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Anti‑angiogenic therapy: where are we?

Angiogenesis is the biological process that drives the for-
mation of new blood vessels from a pre-existing vascula-
ture. Throughout embryonic development, physiological 
angiogenesis allows for expansion of the primitive vascular 
network formed by vasculogenesis, thanks to branching, 
remodeling, and maturation of the vascular bed [1]. During 
adulthood, angiogenesis normally occurs in only a few pro-
cesses, such as in the female reproductive apparatus, and in 
pathological situations including wound healing, diabetic 
retinopathy, rheumatoid arthritis, and cancer [2].

More than 50 years ago, angiogenesis was described as a 
hallmark of tumor biology, and for the first time anti-angio-
genic therapy was proposed as a cancer cure. Folkman and 
colleagues were pioneers in demonstrating that growing 
tumors need neovascularization when reaching a critical 
volume (around 1–2 mm3) in order to continue their expan-
sion [3, 4]. The induction of tumor vasculature, also known 
as “angiogenic switch”, represents a complex and time-reg-
ulated process in cancer progression during which both the 
cancer cells and the tumor microenvironment secrete sig-
nals that recruit and expand the vascular network [5].

Tumor angiogenesis is central for tumor progression 
since blood vessels provide essential nutrients as well as 
oxygen to the proliferating malignant cells. Beyond the 
importance of angiogenesis for primary tumor expansion, 
blood vessels are an important route for cancer cell dis-
semination to distant organs. Indeed, the vascular system 
provides the motorway through which cancer cells dissemi-
nate, a process facilitated by the fact that the integrity of 

Abstract  The acquisition of oncogenic mutations and 
promotion of angiogenesis are key hallmarks of cancer. 
These features are often thought of as separate events in 
tumor progression and the two fields of research have fre-
quently been considered as independent. However, as we 
highlight in this review, activated oncogenes and deregu-
lated angiogenesis are tightly associated, as mutations in 
cancer cells can lead to perturbation of the pro- and anti-
angiogenic balance thereby causing aberrant angiogenesis. 
We propose that normalization of the vascular network by 
targeting oncogenes in the tumor cells might lead to more 
efficient and sustained therapeutic effects compared to 
therapies targeting tumor vessels. We discuss how pharma-
cological inhibition of oncogenes in tumor cells restores a 
functional vasculature by bystander anti-angiogenic effect. 
As genetic alterations are tumor-specific, targeted therapy, 
which potentially blocks the angiogenic program activated 
by individual oncogenes may lead to personalized anti-
angiogenic therapy.
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the endothelial layer is significantly impaired in the tumor 
vasculature [6, 7]. Tumor blood vessels were initially spot-
ted as attractive targets in cancer at two levels: to inhibit 
tumor growth by cutting nutrient delivery to proliferating 
tumors, and to prevent metastases formation by blocking 
the main route for cancer cell dissemination. As angiogene-
sis is a peculiar feature of a growing tumor mass, its block-
ade was considered highly tumor selective, with limited 
potential for side effects. Moreover, most solid cancers are 
dependent on angiogenesis for their expansion and for this 
reason anti-angiogenic therapy was envisioned as broadly 
applicable in clinical oncology.

Among the angiogenic factors, vascular endothelial 
growth factor, or vascular permeability factor (VEGF/VPF) 
has historically been considered the main target for the 
development of anti-angiogenic drugs [8–10]. Indeed, the 
most widely used anti-angiogenic inhibitor, bevacizumab, 
is a humanized monoclonal antibody that binds and selec-
tively neutralizes the biological function of VEGF [11]. 
Over the years, other kinase inhibitors, such as sorafenib 
and sunitinib, have been developed to target the VEGFR 
pathway and interfere with VEGF-driven angiogenesis 
[12–14]. Multiple preclinical studies showed that anti-
VEGF therapy that blocks tumor angiogenesis could delay 
tumor growth in animal models [15, 16].

In 2004, bevacizumab became the first anti-angiogenic 
FDA-approved drug for the treatment of metastatic colon 
cancer. This decision followed a phase III clinical trial 
where patients with metastatic colorectal cancer had an 
improvement in progression-free survival from 6.2 to 
10.6  months when treated with bevacizumab in combina-
tion with chemotherapy, compared to chemotherapy alone 
[17]. Afterwards, bevacizumab therapy was extended to 
other malignancies such as non-small cell lung cancer, 
HER2-negative breast cancer, renal cell cancer, and glio-
blastoma [18–21]. In parallel, small-molecule tyrosine 
kinase inhibitors blocking the VEGFR pathway, like suni-
tinib, sorafenib, and pazopanib showed efficacy in the treat-
ment of renal cell cancer and hepatocellular carcinoma 
[22–25].

While the initial results were regarded as highly prom-
ising, clinical evidence indicated that anti-VEGF therapy 
also had limitations. Bevacizumab was rarely successful 
as a single agent and the clinical benefits, reached only in 
combination with chemotherapy, were shown to be only 
transitory. Notably, multiple clinical studies quickly estab-
lished that even within the same tumor subtype (i.e., colo-
rectal and lung cancer) not all patients display the same 
rate of response to anti-angiogenic drugs and importantly, 
demonstrated that anti-angiogenic therapy can be overcome 
[17, 21, 26].

Several reasons can contribute to primary or second-
ary resistance to anti-VEGF clinical approaches [27]. An 

important consideration is that, in contrast to predictions, 
not all tumors are addicted to angiogenesis for their expan-
sion and treatments that merely target blood vessels cannot 
provide benefit in these types of cancer [28, 29]. A relevant 
observation was revealed by the transcriptional analyses of 
angiogenic factors in primary breast tumors compared to 
adjacent normal tissue. In this study, the majority of pro-
angiogenic molecules appeared to be down-regulated in the 
tumor tissue and thus leading the authors to suggest that 
breast cancer primary tumor is not a site of active angio-
genesis [28]. We now know that tumors can use alternative 
ways to become vascularized and in this context a therapy 
directed to sprouting angiogenesis would exert a limited 
effect. Tumor vascularization can occur by multiple mecha-
nisms including: co-option of pre-existing vessels, tumor 
cells can surround pre-existing tissues vasculature, vascu-
lar mimicry, when dedifferentiated tumor cells contribute 
to the formation of blood vessels, and postnatal vasculo-
genesis through the recruitment of bone marrow-derived 
endothelial precursors [30–34]. Of note, the different 
processes are often mixed within the tumor mass and can 
provide an alternative route of vascularization exploited 
by tumors to escape anti-angiogenic treatment [35, 36]. A 
second mechanism that can lead to refractoriness to anti-
VEGF therapy is that tumors are biologically diverse and 
angiogenesis can be stimulated by alternative molecules. 
A clear example came from the analyses of biopsies from 
different grades of primary breast cancer. As previously 
shown, VEGF expression was correlated with poor prog-
nosis, but its expression was higher in the early stage of 
the disease, while in high-grade breast cancer a wide range 
of other angiogenic factors, like FGF2, were more promi-
nent [37]. This suggests not only that different tumors use 
diverse stimuli but also that within the same malignancy 
the tumor stage influences angiogenic pathway activation 
and thereby the response to therapy.

The most common mechanism of resistance to anti-
angiogenic drugs appears to be tumor adaptation to the 
loss of vessels. The process involves the onset of compen-
satory stimuli that drive neovascularization, thereby evad-
ing anti-angiogenic approach [27]. Several angiogenic mol-
ecules secreted in the tumor microenvironment are thought 
to be involved in the angiogenesis rebound, such as FGF2, 
ephrins, angiopoietins, PDGF, SDF1, and G-CSF. These fac-
tors can directly stimulate angiogenesis or act by recruiting 
inflammatory cells, as it has been described for SDF1 and 
G-CSF, like tumor-associated macrophages (TAM) and bone 
marrow-derived cells (BMBC) that in turn provide angio-
genic stimuli [27, 38–40]. In the RIP-Tag pancreatic mouse 
tumor model, treatment with a VEGFR-blocking antibody 
causes an initial response followed by tumor regrowth and 
rebound angiogenesis. A broad analysis revealed that several 
hypoxia-mediated genes are up-regulated in the environment 
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and, among them, FGF2 was shown to have an essential role 
in driving tumor revascularization [41]. A similar phenom-
enon has been observed in the clinic; glioblastoma patients 
treated with VEGFR2 small-molecule inhibitors display 
elevated FGF2 and SDF1 levels at the time when tumors 
became refractory to treatment [42].

Several reports have pointed to the tumor stroma as an 
important mediator of secondary resistance to anti-angio-
genic therapy. For instance, tumor-associated fibroblasts 
release growth factors like PDGFC, Angptl2, and SDF1 that 
are involved in resistance to anti-VEGF treatment [43, 44]. 
BMDCs are recruited to the tumor microenvironment and 
promote cancer growth and angiogenesis rebound by provid-
ing alternative growth factors like Bv8 (or prokineticin-2) 
and HGF in anti-VEGF therapy refractory tumors [45–47].

Recent observations obtained in mouse model systems 
indicate that anti-angiogenic drugs might have concurrent 
deleterious side effects due to the generation of hypoxic 
stress. In preclinical models, preconditioning of the so-
called metastatic niche or short-term treatment with anti-
VEGF targeted therapy have been shown to enhance tumor 
invasiveness and metastatic burden in response to hypoxic 
stress [48–50]. These unexpected outcomes suggest that the 
generation of hypoxia resulting from blood vessels pruning 
may increase tumor aggressiveness, raising concerns about 
the clinical application of classic anti-angiogenic therapy. 
Importantly, the clinical relevance of these findings is still 
under investigation as evidence that patients treated with 
bevacizumab have a shorter time of progression-free sur-
vival are lacking [51]. However, glioblastoma tumors that 
relapse after bevacizumab treatment can have a more infil-
trative phenotype [52, 53]. Similar observations have been 
made in renal cell cancer patients, where, after interruption 
of VEGFR tyrosine kinase inhibitor treatment, tumor growth 
rebounded with a concomitant increase in metastases [54].

The negative impact of the hypoxic stress can be 
extended to other aspects of tumor maintenance. The gen-
eration of a hypoxic niche is pivotal to support cancer stem 
cell population and to increase the expression of stem cell 
markers, at least in glioblastoma [55, 56]. Anti-angiogenic 
therapy is associated with this phenomenon since, as dem-
onstrated in breast cancer preclinical models, the onset of 
hypoxia as consequence of anti-VEGF therapy increases 
the population of cancer stem cell within the tumor [57]. 
This is a new challenging aspect to be considered as cancer 
stem cells have been proposed as key actors in resistance to 
therapy and tumor recurrence [58–60].

Emerging concepts of tumor angiogenesis

In recent years, the process of tumor angiogenesis has been 
further detailed. We have learned, for example, that tumor 

neovascularization does not merely reflect an increase in 
capillary number but also a general modification in the 
physiology of the vasculature [6, 61]. Secretion of pro-
angiogenic signals by both tumor cells and the microenvi-
ronment causes the formation of an abnormal vasculature, 
with chaotic and tortuous blood vessels and aberrant func-
tion, due to vasodilatation and increased vascular perme-
ability [6, 62]. An aberrant vasculature results in hypoxia 
and necrosis that negatively impacts tumor progression, and 
vessel leakiness causes suboptimal blood flow and tumor 
perfusion. Impaired tumor perfusion affects the response to 
standard therapies due to reduced cytotoxic drug delivery 
within the tumor mass and defective production of oxygen 
radical species required for successful radiotherapy [63].

This additional knowledge must now be incorporated in 
the definition of new anti-angiogenic therapies. The latter 
should be implemented also considering the goal of revert-
ing abnormal vasculature and to restore normal blood flow. 
In principle, this strategy should improve tumor perfusion 
while decreasing interstitial pressure and hypoxia-driven 
tumor aggressiveness [63, 64].

As mentioned above, another important consideration 
is that the tumor mass is a complex environment com-
posed not only of cancerous cells but also of many other 
cell types such as fibroblasts, endothelial, and BMDCs. 
Considering the continuous and dynamic cross-talk among 
these cell lineages, current treatments are unlikely selec-
tive for only one cell type. Indeed, targeting blood vessels 
affects tumor cell proliferation and migration, and simi-
larly targeting cancer cells deeply impinges on the tumor 
environment. This phenomenon, which has been referred 
to as “accidental anti-angiogenic therapy”, can be a con-
sequence of chemotherapy or small molecules inhibitors 
[65]. In the case of small-molecule inhibitors, possible off-
target effects are an important consideration. For example, 
it has been reported that targeting oncogenic BRAF with 
the tyrosine kinase inhibitor sorafenib not only inhibits 
cell proliferation in mutated tumor cells but directly affects 
angiogenesis because it blocks VEGFR2 and PDGFR activ-
ity [12]. A different mechanism acts in bystander anti-angi-
ogenic therapy where targeting oncogenic events in the epi-
thelial cell compartment indirectly impinges on the tumor 
environment [66].

Oncogenes in tumor angiogenesis

Genetic modifications occurring in the genome initiate 
the transformation process that leads to cancer. Two types 
of genetic aberration can drive tumorigenesis: mutation/
amplification of oncogenes, and inactivation/deletion of 
oncosuppressor genes. The discovery that cancer cells rely 
on specific genetic alterations for their survival has driven 
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the development of targeted therapy with the aim of inhib-
iting the proliferation of tumor cells [67–70]. Activation 
of oncogenic pathways triggers profound modifications 
in the expression profile of tumor cells. Among others, 
the expression of several cytokines and growth factors is 
directly affected by the activity of individual oncogenes, 
thereby influencing the tumor environment [66, 71, 72].

Angiogenesis, just like most biological processes, relies 
on an appropriate balance of factors to maintain an optimal 
physiological condition. In cancer, the delicate equilibrium 
between pro- and anti-angiogenic factors is lost, with the 
abundance of pro-angiogenic cytokines being the main 
driver of tumor angiogenesis. A therapeutic approach that 
depletes or inactivates an angiogenic pathway, such as anti-
VEGF therapy, causes vessel pruning and an inadequate 
vasculature with necrosis and hypoxic stress that negatively 
effects the tumor environment [63]. We suggest that an 
alternative strategy to target tumor angiogenesis could be 
to rescue the equilibrium of angiogenic signals by target-
ing the mutated oncogenes, which play a central role in this 
process.

Several examples of oncogene-driven angiogenesis have 
been described [65, 66]. Indeed, activation of MAPK and 
PI3K-AKT pathways, which are usually deregulated in 
cancer, enhances the expression of pro-angiogenic factors 
by acting at both the transcriptional and translational levels 
[73–75]. These findings may explain why targeted therapy, 
which usually has a cytostatic effect on tumor cells, also 
affects the tumor environment and normalize tumor vascu-
lature (Table 1).

We recently described how targeting oncogenic BRAF, a 
serine threonine kinase, affects angiogenesis [71]. BRAF is 
frequently mutated in human cancer and the BRAFV600E 
mutation can influence the tumor environment by increas-
ing expression of HIF1α, VEGFA, IL1β, and IL8, and by 
lowering levels of the angiogenic blocker thrombospondin 
1 [71, 76–80]. We found that the most common BRAF vari-
ant (the BRAFV600E mutation) modulates the production 
of angiogenic molecules by cancer cells. Furthermore, we 

evaluated the effect of the specific BRAFV600E inhibitor 
PLX4720 on tumor angiogenesis and demonstrated that 
targeting BRAF stabilizes the tumor vasculature and abro-
gates hypoxia in tumor xenografts. Intriguingly, we found 
that PLX4720 acts by specifically switching-off the MAPK 
pathway in BRAF-mutated cells, thereby decreasing the 
expression of angiogenic molecules. These data led us to 
suggest that pharmacological inhibition of oncogenes in 
tumor cells can restore a functional vasculature and poten-
tially blocks the specific angiogenic program activated by 
individual tumors. This mechanism of action provides a 
clear example of bystander anti-angiogenic therapy.

Similarly to BRAF, the RAS oncogene is a master regu-
lator of the MAPK pathway that has been directly linked 
to induction of tumor angiogenesis [81]. Activated RAS 
increases the expression of VEGF and other angiogenic 
chemokines like CXCL1, CXCL5, and IL8 while sup-
pressing expression of the angiogenesis inhibitor throm-
bospondin 1 [82–86]. A concomitant mechanism by which 
oncogenic RAS stimulates the angiogenic program is 
by up-regulating proteases important for matrix remod-
eling, such as uPA, MMP2, and MMP9 [87, 88]. The role 
of KRAS in driving angiogenesis is supported by clinical 
data in non-small cell lung cancer and in pancreatic tumor 
showing that KRAS activating mutations correlate with 
high VEGF expression [89, 90]. Inhibition of RAS activ-
ity by gene silencing suppresses VEGF expression. Moreo-
ver, decreased VEGF expression in KRAS-mutated colon 
cancer cells reduces the tumorigenic potential in vivo, 
highlighting the importance of VEGF expression in KRAS-
driven tumors [91].

The PI3K-AKT-mTOR axis, which is often deregulated 
in human cancer, is another important pathway that con-
trols the angiogenic program in tumor cells. The activa-
tion of this signaling pathway up-regulates the expression 
of HIF1α and VEGF and consequently promotes tumor 
angiogenesis [92–94]. Small-molecule inhibitors block-
ing different signaling nodes of this pathway have shown 
important effects on vascular normalization with conse-
quent improvement in vascular blood flow and tumor oxy-
genation [95, 96].

Myc and p53 also act as master regulators of angiogenic 
factors. C-Myc triggers the expression of VEGF while it 
down-regulates thrombospondin 1 [97, 98]. p53 is an onco-
suppressor gene involved in the down-regulation of pro-
angiogenic factors like VEGF and FGF as well as in the up-
regulation of thrombospondin 1 [99–101]. For example the 
expression of p53 is required to reverse the angiogenic pro-
gram in hematopoietic malignancy. In this type of tumor, 
Myc inactivation is sufficient to induce tumor regression, 
but its effect is less prominent when p53 is lost. Expres-
sion of p53 reverses tumor angiogenesis by controlling the 
up-regulation of thrombospondin 1 and allows a sustained 

Table 1   Summary of the main oncogene-targeted therapies that are 
reported to normalize tumor vasculature

Oncogenes targeted therapies  
with anti-angiogenic properties

Oncogene References

Vemurafenib-PLX4720 BRAF [71]

NVP-BEZ235 PI3K-mTOR [96]

PI-103 PI3K [95]

Nelfinavir AKT [95]

Erlotinib EGFR [104]

Iressa EGFR [104, 105]

Herceptin HER2 [107]
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tumor regression after Myc inactivation [102]. A recent 
study shows that p53 can also repress the thrombospon-
din 1 promoter in prostate cancer cell lines, suggesting a 
context-dependent regulation of thrombospondin 1 by p53 
[103].

The inhibition of EGFR or HER2, tyrosine kinase 
receptors that activate MAPK and PI3K, is another exam-
ple of vessel normalization by bystander oncogene target-
ing. EGFR can be amplified and mutated in several tumors 
including lung, colon, and glioblastoma. Pharmacological 
inhibition of EGFR decreases the expression of HIF1α and 
VEGF by tumor cells and treatment of tumor xenografts 
with Erlotinib or Iressa, two different tyrosine kinase 
inhibitors, also lead to vessel normalization [95, 104, 105]. 
As mentioned above, this effect on the tumor microenvi-
ronment can improve the success of both cytotoxic chemo-
therapy and radiotherapy. A preclinical study has shown 
that pretreatment of tumor xenografts with Erlotinib 
increases the delivery of chemotherapeutic agents within 
the tumor and results in higher inhibition of tumor growth 
compared to the single treatment [106]. Moreover, pre-
treatment with Erlotinib enhances the effect of radiation 
therapy in vivo but not in vitro, demonstrating that EGFR 
targeting may positively affect the tumor microenviron-
ment [106]. HER2 is an important oncogene overexpressed 
in aggressive breast cancer. It has been found that targeting 
HER2-positive tumors with Herceptin strongly influences 
vascular structure and function and cause vessel normali-
zation. Herceptin treatment slows down the secretion of 
VEGF, PAI-1, TGF-α, and Angiopoietin1, all important 
mediators of angiogenesis and in parallel up-regulates the 
expression of the anti-angiogenic factor thrombospondin 1 
[107].

In conclusion, multiple evidences show that oncogene-
targeted drugs might also impact tumor angiogenesis, 
suggesting an innovative strategy to revert aberrant vascu-
lature and positively impact tumor environment. The limi-
tation of this approach relies in the ability of tumor cells to 
develop secondary resistance towards targeted therapy. It 
is known that a tumor can overcome the dependency on a 
specific oncogene through various mechanisms: by involv-
ing compensatory genes through the activation of alter-
native molecular pathways or by the acquisition of new 
genetic alterations due to the intrinsic genomic instability 
of cancer cells [108]. The finding that targeting oncogene 
addiction in tumor cells results in abrogation of pro-angi-
ogenic signals suggests that once acquired resistance is 
established reactivation of oncogenic pathways may trig-
ger an angiogenic rebound. Therefore, any anticancer ther-
apy (be it directed to the tumor cells or to the surrounding 
stroma) will always be limited by secondary resistance. 
Overcoming the latter is key in providing long-lasting clin-
ical benefits.

Conclusions and perspectives

Both tumor angiogenesis and oncogenic addiction are con-
sidered hallmarks of cancer [62, 109]. In this review, we 
highlight the connection between these two events and dis-
cuss the hypothesis that targeting oncogenes can positively 
affect the tumor environment. We summarized examples of 
therapies aimed at blocking oncogenes that concomitantly 
were shown to have a clear effect on vascular normaliza-
tion and tumor perfusion. At the same we note that tar-
geting oncogenes can improve blood vessel structure and 
tumor oxygenation without having any obvious effect on 
tumor cell proliferation [95]. This suggests that oncogenic 
pathways can be involved in the activation and mainte-
nance of the angiogenic program even in cancer cells that 
are not addicted to the targeted oncogenic mutations for 
proliferation.

By comparing the anti-angiogenic effect of oncogene-
targeted therapy with an anti-VEGF approach important 
considerations can be made (see Fig.  1). An anti-VEGF 
approach causes blood vessel pruning and hypoxic stress 
that can result in an adaptive response with associated 
rebound in neoangiogenesis and in some case enhanced 
tumor aggressiveness. This is a feasible explanation for the 
short clinical benefit observed in patients treated with anti-
angiogenic drugs [110, 111]. In contrast, oncogene-targeted 
therapy causes blood vessel normalization by restoring the 
equilibrium of angiogenic molecules and it is predicted that 
this effect is more sustainable and should allow a prolonged 
response [64].

A second relevant consideration is that anti-VEGF 
therapy is directed towards a single angiogenic stimulus 
and acts by blocking the VEGFR signaling pathway. The 
first limitation of this strategy is that to obtain a functional 
vasculature, the maintenance of a correct amount of angio-
genic cytokines and not a complete depletion is important. 
Moreover, tumors develop resistance to anti-VEGF treat-
ment and drive revascularization by alternative angiogenic 
programs. Despite the fact that the main read-out described 
for oncogene-driven angiogenesis is VEGF, other angio-
genic stimuli are modulated by oncogenic mutations and 
blocking oncogenes with targeted inhibitors has the advan-
tage of affecting a wide range of pro- and anti-angiogenic 
molecules [27, 64].

All these factors suggest that standard anti-angiogenic 
therapy is unlikely to succeed in all tumors, but treatment 
strategies need to be adapted to individual cancers. Selec-
tive biomarkers are needed to predict which patients will 
benefit from anti-angiogenic therapy and, considering that 
a specific angiogenic profile can be activated in different 
cancers, to select the appropriate therapy. Moreover, sev-
eral studies have aimed at identifying molecular changes 
that correlate with the response to anti-angiogenic therapy, 
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which is an important parameter for the early identification 
of response or resistance to the therapy [112–114].

To date, reliable markers to predict response to anti-
angiogenic treatment are not available; for example in 
metastatic colorectal cancer, neither VEGF nor microvessel 
density was predictive for response to bevacizumab [115]. 
Oncogenic mutations are already considered an important 
clinical parameter to stratify patients and identify suitable 
therapies. However, oncogenes have failed to be predic-
tive for response to classical anti-angiogenic therapy [116], 
but it is possible that they will become useful for choosing 
alternative strategies. The knowledge about how the tumor 
microenvironment is influenced by targeted therapy will 
allow a better understanding of the clinical outcome and 
hopefully a clearer prediction of patient response.

We propose that blocking oncogenic pathways may 
result in inhibition of cancer cell proliferation, while con-
comitantly normalizing tumor vasculature. This approach 
opens possibilities for combinatorial treatments with chem-
otherapeutic agents or radiation therapy that would rely on 
the positive effects of vascular normalization on blood flow 
and tissue perfusion. Furthermore, by selectively blocking 
oncogenes, it should be possible to stall, at least temporar-
ily, the angiogenic program. As oncogenes are activated in 
a tumor-specific fashion, we envision a personalized anti-
angiogenic therapy that normalizes tumor vasculature even 
in cancers that are intrinsically refractory to anti-VEGF 
treatment thereby overcoming some of the limits of current 
anti-angiogenic drugs.
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