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Introduction

Regucalcin (RGN) was initially discovered in 1978 by 
Yamaguchi [1] and, although classified as a calcium (Ca2+)-
binding protein, it does not contain the typical EF-hand 
Ca2+-binding motif [2]. The overall structure of RGN pro-
tein contains 24 β-strands forming 6 β-sheets able to bind 
diverse divalent cations (Ca2+, Mg2+, Mn2+ and Zn2+) [3–
6]. The RGN ability to bind Ca2+ was recently confirmed 
by X-ray diffraction studies which have allowed the resolv-
ing of the crystal structure of human RGN protein bound to 
Ca2+ or Zn2+ cations. Although Ca2+ and Zn2+ ions bind 
to the same amino acid residues forming a unique metal 
binding site in a nearly identical coordination, an very much 
higher level of dissociation constant is documented for Ca2+ 
which could be relevant under non-physiological condi-
tions, whereas elevated Ca2+ levels can occur [4].

The RGN gene is localised in the p11.3-q11.2 and q11.1-
12 segments of the human and rat X chromosome, respec-
tively [7, 8]. In both cases, the gene consists of seven exons 
[9–11] encoding a protein of 299 amino acid residues with 
an approximate molecular weight of 33 kDa [2, 12]. For this 
reason, together with the diminished expression of RGN 
in tissues of aged animals, Fujita and co-authors [12–14] 
named it senescence marker protein 30 (SMP30).

RGN is highly expressed in the liver and kidney cortex 
[12, 15, 16], but it has been detected in several other tissues 
[16, 17] in a broad range of vertebrate and invertebrate spe-
cies [18–20]. The transcription of RGN gene is enhanced 
by several regulatory transcription factors upstream of the 
5′ flaking region, namely the AP1, NF1-A1, RGPR-p117 
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and β-catenin [21]. Ca2+ levels modulate RGN expression 
in a process involving, for example, calmodulin (CaM) or 
protein kinase C (PKC) [22–24]. Also, Ca2+-independent 
mechanisms [25], hormonal factors and others have been 
described as regulating the levels of RGN in cells [11, 26–
30]. Moreover, altered expression patterns of RGN have 
been associated with several disease conditions in both 
human and animal models [11, 31–39], which highlights the 
importance of this protein in cell biology.

RGN has been localised to the cell nucleus and cytoplasm 
[26, 40, 41], as well as in the mitochondrial fraction [42], 
and multiple physiological functions have been assigned to 
this curious protein. Among them is the ability of RGN to 
influence Ca2+ homeostasis through the regulation of Ca2+-
pumping activity in the cell membrane, nucleus, microsomes, 
endoplasmic reticulum and mitochondria of various cell 
types [43]. It has also been associated with intracellular sig-
nalling pathways, since it regulates several Ca2+-dependent  
enzymes such as protein kinases, tyrosine kinases, phos-
phatases, phosphodiesterase, nitric oxide synthase and  
proteases [43–48].

In addition, the antioxidant properties of RGN in reduc-
ing intracellular levels of oxidative stress have also been 
described. This effect is achieved through modulation of 
the activity of enzymes involved in generation of oxidative 
stress as well as in the antioxidant defence [49–52].

Several reports using gene-silencing and over-expression 
approaches have pointed out a role of RGN in regulating 
cell death and proliferation. Although the mechanisms 
implicated in this control are not completely understood, it 
has been demonstrated that RGN can regulate DNA syn-
thesis and fragmentation [53–56], and modulate the expres-
sion of oncogenes, tumour suppressor genes and cell cycle 
regulators [53, 54, 57], influencing survival and apoptotic 
pathways [58–60].

This review discusses the current knowledge about the 
expression and function of RGN in several cell types and 
tissues, exploring concepts from the molecular biology 
point of view in signalling pathways and systems biology. 
The potential roles of RGN in pathological situations will 
also be discussed.

RGN in non-pathological and pathological tissues  
and cell lines

RGN has been identified in a wide range of species from 
invertebrates to mammalian and non-mammalian verte-
brates, also including fungi and bacteria [10, 12, 18–20, 
61–65]. Protein sequence alignment and determination of 
amino acid identities show that RGN is highly conserved 
throughout evolution (Table 1). Human RGN (NP_690608) 
is highly homologuous with other primate proteins 

showing 97 % identity with that of orang-utan (Pongo abelii,  
NP_001127502). Percentages of amino acid identity 
with other mammals range from 88 to 91  %: 88  % with 
pig (Sus scrofa, NP_001070688), rat (Rattus norvegicus,  
NP_113734) and mouse (Mus musculus, NP_033086), 
89 % with rabbit (Oryctolagus cuniculus, NP_001075472), 
and 91  % with cow (Bos taurus, NP_776382.1). The 
overall identity decreases in comparison with non-mam-
malian vertebrates showing 77  % identity with chicken 
(Gallus gallus, NP_990060), 70  % with frog (Xenopus 
laevis, NP_001079124) and 62  % with fish species (cat-
fish, Ictalurus punctatus, NP_001187297, and zebrafish, 
Danio rerio, NP_991309). Homology with disk abalone 
(Haliotis discus, ABO26616), fruit fly (Drosophila mela-
nogaster, NP_727586) and louse (Acyrthosiphon pisum, 
NP_001155519) RGN proteins range from 41 to 30 %, what 
still is noticeable high since these are invertebrate species. 
Also with fungi (Aspergillus fumigates, XP_751966) and 
bacteria (Bacillus cereus, NP_978918 and Agrobacterium 
tumefaciens, NP_353727) the percentage of amino acid 
identities are very high, being 26, 32 and 22 %, respectively. 
This demonstrates that the RGN gene is highly conserved 
among various vertebrate and invertebrate species which 
corroborates the idea of its well-conserved basic biologic 
function throughout evolution.

RGN was first identified in the liver where it is highly 
expressed [1, 2, 15], but it has also been found in a variety 
of pathological and non-pathological tissues and cell lines 
[10, 11, 18, 24, 26, 32, 66–68]. Table 2 summarises the dis-
tribution of RGN mRNA and/or protein in non-pathological 
tissues and body fluids of several species. It is present in a 
variety of reproductive [26, 60, 66] and non-reproductive 
tissues [12, 16, 17, 38, 60, 69–75], as well as in plasma [16, 
35, 37, 76–78], seminiferous tubules fluid [66] and insect 
saliva [79].

Moreover, RGN was identified in several non-patholog-
ical cell lines such as pig kidney cells (LLC-PK1) [80], rat 
kidney proximal tubular epithelial cells (NRK52E) [57, 
67], rat astrocytes (CTX TNA2) [32] and rat liver cells 
(Ac2F) [68].

One distinctive characteristic of RGN expression pattern 
is the significant diminished expression in tissues of aged 
animals [13, 14]. Studies on the expression of RGN from 
embryonic to senescent stages of life revealed that, in rat liver 
and kidney, a maximum of expression is reached within the 
first month after birth. Substantial amounts of mRNA and 
protein are maintained up to 3 or 6.5 months, respectively, in 
kidney and liver, and a marked decrease of RGN expression 
is found in older animals [14]. In addition, it is interesting to 
note the existence of gender differences in RGN expression 
levels. Hepatic RGN mRNA expression is higher in male  
rats [81] and mice [82]. RGN protein levels are lower in 
female liver, kidney and serum, but no significant alteration 
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was found in spleen or cerebral cortex [16, 71]. As an excep-
tion, stomach of females presents higher RGN levels [71]. 
In any case, in aged animals, where a down-regulation of 
RGN expression is expected to occur, female rat livers still 
present minor levels in comparison with males [81, 83].

Several reports have described an altered expression of 
RGN in distinct pathological conditions. Proteomic analysis 
studies identified RGN as a down-regulated gene in a mus-
cular dystrophy mouse model [38] and in acute liver failure 
[35]. In contrast, RGN was up-regulated in human brain of 
Parkinson’s disease patients [75]. Also, human testicular 
tissues with defective phenotypes of spermatogenesis dis-
played an increased expression of RGN in comparison with 
normal cases [34].

Concerning tumoral conditions, RGN expression was 
analysed in hepatomas [84, 85], breast and prostate cancer 
tissues [11], as well as in cancer cell lines of these and other 
tissues (see Table  3) [86–92]. Under-expression of RGN 
mRNA was first reported in rat chemical-induced hepatomas 
[84]. More recently, RGN was found to be under-expressed 

in human hepatocellular carcinoma (HCC) [37] and breast 
and prostate cancers [11]. Moreover, the diminished expres-
sion of RGN was associated with histological grade of infil-
trating ductal carcinoma of breast and cellular differentiation 
of prostate adenocarcinoma [11]. High RGN immunoreactiv-
ity was detected in 60 % of non-neoplastic prostate tissues, 
while only 40 and 12  % of well-differentiated and poorly 
differentiated adenocarcinomas, respectively, displayed this 
expression pattern. Likewise, 90 % of non-neoplastic tissues 
of human breast showed high RGN immunoreactivity con-
trasting with 12 and 0  % of grade I and grade III human 
breast infiltrating ductal carcinomas, respectively [11].  
A gene expression profile study of rat liver by means of cDNA 
microarrays demonstrated that down-regulated expression of 
RGN starts occurring in pre-neoplastic lesions before acqui-
sition of a tumoral phenotype [93]. Other report also estab-
lished a correlation between detection of RGN in serum and  
cellular differentiation of HCC [37], with 52,6 % of positiv-
ity in well-differentiated tumours (grade I–II) as opposed to 
19 % in poorly differentiated tumours (grades III–IV).

Table 2   Regucalcin expression 
in non-pathological tissues and 
body fluids of distinct species

r rat, m mouse, h human, ap pea 
aphid Acyrthosiphon pisum

Tissue Species Biomolecule References

Liver h, r, m mRNA/Protein [1, 2, 12, 13, 15–18, 60, 71]

Kidney h, r, m mRNA/Protein [12, 13, 15–18, 60, 71]

Adrenal gland r mRNA [60]

Lung r mRNA/Protein [16, 60]

Heart h, r mRNA/Protein [16, 17, 69, 74]

Bone r mRNA/Protein [70, 72]

Skeletal muscle r Protein [16, 71]

Diaphragm muscle m Protein [38]

Epidermis r mRNA [60]

Brain r mRNA/Protein [17, 60]

Cerebral cortex r, m Protein [16, 18]

Hippocampus r Protein [16]

Locus ceruleus h Protein [78]

Stomach r, m mRNA/Protein [60, 71]

Pancreas h ? [69]

Duodenum r Protein [16]

Submandibular gland m Protein [73]

Spleen r Protein [16]

Mammary gland h, r mRNA/Protein [11, 26]

Uterus r mRNA [60]

Ovary r mRNA [60]

Prostate h, r mRNA/Protein [11, 26, 66]

Testis h, r mRNA/Protein [16, 60, 66]

Epididymis r mRNA/Protein [66]

Seminal vesicles r mRNA/Protein [66]

Seminiferous tubules fluid r Protein [66]

Plasma h, r Protein [16, 35, 37, 76–78]

Saliva ap Protein [79]
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Also, altered expression patterns of RGN were observed 
in non-tumoral liver diseases. Liver biopsies from patients 
with non-alcoholic fatty liver disease showed diminished 
RGN levels, which seems to be dependent of the stage of 
disease [39]. On the other hand, human patients with acute 
liver injury [35] or chronic liver failure presented high 
serum levels of RGN [94]. Induced liver failure in mice by 
administration of galactosamine [77, 78], carbon tetrachlo-
ride [76] or lipopolysaccharide (LPS) [78] is also accompa-
nied by elevated plasma levels of RGN.

Collectively, available data raised much evidence sup-
porting the idea that RGN may be a useful biomarker track-
ing the onset and/or progression of tumour and non-tumour 
pathologies.

Hormonal factors and others regulating RGN 
expression

Several cell-signalling factors have been shown to regulate 
RGN gene expression (Fig. 1) in a variety of tissues. The 
cell-response triggered by a specific signalling factor can 
be different from tissue to tissue, and several studies have 
shown that the regulation of RGN expression may be tissue-
specific, thereby presenting different responses to the same 
signalling factor.

Calcium

Ca2+, a second messenger triggering important cell signal-
ling pathways, is one of the main factors involved in the 
regulation of RGN gene expression in liver and kidney. Sev-
eral reports have shown that rats treated with Ca2+ chloride 
(CaCl2) present higher levels of RGN mRNA at 30, 60 and 
120 min after administration [15, 22, 29, 82, 95, 96]. The 
role of Ca2+ in regulating RGN expression is also observed 
in H4-II-E hepatoma cells [24, 25].

Regarding the mechanisms underlying Ca2+ regulation 
of RGN expression, it was hypothesised that it could involve 
the Ca2+-binding protein, CaM. When Ca2+ and trifluop-
erazine (TFP), an antagonist of CaM, were simultaneously 
administrated, the effect of Ca2+ increasing RGN mRNA 
expression was blocked, which suggests that expression 
of RGN mRNA is mediated by CaM [22, 23]. A Ca2+/
CaM complex regulates the activation of several enzymes 
involved in signal transduction, such as cyclic adenosine 
monophosphate (cAMP) phosphodiesterase or PKC. The 
effect of phorbol 12-myristate 13-acetate (PMA), an activa-
tor of PKC, was evaluated on the expression of RGN. Dif-
ferent doses of PMA did not produced any effect on RGN 
mRNA expression, suggesting that the downstream effect 
of CaM is not triggered by PKC [23]. Although the effect 
of Ca2+ in rat liver was not mediated by PKC, it was dem-
onstrated in H4-II-E cells that it is mediated by CaM and 
involves PKC activation [24, 25].

Thyroid and parathyroid hormones

It is well known that calcitonin and parathyroid hormone 
(PTH) play an important role in maintenance of Ca2+ home-
ostasis [97]. M. Yamaguchi’s group have investigated the 
role of calcitonin regulating RGN expression. In rat liver, 
the effect of CaCl2 in RGN mRNA expression is com-
pletely abolished in thyroparathyroidectomised (TPTX) 
rats, but calcitonin administration to TPTX rats treated 
with CaCl2 induced an increase of RGN mRNA expression. 
These results suggested that the Ca2+ effect in RGN mRNA 
expression is dependent on calcitonin [29]. On the other 
hand, experiments using HepG2 cells did not find any effect 
on RGN mRNA expression triggered by calcitonin [90]. 
Regarding kidney, the administration of calcitonin or PTH 
to TPTX rats treated with CaCl2 did not cause any alteration 
in RGN mRNA levels, suggesting that RGN expression is 
not stimulated by hormones involved in Ca2+ metabolism 

Table 3   Regucalcin expression 
in human and murine cancer 
cell lines

↓ Down-regulated, – data not 
available

Cell line Cell type Biomolecule Expression References

HepG2 Human  
hepatocarcinoma

mRNA/ 
protein

↓ [51, 85, 88–91]

Transplantable  
Morris

Rat  
hepatocarcinoma

mRNA – [84, 85]

H4-II-E mRNA/ 
protein

↓ [24, 86, 87]

MC3T3-E1 Mouse  
osteoblast

mRNA/ 
protein

– [92]

MCF-7 Human breast  
cancer

mRNA/ 
protein

↓ [11]

LNCaP Human prostate  
cancer

mRNA/ 
protein

↓ [11]
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[22, 96]. In normal rat kidney proximal tubular epithelial 
NRK52E cells, the RGN mRNA expression was stimulated 
by treatment with PTH, but no effect was detected using 
calcitonin [30, 67].

RGN seems to play an important role in maintaining bone 
homeostasis [98], since it has been described that bones of 
transgenic rats over-expressing RGN (RGN knock-in) are 
more fragile than that of wild-type animals [70]. This again 
raised the question of whether PTH may regulate RGN 
expression, and, in fact, treatment of osteoblastic MC3T3-
E1 cells with PTH induced an increase in RGN mRNA tran-
scripts [99]. On the other hand, both male and female RGN 
knock-in rats display significantly decreased Ca2+ levels in 
femoral diaphyseal and metaphyseal [70]. A recent report 
described that exogenous RGN stimulates osteoclastogene-
sis and suppresses osteoblastogenesis which occurs through 
the activation of the nuclear factor-kappa B (NF-kB) signal-
ling transduction pathway [100]. Thus, the known effects 
of PTH in bone reabsorption may be mediated by increased 
expression of RGN.

Concerning T3 and T4 hormones, T3 treatment of female 
rats induced an increase in RGN mRNA and protein levels 

for up to 12 h of stimulation, which declined after 24 h and 
disappeared after 5 days [28]. No effect has been observed 
in response to T4 treatment [101], likely explained by the 
low biologic activity of this hormone. Recently, it was 
demonstrated that RGN mRNA is down-regulated by T3 in 
MCF-7 cells needing activated thyroid hormone receptors 
(TRs), but does not requiring high affinity between TR and 
thyroid-responsive elements on RGN gene promoter [102]. 
Down-regulation of RGN expression seems to be mediated 
through modification of histone acetylation triggered by T3 
treatment [102].

Steroid hormones

RGN mRNA expression in rat kidney is suppressed by 
saline administration [103], and Ca2+-induced up-regulation 
of RGN mRNA expression is weakened by saline ingestion 
[96], suggesting the involvement of adrenal hormones on the 
regulation of RGN expression. The levels of RGN mRNA 
in the kidney were clearly diminished by administration of 
aldosterone. On the other hand, dexamethasone induced 
an increase in RGN mRNA levels, and hydrocortisone 

Fig. 1   The myriad of factors 
regulating regucalcin (RGN) 
gene expression. Some exert up-
regulation effects (solid arrows) 
while others up-regulated or 
down-regulated RGN expres-
sion (dashed arrows) depending 
on the cell type, doses and/or 
time of stimulation. Bar-headed 
arrow represents inhibition. 
T3 Triiodothyronine, DHT 
5α-dihydrotestosterone, E2 
17β-estradiol, PTH parathyroid 
hormone, LPS lipopolysaccha-
ride, CCl4 carbon tetrachloride, 
CaM calmodulin, PKC protein 
kinase C, ER estrogen receptor, 
PTHR parathyroid hormone 
receptor, CTR calcitonin recep-
tor, InsR insulin receptor, TrK 
tyrosine kinase, TR thyroid hor-
mones receptor, AR androgen 
receptor, MR mineralocorticoid 
receptor, OS oxidative stress
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administration had no effect. The effect of dexamethasone 
is inhibited by administration of cycloheximide, suggesting 
that the effect of dexamethasone is dependent of newly syn-
thesised proteins [27]. However, these effects are not clearly 
understood because adrenalectomy in rats caused a decrease 
in RGN mRNA levels, an effect not restored by dexameth-
asone administration [103]. On the contrary, treatment of 
kidney NRK52E cells with aldosterone stimulated RGN 
mRNA expression [30, 67]. These results suggested that 
other hormones synthesised by the adrenal gland may be 
involved, or a synergetic effect between them is required to 
restore or regulate the levels of RGN mRNA in cells. More 
studies are needed to clarify the role of adrenal hormones 
regulating RGN expression. Vitamin D has no effect on 
RGN expression in NRK52E cells [30, 67], while it seems 
to decrease its expression in MC3T3-E1 cells [99].

The effect of sex steroid hormones, androgens and estro-
gens on RGN expression has been evaluated in liver, kidney, 
bone, prostate, breast, and testis tissues or cell lines. In rat 
liver, the expression of RGN was not altered by orchidec-
tomy or treatment with testosterone, suggesting that RGN 
expression in the liver is androgen-independent [13]. Also, 
in female rats, the ovariectomy did not cause a significant 
modification of RGN mRNA levels in the liver. In addition, 
the administration of 17β-estradiol (E2) to ovariecomised 
rats did not induced alterations in RGN mRNA expression 
[81]. However, other studies have shown that administra-
tion of E2 induced a remarkable increase of RGN mRNA 
levels both in rat and mice liver [101, 104]. This up-regu-
lation in response to E2 has also been observed in MC3T3-
E1 cells [99]. One report demonstrated that E2 decreases 
RGN mRNA levels in rat kidney [27]. The levels of RGN 
mRNA increased in the prostate of orchidectomised rats, an 
effect abrogated by E2 treatment for 7 days. The levels of 
RGN mRNA in the prostate of E2-treated rats are similar to 
those found in intact animals, suggesting that normal lev-
els of E2 may down-regulate RGN mRNA expression [26]. 
However, it is possible that the levels of RGN mRNA in the 
prostate of intact animals could also be maintained by the 
paracrine effect of testosterone metabolite dihydrotestoster-
one (DHT). In fact, another study showed that DHT down-
regulates RGN mRNA expression in human prostate cancer 
LNCaP cells by direct action of androgen receptor (AR), but 
requiring de novo protein synthesis [11].

RGN expression is higher in the mammary gland of ova-
riectomised rats in comparison with intact animals, but this 
effect is inhibited by treatment with E2 for 7 days [26]. In 
human breast cancer MCF-7 cells, E2 had a biphasic effect 
controlling RGN mRNA expression. Initially, E2 induced an 
increase in RGN mRNA levels at 6 and 12 h, but a down-
regulation was observed after 24 and 48 h of stimulation. 
Moreover, the effects of E2 on RGN mRNA expression 
were not abrogated in the presence of ICI 182,780 [estrogen 

receptor (ER) antagonist], and E2-bound to BSA produced 
the same effect as E2, suggesting the involvement of a mem-
brane-bound ER [11]. These results demonstrated that long 
exposure to E2 decrease the expression of RGN mRNA in 
both rat mammary gland and MCF-7 cells.

Also, in the testis, the effect of sex steroid hormones 
regulating RGN expression has been reported. DHT up-reg-
ulates RGN expression in rat seminiferous tubules cultured 
ex vivo, an effect blocked in the presence of flutamide (AR 
antagonist) suggesting the involvement of classical genomic 
mechanism of gene expression through AR [66].

Oxidative stress

Oxidative stress reduction trough calorie restriction (CR) 
is known to have anti-aging and antioxidative properties 
[105]. It has been shown that CR inverts the characteristic 
down-regulation of RGN expression in the liver and kid-
ney of aged rats [106]. Rats fed ad libitum for 6, 12, 18 
and 24 months showed a decrease of RGN expression when 
compared to animals under CR. Moreover, rats treated with 
LPS, which stimulates the production of reactive oxygen 
species (ROS), presented lower levels of RGN [106]. It has 
also been reported that treatment with carbon tetrachlo-
ride, an acute oxidative stress inducer, suppresses the RGN 
expression in rat liver during the necrotic phase [107]. These 
results suggest that the down-regulation of RGN expression 
in older animals is eventually due to the increased oxidative 
stress characteristic of the aging process.

Effects of RGN on calcium homeostasis

A tight regulation of intracellular Ca2+ concentrations is 
essential for maintenance of fundamental biological func-
tions and oscillations between 50 and 150  nM promote 
activation of specific and diverse signalling pathways that 
are involved in both physiological and pathophysiological 
conditions [108–111]. Several studies have demonstrated 
that RGN plays a role regulating Ca2+ homeostasis through 
direct and/or indirect regulatory actions at plasma membrane 
Ca2+-ATPase (PMCA), sarco/endoplasmic reticulum Ca2+-
ATPase (SERCA), nuclear outer membrane SERCA pumps, 
and increasing mitochondrial Ca2+ uptake by the mitochon-
drial Ca2+ uniporter (MCU) [43]. Although no effects have 
been described for RGN on Ca2+ channel activity, RGN 
over-expression in NRK52E normal rat kidney proximal 
tubular epithelial cells suppressed L-Type Ca2+ channels 
and Ca2+-sensing receptor mRNA expression [112].

RGN transfection in HepG2 cells [89] and addition of 
RGN to rat liver plasma membranes significantly increased 
PMCA activity [113, 114]. This effect was inhibited by 
N-ethylmaleimide (NEM) [115], a modifying reagent of 
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sulfhydryl groups (SH), which suggests that PMCA activ-
ity induced by RGN implies the regulation of ATPase SH 
groups. Accordingly, NEM blocked the activator effect of 
dithiothreitol (DTT), which is a SH group protective com-
pound [116]. In addition, it is thought that RGN regulates 
PMCA activity by direct binding to the plasma membrane 
[113], since the stimulatory effect is blocked by digitonin, 
a solubilising reagent of membrane lipids [116]. Elevation 
of Ca2+ levels in the liver induced by oral administration to 
rats also increases PMCA activity. This effect is abolished in 
the presence of anti-RGN antibody [117, 118], reflecting the 
role of endogenous RGN on the control of PMCA activity.

CaM activates PMCA through direct interaction with a 
specific CaM-binding domain located in the cytosolic tail 
of the pump [119]. Interestingly, some reports have pointed 
out that the RGN effect regulating PMCA activity may be 
CaM-dependent. The CaM inhibitor TFP has been shown 
to inhibit the RGN effect on PMCA activity in HepG2 cells 
over-expressing the protein [89]. Administration of carbon 
tetrachloride increased cytosolic Ca2+ levels in rat liver as 
a consequence of tissue injury and impairment of the RGN 
effect on PMCA activity [120].

The RGN role regulating PMCA activity seems to be 
Ca2+-dependent. RGN-induced Ca2+ uptake and increased 
PMCA activity in rat kidney cortex basolateral membranes 
are enhanced in the presence of Ca2+ in a dose-dependent 
manner [121].

Considering RGN influence on SERCA function, its 
effect has also been shown in enhancing pump activity [74, 
121–123]. Moreover, increased mRNA and protein levels 
of SERCA were observed in COS-7 cells over-expressing 
RGN [124]. Thapsigargin, a specific microsomal ATPase 
inhibitor, and digitonin clearly decrease RGN-induced 
SERCA activity in rat liver microsomes [123], suggest-
ing a membrane association. In opposition to this, A23187 
increased RGN-induced ATPase activity [123]. RGN pre-
sumably acts on SERCA SH groups, since NEM and 
DTT, respectively, promote a decrease and an increase in 
RGN-induced SERCA activity [123]. Similar results were 
described for rat kidney cortex [121] and heart microsomes 
[74]. In addition, vanadate, a phosphorylation inhibitor, 
significantly decreased RGN-induced SERCA activity in 
kidney microsomes, suggesting a phosphorylation effect of 
RGN at enzyme sites [121]. Contrastingly with the previ-
ous observations, in rat brain microsomes, RGN decreased 
SERCA activity, an effect that was weakened with increas-
ing age [125].

It has been reported that RGN can be found in the cell 
nucleus [26, 40, 41, 126], and SERCA pumps are also 
located in the nuclear outer membrane which is an exten-
sion of the endoplasmic reticulum [127]. RGN did not 
change Ca2+ uptake into rat liver nucleus [128] but reduced 
nuclear SERCA activity, while anti-RGN antibody caused 

the opposite effect [129]. Moreover, thapsigargin, NEM or 
vanadate prevented the effect of anti-RGN antibody increas-
ing nuclear SERCA activity [129]. On the other hand, CaM 
enhanced the increased SERCA activity by the anti-RGN 
antibody, an effect that is reduced in the presence of TFP. 
Thus, RGN seems to modulate CaM effects on nuclear 
SERCA and to promote nuclear Ca2+ release in a way not 
so far clarified [128, 129].

RGN also regulates cytosolic Ca2+ concentration by stim-
ulation of Ca2+ uptake into the mitochondria matrix of rat 
liver [130, 131] and kidney cortex [132] cells, likely through 
MCU. In fact, it has been reported in liver [131], kidney 
cortex [132], heart [133] and brain [134] that MCU inhibi-
tors, such as ruthenium red or lanthanum chloride, prevent 
Ca2+ uptake as well as RGN-induced mitochondrial ATPase 
activity. In the same way, increased mitochondrial ATPase 
activity was observed in heart and brain of RGN knock-in 
rats [133, 134]. In liver and kidney cortex of wild-type ani-
mals, digitonin and vanadate reduced mitochondrial ATPase 
activity even in the presence or absence of RGN, whereas 
CaM and DTT promoted an opposite effect [131, 132]. This 
means that RGN may regulate cytosolic Ca2+ homeostasis 
by acting on SH groups of mitochondrial ATPase and/or the 
MCU channel, depending on CaM, since ATPase activity is 
decreased by TFP in kidney cortex [132].

The described actions of RGN controlling Ca2+ pump 
activity and intracellular Ca2+ levels highlight the impor-
tance of this protein maintaining homeostasis and appro-
priate signalling for this ion, which may have profound 
implications in pathophysiologic conditions as a result of 
Ca2+ dysregulation. Nevertheless, the regulatory role of 
RGN in Ca2+ homeostasis and signalling needs to be further 
explored and extended to contemplate potential effects on 
Ca2+ channels or Ca2+-sensing receptor activities.

RGN and calcium-dependent intracellular signalling

Beyond its capability to regulate cytosolic Ca2+ levels, RGN 
is also able to modify the activity of a wide range of Ca2+-
dependent enzymes involved in intracellular signalling and 
cell metabolism (Fig. 2).

A Ca2+-dependent enzyme that is regulated by RGN is 
the 5′-nucleotidase. Ca2+ inhibits 5′-nucleotidase activity 
which is reverted by RGN [135]. At the metabolic level, 
mitochondrial succinate dehydrogenase activity is increased 
by Ca2+, whereas RGN induced an opposite effect [136]. 
So, mitochondrial Ca2+ regulation by RGN has an indirect 
effect on cell energy production. Also, enzymes such as 
glycogen phosphorylase a, an enzyme involved in glycogen 
hydrolysis in liver and muscle (glucogenolysis), pyruvate 
kinase (glycolysis) and microsomal glucose-6-phosphatase 
(gluconeogenesis), which are activated by Ca2+, have their 
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activities reverted to control levels by RGN [137–139]. 
Moreover, ATP hydrolysis by adenosine 5′-triphosphatase 
in rat brain is increased by Ca2+, while RGN promoted an 
inhibitory effect as demonstrated by RGN-antibody admin-
istration [140]. This RGN action seems to be independent 
of CaM, since it is not inhibited by CaM or TFP [140]. In 
contrast, Ca2+-induced rat liver pyruvate kinase activity is 
reverted by RGN, and also by CaM [138]. Fructose-1.6- 
diphosphatase enzyme activity in rat and rabbit liver is found 
to be increased by Ca2+ and CaM, and diminished by the addi-
tion of RGN or CaM inhibitor, suggesting that effects may  
be mediated by Ca2+-CaM [141]. On the other hand, cyto-
solic deoxyuridine 5′-triphosphatase activity is decreased by 
Ca2+ and stimulated by RGN [142]. Altogether, available 
data indicate diverse regulatory roles of RGN on enzymes 
involved in different cellular energy production pathways, 
such as oxidative phosphorylation, glucogenolysis, gluco-
neogenesis and glycolysis, as well as in energy conversion 
enzymes. Moreover, it has also been suggested that RGN 
exerts its effects by direct actions on the regulation of CaM 
or CaM-dependent proteins.

cAMP, as well as Ca2+, is an ubiquitous second messen-
ger essential to the control of cellular homeostasis [143]. 
The adenylyl cyclases (ACs) that synthesise cAMP are reg-
ulated by Ca2+ signalling pathways [143, 144] and activated 

by heterotrimeric G proteins [144]. In turn, cAMP phospho-
diesterases are responsible for cAMP degradation. Thus, 
levels of cAMP are regulated by the activity balance of ACs 
and cAMP phosphodiesterases both activated by Ca2+/CaM 
[143, 145]. In rat liver and kidney, RGN inhibited Ca2+/
CaM-dependent activation of cAMP phosphodiesterase 
[146, 147], an effect abolished by high Ca2+ levels and in 
the presence of TFP [146, 147]. Thus, RGN action on phos-
phodiesterase appears to be related to the capacity of Ca2+ 
binding, as it seems to be dependent on CaM.

Nitric oxide (NO) is a signalling agent produced by the nitric 
oxide synthase (NOS), which is regulated by free intracellu-
lar Ca2+ concentrations and CaM [148]. The addition of RGN 
to cytosol preparations from rat liver, kidney, heart and brain 
lead to a significant decrease of NOS activity [48, 149–151].  
Furthermore, both Ca2+ and anti-RGN antibody stimulated 
NOS activity in rat liver, heart and brain cytosol, while it is 
blocked in RGN knock-in rats [150–152]. RGN over-expres-
sion in kidney proximal tubular epithelial NRK52E cells 
[153] also demonstrated the decrease in NOS activity even 
in the presence of Ca2+ and CaM, while, in MC3T3-E1 cells, 
anti-RGN antibody reverted this effect [92]. The mechanism 
by which RGN regulates NOS activity may be related with 
CaM, since, in liver and kidney, it is impaired in the presence 
of the CaM antagonist, TFP [48, 149, 150].

Fig. 2   Schematic represen-
tation of regucalcin (RGN) 
actions on enzymes involved 
in intracellular signaling and 
metabolism. Arrows indi-
cate activation by RGN and 
bar-headed arrows represent 
inhibition. RGN decreases 
NOS, PK and succinate dehy-
drogenase enzymes activity. 
RGN also inhibits Ca2+/CaM 
dependent activation of PKC, 
cAMP phosphodiesterase and 
phosphatases.NOS nitric oxide 
synthase, PK pyruvate kinase, 
CaM calmodulin, PKC protein 
kinase C
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Calcineurin (CaN) is a CaM-dependent serine/threo-
nine phosphatase widely distributed in mammalian tissues 
[154, 155]. It has been demonstrated that RGN significantly 
reduces cytosolic and nuclear phosphatase activities in the 
liver [156, 157], while anti-RGN antibody promotes the 
expected opposite effects [40, 156, 157]. Also, phosphoty-
rosine and other phosphatases activities in rat kidney cor-
tex cytosol were significantly inhibited by RGN [158, 159]. 
Cytosolic and nuclear phosphotyrosine and phosphoserine 
activities were found to be diminished by vanadate, used as a 
tyrosine phosphatase inhibitor, and by cyclosporin A, a CaN 
inhibitor, even in the presence of anti-RGN antibody [159, 
160]. Moreover, Ca2+ administration elevates cytosolic and 
nuclear phosphatase activity in rat kidney cortex, an effect 
abolished by the addition of RGN to the reaction mixture 
[161]. RGN suppressive effects on phosphatases activity 
were also demonstrated in rat heart cytosol [162]. RGN also 
presents a CaM-dependent inhibitory effect on tyrosine, ser-
ine and threonine phosphatases in rat brain cytosol [163] 
and in neuronal cells [164]. RGN suppressive role on phos-
photyrosine activity in brain nucleus and microsomes has 
also been demonstrated, displaying attenuated effects with 
increasing age [165, 166].

RGN effect on Ca2+/CaM-dependent protein kinases has 
also been evaluated in several reports. In rat liver cytosol, an 
inhibitory role of RGN in protein kinase activity has been 
described, which is reverted with anti-RGN antibody [167, 
168]. Moreover, RGN, which does not have kinase activity, 
decreased Ca2+ or phospholipid-stimulated cytosolic PKC 
activity [169]. Nuclear PKC activity in the liver was also 
inhibited by RGN, whereas the use of anti-RGN antibody 
led to the enhancement of PKC activity [46]. These find-
ings demonstrated the regulatory role of RGN in cytosolic 
and nuclear Ca2+/CaM-dependent PKC activity. Similar 
results were obtained in rat renal cortex with increased PKC 
activity in response to Ca2+/CaM, phospholipids (phospho-
tidylserine or dioctanoygycerol), and PMA; RGN or TFP 
significantly inhibited enzyme activity [170, 171]. Also, in 
rat brain cytosol and neuronal cells, RGN exerted an inhibi-
tor effect on protein kinase activity by preventing its acti-
vation by Ca2+/CaM or dioctanoyglycerol [172, 173]. This 
evidence is indicative of an effective regulatory function of 
RGN on PKC activity in rat liver, kidney and brain being 
tightly dependent of Ca2+/CaM pathway.

Calpains are a family of Ca2+-dependent activated neu-
tral cysteine proteases that are ubiquitously expressed or 
tissue-specific [174]. The ubiquitous μ- and m-calpain iso-
forms are known to be activated in vitro by μM and mM 
Ca2+ concentrations [175]. Calpains have been described 
to have important roles in embryogenesis, cell cycle pro-
gression, apoptosis, necrosis, proliferation, differentiation, 
migration, meiosis and mitosis, besides being related to 
numerous diseases, such as muscular dystrophy, cardiac 

and cerebral ischemia, traumatic brain injury or rheumatoid 
arthritis [174, 175]. Calpain proteolytic activity is enhanced 
by RGN in rat liver and kidney cortex, even in the absence of 
Ca2+, and prevented by anti-RGN antibody and calpastatin, 
a calpain-specific inhibitor [45, 176–178]. RGN-induced 
proteolitic activity seems to be independent of serine pro-
teases and metaloproteases [176, 178]. However, it may be 
associated with SH groups of cysteinyl-proteases, since it is 
increased by DTT and inhibited by NEM and leupeptin, an 
SH group inhibitor of proteases [176–178].

Cytoprotective effects of RGN

Alongside its well-recognised function in Ca2+ homeostasis 
and Ca2+-dependent intracellular signalling pathways, RGN 
has been identified as a gluconolactonase (GNL) [6]. In 
mammals, GNL activity is involved in the penultimate step 
of l-ascorbic acid (AA) synthesis in the liver. AA is a well-
known antioxidant with free radical scavenger ability and 
a cofactor in metal-dependent oxygenases [179]. Genetic 
mutations in the gene, that codify the enzyme required for 
the last step of AA biosynthesis pathway, oblige human, 
non-human primates and guinea pigs to obtain it through 
diet [61, 179], while rodents maintain the ability to pro-
duce it endogenously. The establishment of RGN knock-
out (RGN-KO) mice generated an animal model unable to 
synthesise vitamin C(VC). These animals develop scurvy 
symptoms [6] and pulmonary emphysema [180] when fed 
with a restrained VC diet. The RGN-KO model allowed 
the confirmation of an alternative AA synthesis pathway in 
vivo throughout D-glucono-γ-lactone [6] and demonstrated 
the antioxidant properties of RGN [31, 181, 182]. NADPH 
oxidase enzyme activity, an endogenous source of oxidative 
stress [183], and anion superoxide levels are increased in the 
brain of RGN-KO mice [181, 182]. Superoxide dismutase 
(SOD) and catalase activity remained unchanged, while glu-
tathione peroxidase activity was reduced in animals without 
RGN [181, 183].

However, evidence of RGN protective role against oxida-
tive stress is essentially reported in mice lungs. RGN-KO 
mice exposed to cigarette smoke showed elevated levels of 
protein carbonyls, an oxidative biomarker, in comparison 
with wild-type animals, and were the only group in which 
oxidase glutathione levels were sufficiently elevated to be 
measured [184].

RGN antioxidative capacity has also been established in 
other animal models and cell lines. RGN over-expression 
in the mouse embryonic carcinoma P19 cell line increased 
cell viability, protecting cells from oxidative stress-induced 
by tert-butyl hydroperoxide [49]. An intracellular favour-
able redox state has also been demonstrated in HepG2 cells 
transfected with RGN, which displayed diminished ROS 
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levels both in mitochondria and post-mitochondrial frac-
tions, as well as decreased lipid peroxidation levels and 
reduced protein levels and activity of glutathione and SOD, 
respectively [51]. In addition, SOD activity was enhanced 
in normal rat liver and heart in the presence of exogenous 
RGN, as well as in RGN knock-in rats [50, 52].

NO, produced by the activity of NOS, is involved in 
NO-dependent signal transduction pathways. However, it 
is a reactive species influencing cell redox state and being 
associated with modification of proteins, lipids, DNA and 
structure of organelles when present in cells at high levels 
[185]. In rat brain, NOS activity is increased by anti-RGN 
antibody, while enhancement of RGN in the brain cytosol of 
young and old female rats reduced the enzyme activity [48]. 
This suppressor role of RGN in NOS activity is also found 
in rat liver, kidney and heart cytosol, including in the pres-
ence of EGTA or TFP [149–151]. Similar results have been 
described in H4-II-E [56, 186], NRK52E [153] and MCT3-
E1 [92] cells over-expressing RGN.

Neurodegenerative diseases, such as Alzheimer’s and 
Parkinson’s, are associated with oxidative stress deregula-
tion. Kainate (KA) is an agonist for a subtype of ionotropic 
glutamate receptor that increases the ROS levels and dis-
rupts Ca2+ homeostasis, leading to neuronal loss mainly 
in the hippocampus [187, 188], which has been used to 
generate models of neurodegenerative diseases. The levels 
of RGN protein in the rat hippocampus were significantly 
increased in response to KA treatment [32]. A similar effect 
on RGN expression has also been shown in rat astrocytes 
CTX TNA2 cells treated with KA, which is mediated by the 
ERK signalling pathway [32]. Accordingly, RGN-KO mice 
are more sensitive to 1-methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine, a neurotoxin used to induce Parkinson’s disease 
models, presenting significantly increased ROS levels in the 
striatum as well as microglial activation in comparison with 
wild-type counterparts. Moreover, RGN deficiency leads to 
astrocytes inactivation and decrease of brain-derived neu-
rotrophic factor as result of blockage of ’sERK signalling 
pathway [31].

Overall, available studies, and particularly the informa-
tion from RGN-KO mice, have demonstrated the influ-
ence of RGN maintaining physiological levels of oxidative 
stress and consequently its protective role against oxidative 
damage.

Role of RGN in cell death and proliferation

Since RGN is a protein involved in the regulation of intra-
cellular Ca2+ levels, modulation of several cellular signal-
ling pathways, and also with antioxidant properties, it is not 
surprising that its role in cell survival and proliferation has 
been questioned by many investigations.

It is well established that NO overproduction is a condi-
tion associated with many pathologies underlying deregula-
tion of cell proliferation in cases of male infertility [189] 
and cancer [190]. In hypoxic conditions, ROS and Ca2+ 
levels are found to be decreased (~60 %) in cardiomyocytes 
over-expressing RGN, which presented lower cell death 
induced by H2O2 treatment [191]. Also, mouse embryonic 
carcinoma P19 RGN-transfected cells presented increased 
cell viability in response to butylhydroperoxide-induced 
oxidative stress in comparison with mock-transfected cells 
[49]. In H4-II-E cells, LPS treatment promoted a decrease 
of NOS activity and cell number, effects that were reverted 
in RGN over-expressing cells [192].

Several other reports have demonstrated the RGN sup-
pressor effect on cell proliferation [54, 55, 57]. NRK52E 
and H4-II-E cells over-expressing RGN presented a lower 
index of proliferation than mock-transfected cells [53–55, 
57], which was associated with a decrease of DNA synthesis 
activity [55, 193]. In addition, intracellular increase of RGN 
down-regulated mRNA expression of c-myc and H-ras, 
while up-regulating p53 and p21, which suggested that RGN 
suppresses cell proliferation by modulating the expression 
of proto-oncogenes and tumour suppressor genes [53, 54, 
57]. Also, the expression of c-Jun and chk2 cell cycle regu-
lators is decreased in RGN-transfected NRK52E cells [57].

However, and contrastingly with the previous informa-
tion, it has also been described that cells over-expressing 
RGN do not undergo cell cycle arrest promoted by cell cycle 
inhibitors or other factors. The cell cycle inhibitors sul-
foraphane, butyrate and roscovitine diminish proliferation 
of wild-type cells, though this is not observed in RGN-trans-
fected cells [54, 57]. Bay K 8644, genistein, wortmannin, 
an inhibitor of phosphatidylinositol 3-kinase, PD 98059, an 
ERK inhibitor, or dibucaine, an inhibitor of Ca2+-depend-
ent protein kinase all hampered cell proliferation, an effect 
reverted by RGN over-expression [54].

There is also evidence of the involvement of RGN in 
the regulation of apoptosis. It has been reported that RGN 
affects rat liver nuclei function by suppressing Ca2+-
induced DNA fragmentation in the presence or absence of 
CaM [194]. In fact, the enhancement of DNA fragmentation 
in NRK52E or H4-II-E cells, after incubation with Bay K 
8644, thapsigargin, LPS, insulin or IGF-I, was suppressed 
by RGN over-expression in both cell lines [56, 195, 196]. 
Thus, accordingly, cell death of H4-II-E or NRK52E wild-
type cells promoted by tumour necrosis factor-α (TNF-α) 
or thapsigargin was prevented in RGN-transfected cells [56, 
196]. RGN over-expression in hepatocarcinoma HepG2 
cells also rescues cell death induced by intracellular Ca2+ 
overload promoted by the Ca2+ ionophore A23187 [89]. 
In MCF-7 cells, the down-regulation of RGN expression, 
achieved by thyroid hormone treatment or silencing of the 
RGN gene, led to an increase of apoptosis [102].
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RGN effects suppressing apoptosis may be related to the 
Akt survival signalling pathway. NRK52 RGN-transfected 
cells displayed increased levels of both Bcl-2 and Akt-1 
mRNAs [196], while an activation of Akt was observed in 
HepG2 cells over-expressing RGN [58]. TFP attenuated 
apoptosis of HepG2 RGN-transfected cells and inhibited 
Akt activation [58]. Thus, enhancement of cell survival by 
RGN seems to depend on the interplay with CaM and the 
activation of the Akt pathway.

RGN anti-apoptotic effects are also evident on the basis 
of studies using knock-out animals. Primary cell cultures 
of hepatocytes from RGN-KO mice are highly susceptible 
to apoptosis induced by TNF-α and actinomycin D [60]. 
Accordingly, caspase 8 activity was two-fold greater in the 
hepatocytes of RGN-KO mice whereas no differences were 
observed in NF-kB activation [60].

Anti-Fas antibody administration to mice has been previ-
ously shown to induce severe damage of the liver by apop-
tosis [197]. RGN-KO mice presented a markedly increase 
of liver injury by anti-Fas antibody administration, while 
RGN +/− mice had an intermediate susceptibility between 

RGN−/− and wild-type animals [60]. Therefore, the RGN 
anti-apoptotic effect seems to be related to the Fas activation 
pathway and not with NF-kB activation. Inhibition of trans-
forming growth factor-β (TGF-β) pathway through deletion 
of the Smad3 gene makes the hepatocytes of Smad3-KO 
mice more resistant to radiation-induced apoptosis than 
those of wild-type animals, which is concomitant with sig-
nificantly increased levels of RGN [59].

Altogether, the existing findings indicate that RGN, 
despite apparently having opposite functions, acting as a 
suppressor of both cell death and proliferation, may have 
a role in the control of the cell cycle, by modulation of the 
cell survival and death pathways (Fig. 3). Testis is one of 
the tissues where a tight balance between germ cell survival 
and apoptosis is required, which is the basis for a success-
ful spermatogenesis and thus male fertility. Interestingly, 
in a recent report, it was shown that RGN expression is 
augmented in cases of hypospermatogenesis [34], but fur-
ther research is needed to determine whether the increased 
RGN expression is the cause of insufficient production of 
spermatozoa by blockage in cell proliferation. It is also 

Fig. 3   Schematic representation of the mechanisms involved in the 
regucalcin (RGN) role controlling cell proliferation and apoptosis. 
Arrows indicate activation and bar-headed arrows represent inhibi-
tion. RGN diminishes the production of ROS, blocks increases of 
intracellular calcium, inhibits caspase 8 activity, enhances activity 
of Akt pathway and increases the expression of apoptosis inhibitors 
Akt-1 and Bcl-2 leading to inhibition of apoptosis. RGN also blocks 
apoptosis induced by Fas system. Dashed bar-headed arrow indicates 

the inhibition of apoptosis in Smad 3 knock-out animals concomitant 
with increased levels of RGN. In turn, RGN increases the expression 
of p53 and p21 proteins while repressing the expression of c-Jun, 
chk2, c-myc and H-ras genes, thus blocking cell proliferation. TNF-α 
tumor necrosis factor, TNFR TNF-α receptor, TGF-β tumor growth 
factor, NOS nitric oxide synthase, SOD superoxide dismutase, ROS 
reactive oxygen species, CaM calmodulin
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noteworthy that diminished expression of RGN is found in 
both rodent and human cancer tissues [11, 37, 93, 198, 199], 
which is also correlated with the degree of cellular differ-
entiation of breast, prostate and liver carcinomas [11, 37].  
In the near future, it will be essential to determine whether 
down-regulation of RGN is a selective event for malignant 
transformation or if it is a consequence of the cancer status. 
Nevertheless, dual distinctive roles over the control of cell 
proliferation and malignancy have also been reported for 
other proteins, for example the Ski-novel protein (SnoN). 
SnoN is a member of the Ski family proteins that is ubiqui-
tously expressed in embryonic and adult tissues possessing. 
within tumorigenesis. both pro-oncogenic and anti-onco-
genic activities [200]. SnoN over-expression in mice mam-
mary gland leads to an increase of adenocarcinoma forma-
tion, although heterozygous mice that lack an extra copy 
of the gene are more susceptible to carcinogen-induced 
tumours [200]. At the same time, and as anti-oncogenic, 
SNO functions negatively regulated the TGF-β pathway 
while stabilising the p53 conformation and inducing pre-
mature senescence [200, 201]. There are also examples of 
proteins with a dual role controlling both apoptosis and the 
cell cycle. This is the case of Survivin which belongs to 
the inhibitor of the apoptosis protein family. It is localised 
both outside and inside the cell with pools at cytoplasmic, 
nuclear and mitochondrial compartments. When present at 
mitochondria, Survivin protect cells from apoptosis while 
its nuclear translocation facilitates cell cycle entry and pro-
gression [202].

In summary, it is likely that RGN plays an important role 
in cell physiology by maintaining a tight balance between 
cell proliferation and apoptosis (Fig. 3).

Final remarks

In recent years it has been demonstrated that RGN is a pro-
tein highly conserved throughout the evolutionary line, from 
vertebrates to invertebrate species, which indicates its rele-
vant role in basic cell biologic processes. This particular and 
unique protein has a preponderant role in Ca2+ homeostasis, 
which is extensive in the control of cell signalling pathways, 
as well as the regulation of cell apoptosis and proliferation, 
and also of oxidative stress levels. The involvement of RGN 
in those processes has also been evaluated in pathologi-
cal conditions, its association with several human diseases 
that range from muscular dystrophy and infertility to neu-
rodegenerative diseases and carcinomas becoming evident. 
Moreover, RGN is a protein present in patients’ serum which 
has been correlated with stages of disease, highlighting its 
usefulness as a potential biomarker for monitoring disease 
onset and progression.

At the present moment, research efforts are needed to dis-
close the role of RGN over the control of the cell cycle and 
intracellular signalling mechanisms. Moreover, since the 
RGN protein can be detected in the nuclear compartment, 
the identification of putative partners for RGN actions in 
the nucleus is also clearly warranted. Thoroughly decipher-
ing the RGN actions in cell physiology will be a research 
challenge in the coming years, which will also contribute 
to a better understanding of the biology of several human 
diseases.
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