.001) reflecting the effective-
ness of 9-cis retinoic acid in inhibiting tumor cell prolif-
eration (Fig. 6d, e).

Fig. 4   Pathways with related gene expression patterns involved in 
cells cycle regulation (Ataxia Telangiectasia Mutated (ATM) Signal-
ing, Growth arrest and DNA-damage-inducible (GADD45) Signaling) 
after 9-cisRA treatment in NCI-H295R cells (left sides of circular 

symbols representing gene expression) and investigated microarray 
studies in ACC (right sides of circular symbols representing gene 
expression)

Fig. 5   Results of qRT-PCR 
validation of eight selected 
genes relative to the housekeep-
ing gene R3HDM2. Results are 
represented by ddCT (cycle 
threshold) compared to the 
control after three different 
9-cisRA treatment in con-
centrations at 24-h treatment 
time (mean ± SD, *p < 0.05; 
**p < 0.01, ***p < 0.001 rela-
tive to control n = 6)
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Discussion

We have found that 9-cisRA treatment significantly decreased 
cell viability and steroid hormone secretion in a concentra-
tion- and time-dependent manner. The minimal significant 
cytotoxic concentration was 7.5 × 10−5 M. This is similar to 
the cytotoxic concentrations of 9-cisRA on human hepatocel-
lular carcinoma cells in vitro and in rat models [11].

The activity of 9-cisRA in our pilot xenograft model 
demonstrates the in vivo antitumoral cytotoxic activity 
of this agent, as well, and might pave the way for further 
larger-scale studies.

To identify the potential benefits of the 9-cisRA treat-
ment in adrenocortical carcinoma, we searched for gene 
expression changes between ACA and ACC [19–28] of 
inverse direction as that induced by 9-cisRA treatment. 

Fig. 6   Results of the in vivo xenograft studies. a Growth curve of 
tumors in control and 9-cisRA-treated mice. b Diagrams showing 
the normalized tumor volume at the end of treatment (day 28) in 
control and 9-cis retinoic acid-treated (9-cisRA) animals. Values are 
expressed as mean ± SE. c Differences in tumor weight on the day 
28 of 9-cis retinoic acid treatment between control animals and mice 
exposed to 9-cisRA. Results are expressed as mean ± SE. d Repre-
sentative pictures of H&E staining and Ki67 immunoreaction on 

tumors from control and 9-cis retinoic acid-treated nude mice. Note 
the alteration in histology of 9-cisRA-treated tumors, where tumor 
cells are arranged in cords, reminding one of the structure of normal 
adrenal cortex. Arrows point to dividing cells. Scale bars represent 50 
and 25 μm for insets. e Diagrams displaying Ki67 index obtained by 
counting immunopositive cells on sections from control and 9-cisRA 
tumors. Results are expressed as mean ± SE, ***p < 0.001
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The pathway analysis of these comparisons revealed four 
major pathways: (1) steroid hormone secretion, (2) retinoic 
acid signaling, (3) cell-cycle damage, and (4) changes of 
immune response. We have selected eight genes represent-
ing these pathways, and all of these have been successfully 
validated by qRT-PCR. The two known 9-cisRA target 
genes (ABCA1 and ABCG1) validated for treatment optimi-
zation belong to the retinoic acid pathway, thus the number 
of all validated genes is ten. Below we describe the major 
features of these pathways and their potential relevance. All 
important results have been summarized in Table 1.

Steroid hormone metabolism

9-cisRA treatment significantly decreased cortisol and 
DHEA concentration in a concentration-dependent man-
ner. With microarray analysis, we have observed the 
9-cisRA-induced underexpression of several enzymes 
involved in steroid hormone biosynthesis and metabo-
lism: cytochrome P450 side chain cleavage enzyme (scc) 
(CYP11A1), steroid 11-beta-monooxygenase (CYP11B2), 
steroid 17-alpha-monooxygenase (CYP17A1), emopamil 
binding protein (EBP), hydroxysteroid (11-beta) dehydro-
genase 2 (HSD11B2), HSD3B1, HSD3B2. We have vali-
dated the 9-cisRA-induced underexpression of HSD3B1 
and HSD3B2 by qRT-PCR.

HSD3B1 and HSD3B2 convert pregnenolone/17α-
hydroxypregnenolone to progesterone/17α-hydroxypro
gesterone. HSD3B1 gene underexpression was found in one 
of the analyzed microarray studies in ACC [26]. Despite 
having validated the 9-cisRA-induced HSD3B1 under-
expression in the NCI-H295R cell line, it should be men-
tioned that this enzyme is mainly expressed extra-adrenally 
[40] and the relevance of its 9-cisRA-induced underexpres-
sion is thus unclear. Overexpression of HSD3B2 gene was 
reported in ACA compared to normal adrenal [41] and we 
found underexpression in five microarray studies in ACC 
[19, 20, 22, 23, 27].

The inhibition of hormone secretion by 9-cisRA on 
NCI-H295R cells thus seems to be mediated at least in 
part at the level of gene expression. Other retinoids includ-
ing ATRA also seem to decrease the expression of some 
enzymes involved in steroid hormone biosynthesis (e.g., 
ATRA inhibited HSD3B expression in mouse Leydig cells 
[42], and corticosterone production and cell proliferation in 
Y1 mouse adrenocortical cells [43]).

Retinoic acid signaling

Retinoids play crucial roles in the regulation of cell growth, 
differentiation, and death. Their biological function is medi-
ated via two types of receptors: the retinoic acid receptors 
(RARα, RARβ, RARγ) and the retinoic X receptors (RXRα, 

RXRβ, RXRγ). RXR is specific for 9-cisRA, whereas RAR 
can bind both 9-cisRA and ATRA. RXR may heterodimer-
ize with other nuclear receptors including liver X recep-
tor (LXR), farnesoid X receptor (FXR), RAR, constitutive 
androstane receptor (CAR), pregnane X receptor (PXR), and 
peroxisome proliferator-activated receptor (PPAR) [8, 10].

We have observed several 9-cisRA-induced gene expres-
sion changes in the permissive RXR partners (LXR, FXR, 
PXR, PPAR). LXRs participate in adrenal cholesterol metab-
olism and influence steroid hormone production [44]. The 
adrenal gland expresses liver X receptor LXRA and LXRB, 
and their expression has been induced by 9-cisRA treatment. 
LXRA gene underexpression was found in ACC in three stud-
ies [19–21]. ABCA1 and ABCG1 genes were significantly 
overexpressed by 9-cisRA treatment, and successfully vali-
dated by qRT-PCR. ABCA1 and ABCG1 were significantly 
underexpressed in ACC in four and three studies, respectively 
(ABCA1: [19–21, 27] and ABCG1: [19–21]), and 9-cisRA 
treatment produced a gene expression alteration inverse to 
that observed in the ACA–ACC comparison. Although not 
included in the pathway, it should be mentioned that we have 
validated the 9-cisRA induced underexpression of HMGCR 
gene that is the rate-limiting step in cholesterol biosynthesis. 
This observation underlines the potential involvement of cho-
lesterol metabolism in 9-cisRA action.

CAR and PXR are closely associated with each other and 
involved in the regulation of cell growth, apoptosis, tumori-
genesis, energy metabolism, and induction of drug-metabo-
lizing enzymes [45]. Activation of CAR and PXR receptors 
induces the ABCC3 gene, and CAR induces the ALDH1A1 
and ALDH1L1 genes [46]. ALDH1A1 catalyzes the rate-
limiting second oxidative step of retinoic acid biosynthesis. 
We have found decreased ALDH1A1 mRNA expression 
in ACC compared to ACA in six microarray studies [19, 
20, 23, 25–27], contrary to its increased expression after 
9-cisRA treatment. Two studies have validated the underex-
pression of ALDH1A1 in ACC by qRT-PCR [23, 25].

PPARG regulates the expression of genes involved 
in lipid homeostasis, energy metabolism, inflammatory 
response, apoptosis, and its expression was observed in 
normal adrenals, benign adrenocortical tumors, ACC [47] 
and in the NCI-H295R cell line [8]. PPARG coactivator 
1A (PPARGC1A) gene, a transcription coactivator of the 
nuclear receptor PPARG was upregulated by 9-cisRA treat-
ment and downregulated in one microarray study [21].

Cell cycle

Cell-cycle damage has been described in many tumors 
including ACC [21]. We have found significant changes 
associated with cell-cycle regulation following 9-cisRA 
treatment in ataxia telangiectasia mutated (ATM) signal-
ing, growth arrest and DNA-damage-inducible (GADD45) 



928 D. R. Szabó et al.

1 3

signaling, aryl hydrocarbon receptor (AHR) signaling, cyc-
lins and cell-cycle regulation and the estrogen-mediated 
S-phase entry pathways.

AHR-mediated changes of gene expression affect cell 
growth and cell-cycle control [48]. ATM signaling is one 
of the most important pathways in the induction of cellular 

Table 1   Summary of the most important pathways and gene expression results along with inverse expression alterations in reported functional 
genomics data in ACA-ACC comparison

Real-time PCR validated genes are highlighted in bold

Gene symbol Gene name Expression changes after  
9-cisRA treatment of NCI- 
H295R cells in our study

Inverse expression changes in previously 
published microarray studies in the ACA-ACC 
comparison [References]

(1) Steroid hormone metabolism

 CYP11A1 Cytochrome P450 side chain cleavage enzyme 
(scc)

↓

 CYP11B2 Steroid 11-beta-monooxygenase ↓
 CYP17A1 Steroid 17-alpha-monooxygenase ↓
 EBP Emopamil binding protein ↓
 HSD11B2 Hydroxysteroid (11-beta) dehydrogenase 2 ↓
 HSD3B1 Hydroxy-delta-5-steroid dehydrogenase, 3 

beta- and steroid delta-isomerase 1
↓

 HSD3B2 Hydroxy-delta-5-steroid dehydrogenase, 3 
beta- and steroid delta-isomerase 2

↓ ↑ [40]

 HSD11B2 Hydroxysteroid (11-beta) dehydrogenase 2 ↓
(2) Retinoic acid signaling

 ABCA1 ATP-binding cassette, sub-family A, member 
1

↑ ↓ [19–21, 27]

 ABCC3 ATP-binding cassette, sub-family C 
(CFTR/MRP), member 3

↑ ↓ [19–22, 25–27]

 ABCG1 ATP-binding cassette, sub-family G,  
member 1

↑ ↓ [19–21]

 ALDH1A1 Aldehyde dehydrogenase 1 family, member A1 ↑ ↓ [18, 19, 22, 24–26]

 HMGCR 3-hydroxy-3-methylglutaryl-CoA reductase ↓
 LXRA Liver X receptor alpha ↓
 LXRB Liver X receptor beta ↑
 PPARG Peroxisome proliferator-activated receptor 

gamma
↑

 PPARGC1A Peroxisome proliferator-activated receptor 
gamma, coactivator 1 alpha

↑ ↓ [20]

(3) Cell cycle

 CCNB2 Cyclin B2 ↓ ↑ [18–21, 26]

 CCNE1 Cyclin E1 ↓ ↑ [18–21]

 CCNE2 Cyclin E2 ↓ ↑ [19, 20]

 CDK1 Cyclin-dependent kinase 1 ↓ ↑ [18–21, 26]

 c-FOS Cellular oncogene Fos ↑ ↓ [18, 19]

 c-MYC Cellular myelocytomatosis oncogene ↑ ↓ [18–20, 24]

 E2F2 E2F transcription factor 2 ↓ ↑ [20]

 GADD45A Growth arrest and DNA-damage-inducible, alpha ↑
 SKP2 S-phase kinase-associated protein 2 ↓ ↑ [19, 20]

 TP53 Tumor protein p53 ↑
 UHRF1 Ubiquitin-like with PHD and ring finger domains 1 ↓ ↑ [18–20, 26]

(4) Immune response

 CD14 CD14 ↑ ↓ [18–21, 58]

 IL-1R2 Interleukin 1 receptor, type II ↓ ↑ [20]

 LY96 Lymphocyte antigen 96 ↑ ↓ [18]

 MAP2K6 Mitogen-activated protein kinase kinase 6 ↓
 TLR4 Toll-like receptor 4 ↑ ↓ [19, 20, 58]
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DNA damage responses. ATM plays a crucial role in cell-
cycle regulation, DNA repair, transcription, and apoptosis 
via the ATM-mediated phosphorylation of a number of 
proteins, including GADD45 and tumor suppressors like 
TP53 [49]. GADD45 proteins (GADD45A, GADD45B, 
and GADD45G) are stress sensors that participate in cell-
cycle arrest, DNA repair, cell survival, and apoptosis [50]. 
We have validated the 9-cisRA-induced overexpression of 
the GADD45A gene by qRT-PCR. TP53 is one of the most 
well-known tumor suppressor genes that is involved in the 
control of cell proliferation and implicated in the pathogen-
esis of many tumors including ACC [3]. We have observed 
TP53 gene overexpression after 9-cisRA treatment.

Another major pathway is related to damage of cell-
cycle checkpoint regulations. There are reports of expres-
sion changes of genes involved in the G1/S and G2/M 
transitions in ACC [7, 21]. S-phase kinase-associated pro-
tein 2 (SKP2) and UHRF1 are involved in the regulation 
of G1/S checkpoint. SKP2 is a bona fide proto-oncoprotein 
that is a component of the SCF E3 ubiquitin ligase com-
plex and its overexpression has been observed in different 
forms of human cancer [51]. We have found down-reg-
ulation of SKP2 gene after 9-cisRA treatment, whereas it 
has been overexpressed in ACC in two microarray stud-
ies [20, 21]. UHRF1 is down-regulated by the TP53, and 
is overexpressed in many types of cancer. Knockdown of 
UHRF1 expression in cancer cells suppressed cell growth, 
suggesting that UHRF1 can be a potential anticancer drug 
target [52]. We have found the overexpression of UHRF1 
in ACC in four microarray studies [19–21, 27] compared 
to its 9-cisRA-induced underexpression in vitro that has 
been successfully validated by qRT-PCR. After 9-cisRA 
treatment, expression of several members of the G2/M 
checkpoint regulatory system has been altered in several 
microarray studies in ACC: CDK1 [19–22, 27], CCNE1 
[19–22], CCNE2 [20, 21], and CCNB2 [19–22, 27]. All 
of them were underexpressed after 9-cisRA treatment and 
overexpressed in the microarray studies in ACC. We have 
validated the underexpression of the CCNE2 gene.

We have also found that the expression of transcription 
factor genes like c-MYC, c-FOS, and E2F transcription fac-
tor 2 (E2F2) was altered by 9-cisRA treatment. In our pre-
vious meta-analysis on ACC genomics data, underexpres-
sion of c-MYC has been observed, and by network analysis 
it has been identified as a major hub in gene expression net-
works [7, 53]. We found significant overexpression of the 
c-MYC gene after 9-cisRA treatment compared to its sig-
nificant underexpression in ACC in four microarray stud-
ies [19–21, 25]. We also found significant up-regulation 
of c-FOS after 9-cisRA treatment and its down-regulation 
in two microarray studies in ACC [19, 20]. Earlier mice 
and human studies suggest that E2F2 function as a tumor 
suppressor and can be transcriptionally activated by the 

c-MYC oncoprotein [54]. The E2F2 gene was significantly 
down-regulated after 9-cisRA treatment and significantly 
overexpressed in one microarray study in ACC [21].

Based on our network analysis, the changes in the cell 
cycle are directly elicited by the 9-cisRA treatment and 
not via its effects on hormone secretion. In the network 
hierarchy top region, we identified two 9-cisRA receptor 
transcription factor complexes (LXR-RXRA and NCOR-
LXR-RXR) as master regulators the core and bottom lev-
els, and mostly genes involved in cell-cycle regulation are 
found that are all under 9-cisRA regulation. Moreover, 
three motifs cross the network hierarchy top-core-bottom 
layers, which are feed-forward loop motifs. The feed-for-
ward loop is one of the most significant network motifs 
that is commonly found in many gene systems and organ-
isms [55].

Immune response

Following 9-cisRA treatment, changes of the immune 
response in the p38 mitogen-activated protein family of 
kinases (p38 MAPK) signaling and in the macrophage 
migration inhibitory factor (MIF) regulation of innate 
immunity pathways have been identified.

p38 MAPK signaling plays important roles in immune 
response as well as in the regulation of cell proliferation, 
differentiation, and cell survival. MAP2K6 plays a major 
role in p38 MAPK activation [56]. We have found a signifi-
cant, concentration-dependent decrease in MAP2K6 gene 
expression by 9-cisRA treatment, and we have successfully 
validated this by qRT-PCR.

MIF is a T-cell cytokine that is an important modulator 
of innate and adaptive immune responses. MIF decreases 
the production of several cytokines by down-regulating the 
expression of Toll-like receptor 4 (TLR4) [57]. Lipopoly-
saccharide (LPS) is a known activator of TLR4. CD14 and 
LY96 are required [58] for the TLR4-mediated immune 
response. TLR4 [20, 21], CD14 [19–22], and LY96 [19] 
genes were found to be underexpressed in several microar-
ray studies in ACC, but all three have been overexpressed 
after 9-cisRA treatment. Underexpression of TLR4 and 
CD14 genes were reported in ACC [59].

The IL-1 cytokine is a major proinflammatory cytokine 
that is involved in the immune-neuroendocrine crosstalk 
[60]. IL-1 can bind to IL-1 type 1 and IL-1 type 2 receptors 
(IL-1R1 and IL-1R2), but IL-1R2 is a functionally inac-
tive, decoy receptor [61]. We have found significant over-
expression of IL-1R2 in ACC in one microarray study [21], 
whereas 9-cisRA treatment resulted in its significant under-
expression in NCI-H295R cells that could be validated by 
qRT-PCR.

In our present experiments with 9-cisRA and in our 
previous in vitro study on mitotane [17], both agents were 
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effective in inhibiting hormone secretion and decreasing 
cell viability. In our study on the genomic actions of mito-
tane in NCI-H295R cells, mitotane affected the expression 
of much fewer genes than 9-cisRA did. The mechanism of 
action of mitotane is poorly understood despite being used 
for more than 50  years in clinical practice [6]. Whereas 
9-cisRA seems to have multifaceted effects on gene expres-
sion, the genomic effects of mitotane appear to be mod-
est, mainly affecting the expression of steroid biosynthetic 
enzymes. The more profound genomic effects of 9-cisRA 
certainly do not indicate its superiority over mitotane, as 
mitotane affects numerous other basic cell biological pro-
cesses. We do not think that the results of in vitro experi-
ments can be extrapolated to the in vivo setting, and there-
fore we cannot conclude that 9-cisRA might be a better 
treatment option for ACC than mitotane based on in vitro 
studies.

Clinical observations, however, clearly show that 
9-cisRA is well tolerated and effective with much less 
severe side effects than mitotane. The most frequent side 
effects of 9-cisRA include headache and mucocutane-
ous adverse events (dry lips, cheilitis, and dry skin) [62], 
whereas mitotane is associated mainly with gastrointesti-
nal (nausea, vomiting, diarrhea, anorexia, mucositis, etc.) 
or central nervous system (lethargy, somnolence, vertigo, 
ataxia etc.) complications that can be severe [6]. The thera-
peutic window of mitotane is narrow (14–20  mg/l serum 
concentration) [6]. Serum concentration monitoring is not 
required for current treatment protocols using 9-cisRA. The 
applicability of 9-cisRA in ACC treatment should be exam-
ined in further animal studies and clinical trials.

Conclusions

Based on these observations, 9-cisRA might be a promis-
ing novel candidate for the treatment of ACC as it inhib-
ited both cell proliferation and hormone secretion in vitro, 
and several pathways appear to be regulated in 9-cisRA 
action. The in vivo pilot xenograft study seems to corrobo-
rate the antitumoral activity of 9-cisRA, but further studies 
are needed to investigate the applicability of 9-cisRA in the 
treatment of adrenocortical cancer.
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