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neurogenesis, and neurovascular interactions. We will also 
highlight the molecular relationships of the Notch pathway 
with vascular endothelial growth factors (VEGFs) and their 
high-affinity tyrosine kinase VEGF receptors, key regula-
tors of both angiogenesis and neurogenesis.
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Introduction

The vertebrate central nervous system (CNS) develops upon 
its colonization and irrigation by the vascular system. Dur-
ing embryonic development, the vessels provide trophic sup-
port and growth factors to proliferating and differentiating 
neural cells. In turn, neural cells provide cues to endothelial 
cells (ECs) for infiltration and expansion into the neural tis-
sue [1, 2]. The close structural and functional relationship 
between the nervous and the vascular system persists in the 
adult brain. The importance of these interactions is apparent 
in maintenance of the remaining adult stem cell niches and 
in the dependence of injury responses triggered by trauma 
on cerebrovascular network properties [3].

The mutual interaction between neural and ECs is based 
on signaling molecules common to both cell types [4]. Notch 
is a major signaling pathway that regulates the development 
of many cell types, including endothelial and neural cells. 
It is one of the most well-conserved signaling pathways in 
multicellular organisms [5]. Notch has been shown to influ-
ence multiple cellular processes including: cell fate deci-
sions, proliferation, apoptosis, migration, and plasticity. The 
canonical Notch pathway is initiated when Notch receptors 
expressed on one cell bind with their membrane-bound 
ligands on an adjacent cell, linking the fate of one cell to 
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that of its neighbor [6–8]. In mammals, there are four Notch 
receptors (Notch1-4), which are single-pass transmembrane 
heterodimers, and five Notch ligands belonging to the Delta-
Serrate-Lag (DSL) family, including Jagged1 and 2 (Jag1, 
Jag2) and Delta-like 1, 3, and 4 (Dll1, Dll3, Dll4) [9].

During angiogenesis, cell fate decisions among a group 
of ECs occur at the level of angiogenic sprouts, where ‘tip’ 
or leader cells segregate from the ‘stalks’ or trailing ECs 
forming the core of the vessel [10]. Tip cells localize at the 
very front of angiogenic sprouts and are characterized by 
extensive filopodia protrusions that sense guidance cues in 
the environment. Tip cells are also molecularly distinct from 
stalk cells, most notably by their high expression of Notch 
ligand Dll4 as well as VEGFR-2 [11, 12]. The role of Notch 
signaling in angiogenic sprouting has been demonstrated 
through genetic inactivation and/or pharmacological block-
ing of either Notch1 signaling or Dll4, which promotes tip 
cell formation and EC proliferation. Blocking the Notch 
pathway results in mispatterned angiogenic growth and the 
formation of a hyperplasic, immature, and nonfunctional 
vascular network [13–18]. Notch signaling is thus required 
for sprouting angiogenesis. Complex interactions between 
Notch and the VEGFRs, especially VEGFR-2 and VEGFR-
3, have been shown to modulate Notch signaling and its 
effects on angiogenic activity [19–22].

Notch signaling also influences a wide array of cellular 
processes in the mammalian CNS and is essential during both 
embryonic and adult neurogenesis [6, 7]. Notch signaling 
mechanisms in neural cells are, however, far less understood 
than in ECs, most notably due to the difficulty in identifying 
ligand- and receptor-bearing cells within such a complexly 
structured tissue composed of such a wide diversity of cells. 
At early stages of CNS development, i.e., E11.5-E13.5 in the 
mouse, the embryonic neuroepithelium contains radial glia, 
neuronal progenitor cells, young neurons, as well as sprout-
ing ECs, all of which establish Notch-mediated interactions. 
The neurogenic niches of the adult brain, the subventricular 
zone (SVZ) lining the lateral ventricles, and the subgranu-
lar zone (SGZ) of dentate gyrus (DG), are structured simi-
larly, and are composed of the same types of cells, which 
also establish a highly complex network of Notch-mediated 
interactions. The first aim of this review will be to discuss 
the relationship between Notch and the VEGFRs during 
angiogenesis. We will then review the role and mechanisms 
of Notch signaling during neurogenesis, and explore the pos-
sibility of Notch–VEGFR signaling pathway interactions 
during regulation of neural stem cell.

The Notch signaling pathway

The canonical Notch pathway involves the cell-surface 
Notch molecule, which successively plays the role of a 

receptor and a transcription factor [23, 24]. Ligand binding 
initiates a series of proteolytic cleavages of the Notch recep-
tor, which culminates in cleavage of the transmembrane 
domain by gamma-secretase and the subsequent release of 
the Notch-intracellular domain (Notch ICD or NICD) into 
the cytosol. NICD translocates to the nucleus where it inter-
acts with and converts the DNA-binding protein CBF1 (C 
promotor-binding factor, also known as RBPJk in mammals) 
complex into an activator complex. The NICD/CBF1 acti-
vator complex, which includes the coactivator Mastermind 
(MAML in mammals, [25]) among others [26], initiates the 
transcription of Notch target genes. Ubiquitous Notch target 
genes include the hairy and enhancer of split (HES) family 
genes and HES-related genes Hesr1 and Hesr2 (also known 
as Hey/Herp genes), which encode basic helix-loop-helix 
(bHLH) transcription factors that promote progenitor cell 
survival and suppress differentiation [27, 28].

In most biological situations, including in disease [29], 
the outcome of Notch signals depends on quantitative 
parameters [8]. The level of Notch target gene activation 
is intimately dependent on the ‘strength’ of the signal and 
Notch expressing cells display a dynamic response to tem-
poral variations of Notch ligand expression on neighboring 
cells. Recent genetic and genomic approaches, moreover, 
showed that Notch signals can be attenuated by a large num-
ber of genes and that the above canonical pathway is inte-
grated in a complex genetic circuitry with consequences on 
Notch signaling output [30–34]. Notch target genes can be 
regulated by other non-canonical Notch signaling pathways, 
which are independent of NICD, CSL, or even Notch recep-
tor itself [9, 35], specifically, the VEGF-A/VEGFR-2 axis 
and its Notch independent-activation of Notch target genes 
in endothelial and neural cells, which we will discuss later. 
Consequently, despite the apparent simplicity of its canoni-
cal pathway, the Notch pathway is complexed with other 
pathways able to regulate and activate it. Therefore, a read-
out of Notch pathway target gene expression must be care-
fully interpreted and other steps in the pathway examined 
in order to properly identify Notch-dependent mechanisms.

VEGFs and VEGFRs

Vascular endothelial growth factor (VEGF or VEGF-A) 
strongly promotes angiogenesis and is required for vascular 
development [36, 37]. It binds the tyrosine kinase receptors 
VEGFR-1 (Flt1) and VEGFR-2 (Flk1), the latter being the 
primary receptor transmitting VEGF signals in ECs [38, 39].

VEGFR-1 binds VEGF-A with higher affinity than does 
VEGFR-2, but VEGFR-1 tyrosine kinase activity is only 
weakly activated by its ligands [40, 41], which makes that 
VEGFR-1, as well as its soluble form sVEGFR-1, acts as 
a VEGF decoy in ECs, regulating the spatial activation 
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of VEGFR-2 and the formation of vascular sprouts [42]. 
VEGFR-2 is known to transduce the full range of VEGF-A 
responses in ECs, i.e., regulating EC survival, proliferation, 
migration, and formation of the vascular tube [41, 43].

VEGFR-3 is the third member of the VEGFR family 
and is expressed in the vascular system with a restriction 
to lymphatic ECs from stage E16.5 [44]. This receptor is 
activated by VEGF-C and VEGF-D. VEGF-C can also bind 
VEGFR-2 after proper proteolytic cleavage, leading to the 
formation and activation of VEGFR-2/VEGFR-3 heter-
odimers [41, 45]. However, its highest binding affinity is 
for VEGFR-3 [46]. VEGFR-3 also regulates angiogenesis 
and Vegfr3 deletion causes severe defects in arterial-venous 
remodeling of the primary vascular plexus in mice, with a 
lethality at stage E10.5 [47], and defective segmental artery 
morphogenesis in zebrafish [48]. VEGF-C/VEGFR-3 is 
most well known for its role in development of the lym-
phatic vascular network. VEGF-C acts as an attractive cue 
for lymphatic progenitor cells. Bi-allelic deletion of Vegfc 
in the mouse leads to a complete failure of lymphatic ves-
sel formation and embryonic lethality at stage E16.5. Mice 
heterozygous for Vegfc can survive as adults, with lymphatic 
vessel hypoplasia and lymphedema, but no marked defects 
of the blood vasculature [49].

Interestingly, double Vegfc−/−/Vegfd−/− mutants survive  
until E16.5 and do not recapitulate the phenotype of 
Vegfr3−/− mutants, suggesting VEGF-C/VEGF-D-inde-
pendent activation of VEGFR-3. In support of this hypoth-
esis, it was found that VEGFR-3 on cultured human dermal 
blood vascular ECs can be phosphorylated via stimulation 
by collagen-I in the absence of its ligands VEGF-C/VEGF-
D, and even in the presence of blocking antibodies against 
VEGFR-3 [45]. This observation is in agreement with previ-
ous reports showing that a cooperative interaction between 
the β1-integrin and VEGFR-3 is required for EC endothe-
lial cell migration [50] and that extracellular matrix induces 
integrin-mediated VEGFR-3 phosphorylation and down-
stream activation of CRKI/II—SHC (Src homology and 
collagen homology protein)—JNK cascade [51]. Therefore, 
VEGFR-3 mediates both ligand-dependent effects through 
an ‘active’ pathway and extra-cellular matrix-dependent 
effects though a ‘passive’ pathway which proved to be pro- 
and anti-angiogenic, respectively, as we will discuss later 
[19, 21, 52].

Notch and VEGFRs interactions during angiogenesis

Notch signaling is essential for vascular development. 
Notch-1 and Notch-4 receptors as well as JAG-1, Dll-1, and 
Dll-4 ligands are expressed in ECs where they play a key 
role in the induction of arterial cell fate and in sprouting 
angiogenesis [53]. The necessity of Dll-4/Notch-1 signaling 

in ECs was made apparent when deletion of Notch-1, or 
a single copy of Dll-4 resulted in severe vascular defects 
and embryonic lethality [54, 55]. In vascular sprouts, the 
tip cells express high levels of Notch ligand Dll4 and are  
Notch-1-deficient, while the trailing ECs, or stalk cells, as 
a result of their contact with the Dll4-expressing tip cells 
[14–18, 56]. Heterozygous deletion of Notch ligand Dll4 
increases the number of filopodia and sprouting tips [17]. 
Similarly, blockade of Notch increases the number of filo-
podia and sprouting tips, with an associated expansion of 
VEGFR-3 (Flt4) expression [16, 57]. Tip cells with low 
Notch activity show high VEGFR-2 and low VEGFR-1 
expression, indicative of an increase in VEGF-A signaling 
activity, as well as higher levels of Dll4 expression in tip 
cells [13, 15–17, 22, 58, 59]. In contrast, stalk cells have 
high levels of Notch signaling due to activation by the 
adjacent tip cells. Stalk cells, however, strongly express 
another Notch ligand, Jagged-1, which has a lower bind-
ing affinity for Notch compared to Dll4, but nevertheless 
can antagonize Dll4 activity by competing for Notch recep-
tors. Modification of Notch by FRINGE glycosyltransferase 
favors activation by Dll4, but and reduces Notch activation 
upon Jagged-1 [60]. Consequently, the forward induction 
of Notch signaling is reduced in the vascular front which 
maintains EC responsiveness to VEGF stimulation, sus-
taining tip cell sprouting activity and also allowing new tip 
cells to form along the front to form branching vessels [61]. 
Vessel branching within the developing vascular network 
is also the consequence of another down-stream Notch tar-
get, Notch- regulated ankyrin-repeat protein (Nrarp), which 
counteracts Notch signaling and is expressed in stalk cells at 
the branch points [11].

Silencing of Nrarp results in a reduction in vessel density, 
due to lowered endothelial cell proliferation, a consequence 
of an up-regulation of Notch and VEGFR-1. The resulting 
vessels are also poorly lumenized and vessel regression 
can be seen in the network, a consequence of increased 
Wnt signaling, which Nrarp also balances in the stalk cells 
[11]. In this context, a balance is created by anti-angiogenic 
Dll4 and proangiogenic Jagged-1 to regulate Notch acti-
vation, the level of which determines its interactions with 
VEGF/VEGFR and other signaling pathways. All of this 
pathway cross-talk is essential for proper development and 
patterning of the vasculature as well as its stabilization [62].

A group of studies determined that VEGFR-3 also inter-
acts with Notch to regulate sprouting angiogenesis. High 
levels of VEGFR-3 expression were detected in angiogenic 
sprouts and when VEGF-C/VEGFR-3 interactions were 
inhibited with function blocking anti-VEGFR-3 antibod-
ies the authors saw decreased sprouting, vascular den-
sity, vessel branching, and endothelial cell proliferation 
in different mouse angiogenic models, both in vivo and 
in vitro. Conversely, they showed that VEGF-C-mediated 
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stimulation of VEGFR-3 promoted angiogenesis, even in 
the presence of antibodies against VEGFR-2, and that a 
combination of blocking antibodies against VEGFR-2 and 
VEGFR-3 resulted in additive inhibition of angiogenesis 
and tumor growth [22]. Further investigations focused on 
VEGF-C-mediated VEGFR-3 revealed that Vegfc homozy-
gous mutants displayed reduced vascular branching and that 
macrophages served as a source of VEGF-C ligand for the 
VEGFR-3+ tip cells localized at branching points [21]. In 
conjunction, the authors showed that the cell-type-specific 
deletion of VEGFR-3 in ECs led to excessive angiogenic 
sprouting and branching, which was associated with a 
decreased level of Notch. FoxC2+/−; VEGFR-3+/- com-
pound heterozygote mice were also examined and found 
to recapitulate homozygous deletion of VEGFR-3, impli-
cating that VEGF-C binding to VEGFR-3 activates PI(3)
K and its downstream target FoxC2, a known regulator of 
Notch ligand, Dll4, and target gene expression [21, 63]. 
This phenotype, contrasted with the suppressed angiogen-
esis induced by anti-VEGFR-3 blocking antibodies, reveal-
ing that the VEGFR-3 intracellular domain is endowed 
with signaling properties, independently of VEGF-C-acti-
vation of VEGFR-3 extracellular domain. The action of 
this domain moreover antagonizes the effect of VEGF-C 
stimulation. Using cultured human blood vascular ECs, the 
authors showed that VEGFR-3 could be phosphorylated, in 
absence of its ligands, through contact with extracellular 
matrix collagen I, and that VEGFR-3 activation was then 
Src-dependent. Together, these findings demonstrate the 
dual action of VEGFR-3 in angiogenesis, i.e., on the one 
hand, passive, ubiquitous and anti-angiogenic through inter-
actions with the extracellular matrix and, on the other hand, 
active, local and pro-angiogenic following VEGFR-3 stimu-
lation by its ligands VEGF-C and VEGF-D.

Subsequent studies focused on Notch-VEGFR-2 interac-
tions during sprouting angiogenesis and showed that Dll4 
can be highly expressed by ECs in the absence of VEGF-
A/VEGFR-2 signaling, provided that ECs are without  
Notch signaling [19]. Although surprising with regards to 
the convergent observations reported above that VEGF-A 
induces the Notch ligand Dll4 in tip cells which leads to 
suppression of excess sprouts in adjacent ECs, this result 
indicates that Notch signaling regulates and determines the 
level of response of ECs to VEGF-A, as well as the preva-
lent expression of VEGFR-2 versus VEGFR-3 in ECs. The 
authors carried out cell-type-specific deletions of Notch 
and RBPJk in ECs (Notch1; RBPJkiΔEC), which strongly 
upregulated VEGFR-3 protein, without altering VEGFR-2 
expression, in ECs. This observation confirmed the potent 
inhibitory control of Notch signaling on VEGFR-3 expres-
sion, previously reported by Tammela et al. [22]. The Notch1  
RBPJkiΔEC mice showed a misoriented vascular growth 
and excessive sprouting which were not rescued by blocking 

antibodies against VEGFR-3, but instead by MAZ51, an 
inhibitor of VEGFR-3 tyrosine kinase activity. These results 
confirm that VEGFR-3 receptor acts independently of 
VEGF-C in ECs, as reported by Tammela et al. [21] and 
suggests that ‘passive’ VEGFR-3 signaling can also pro-
mote angiogenic sprouting, provided that the ECs have little 
to no Notch activity. This led Benedito and Hellstrom [52] 
to propose that, while VEGFR-3 is normally an antagonist 
of sprouting, in this situation of minimal Notch activity, it 
may become an agonist. These elegant and complementary 
studies, which are summarized in Fig. 1a, demonstrate the 
highly dynamic balance of Notch and VEGFR-2/VEGFR-3 
expression in ECs, as well as the highly versatile role of 
VEGFR-3 in angiogenesis.

Angiogenesis is not a continuous process and recent 
reports showed that in the developing zebrafish circadian 
oscillations control developmental angiogenesis. It was 
found that the circadian regulator Bmal1 directly targets 
the promoter region of the Vegf gene leading to an elevated 
expression of VEGF-A [64, 65]. These data confirm previ-
ous reports in mice of the circadian expression of VEGF-A 
in murine tumor cells [66]. Interestingly, Notch signaling is 
also regulated in an oscillatory fashion and the gene Hes7, 
which is regulated by the Notch and Fgf/Mapk pathways is 
a crucial component of the segmentation clock [67, 68]. The 
Notch-VEGF-A interactions in the oscillatory regulation of 
angiogenesis have, however, not yet been explored.

Notch signaling in neurogenesis

The embryonic phenotype associated with the haploinsuffi-
ciency of the Notch locus was one of the first genetic muta-
tion characterized in the fly (Drosophila melanogaster) 
[69]. It was described as a ‘neurogenic phenotype’ result-
ing from the failure of the neurogenic ectoderm to segre-
gate neural and epidermal cell lineages. All cells become 
neuroblasts, which causes hypertrophy of neural tissue 
at the expense of epidermal structures. In the mouse, tar-
geted mutation of the Notch pathway genes Notch1 and 
RBPJk also implicated a role for these genes in neurogen-
esis implicating that the Notch pathway and its regula-
tory mechanisms were conserved from fly to mouse [70]. 
Notch1 and RBPJk mutations led to decreased expression of 
the Notch target gene Hes-5 and upregulation of proneural 
gene Mash-1 and Notch ligand Dll1, resulting in enhanced 
neurogenesis. Interestingly, no change in Hes-1 expres-
sion were detected in these mutants, suggesting that Hes-1  
expression during early embryonic neurogenesis is not, or 
not mainly, controlled by the canonical Notch pathway. The 
RBPJk mutation showed stronger effects on proneural gene 
expression than the Notch1 mutation, consistent with func-
tional redundancy of Notch genes in neurogenesis. These 
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findings supported a role for Notch signaling in the regula-
tion of neural stem cell differentiation, but the early lethal-
ity of Notch1 mutants (E11.5) did not allow assessment of 
the long term consequences of deletion on the neural stem 
cell pool. To circumvent this difficulty, several studies have 
used Cre/loxP-mediated recombination to remove Notch1 
in subsets of neural cells [71–73]. Interestingly, the telen-
cephalic deletion of Notch led to a reduced neuron num-
ber in vivo later in development, confirming expectations 
of the effects of progressive depletion of neural progeni-
tor pool [72]. Neurosphere assays from single embryonic 
neural stem cells derived from mice deficient for Notch1, 
RBPJk or Presenilin1, another key regulator in Notch sign-
aling, were used to support in vivo results in RBPJk−/− or 
Notch1−/− embryonic mice and in the adult PS1+/− mutants 
all of which revealed a neural stem cell depletion [74]. 
Interestingly, these authors also found that RBPJk and 

Notch signaling were, however, dispensable for generation 
of neural stem cells from embryonic stem cells.

In the adult brain, Notch signaling pathway molecules 
are expressed in both the SVZ and SGZ [75–79]. Converg-
ing pharmacological and genetic evidence indicate that the 
canonical Notch pathway regulates maintenance of adult 
NSCs through promotion of their self-renewal and inhibi-
tion of their exit from the cell cycle, as well as regulating  
generation of neuronal and glial precursor cells within the 
regions. The SGZ of adult inducible Notch-deficient mice 
displays an increased cell cycle exit of early precursor  
types [75], an impaired expansion of the progenitor pool 
[80] and a depleted stem cell population [77]. Conditional 
inactivation of RBPJk resulted in an initial increase in 
DG neurogenesis, by inducing premature neuronal dif-
ferentiation of the pool of Sox2-positive neural stem cells 
depleting them, eventually leading to repression of adult 

A B

Fig. 1   Proposed models of Notch-VEGFRs interactions during angio-
genesis and neurogenesis. a In ECs, VEGF-A-activated VEGFR-2 
signaling up-regulates VEGFR-3, but only weakly induces Dll4 
expression in tip cells, in vivo. Dll4 expression is regulated by either 
Notch signaling, extracellular matrix signals or other unknown regu-
lators (blue arrow). Activation of Notch strongly down-regulates the 
level of VEGFR-3, but not VEGFR-2, in adjacent ECs. VEGFR-3 
expression in ECs is thus regulated both by VEGFR-2 and Notch 
signaling, independently. Little to no Notch signaling in ECs leads to 
ligand-independent activation of VEGFR-3, which induces mispat-
terned angiogenic growth, even in the absence of VEGF-2 signaling 
(modified from Benedito et al. [12]). b In neural progenitor/stem cells, 
Delta-Notch cell membrane interactions induces cleavage and intra-
nuclear translocation of NICD which activates HES1 transcription.  

It is not yet known whether Delta-presenting cells that stimulate 
Notch-presenting progenitor/stem cells are exclusively neural cells or 
if they also include ECs, both in the early embryonic neuroepithelium 
or in adult niches where ECs and some neural progenitor/stem cells 
establish direct cell membrane contacts. In embryonic retinal progen-
itors, VEGF-A-mediated activation of VEGFR-2 induces the MEK-
ERK cascade and enhances HES1 activity, independently of Notch. 
Cell proliferation requires independent inputs from both MEK-ERK 
and HES1, whereas blocking of cell differentiation mainly involves 
HES1 activity. SHH signaling also activates HES1 (from [129]). In 
adult neural stem cells, VEGFR-3, rather than VEGFR-2, is expressed 
predominantly and may mediate Notch target activation following 
VEGF-C stimulation. ECS EC stalk cell, ECT EC tip cell



1784 J. Thomas et al.

1 3

hippocampal neurogenesis [81]. Conditional deletion of 
RBPJk in the Nestin-expressing stem cells had a similar 
effect in the adult SVZ. The type B stem cells within the 
region differentiated into transit-amplifying cells and neu-
rons, depleting the neural stem cell pool resulting in pre-
mature cessation of neurogenesis [77]. Treatment of neural 
stem cells in vitro with the Notch inhibitor DAPT inhibited 
the cell cycle and extended the G1-S transition, allowing 
the cell to exit the cell cycle when levels of Notch signal-
ing remain low [82]. Conditional genetics combined with 
mosaic analysis of Notch mutants showed that, in the adult 
SVZ, active neural stem cells display a selective reliance on 
Notch signaling, while Notch1 function is compensated in 
quiescent neural stem cells [83].

The group of Kageyama [84, 85] made an interesting 
observation that the level of Notch signaling in neural stem 
cells regulates the balance between quiescence and prolif-
eration, the high Notch activation inducing growth arrest 
while low Notch signaling causes cell proliferation. This 
balance results from a constitutive oscillation of expression 
of the downstream Notch effector Hes1, with a period of 
2–3  h by negative feedback. Consequently, Hes1 oscilla-
tions induce the oscillatory expression of the proneural gene 
Neurogenin2 (Ngn2) and the Notch ligand gene Delta-like1 
(Dll1). Dll1 oscillation maintains a group of cells in the 
undifferentiated state while the different dynamics of Hes1 
and Ngn2 lead to different outcomes. Hes1 allows cell prolif-
eration and differentiation when its expression oscillates but 
induces dormancy when its expression is sustained. Ngn2 
leads to the maintenance of neural stem/progenitor cells by 
inducing Dll1 oscillation when its expression oscillates but 
to neuronal differentiation when its expression is sustained. 
It is worth noting that, in contrast with neural stem cells, 
neuroblasts are less dependent on Notch and more respon-
sive to environmental cues for regulation of their prolifera-
tion [80], which confirms the cell-type dependent effect of 
Notch signaling in neurogenesis. In addition to HES genes, 
EphB2 has been reported as a downstream mediator of 
Notch signaling which prevents differentiation of ependymal  
cells into niche astrocytes in the adult SVZ [86].

Regarding the upstream regulators of Notch signaling, 
several growth factors have been implicated. Interaction 
between EGF receptor signaling and Notch is required for 
maintenance of neural stem and progenitor cells in the adult 
SVZ. EGF receptor signaling in transit-amplifying type C 
cells non-cell-autonomously suppresses Notch signaling in 
type B cells and consequently inhibits their proliferation 
and self-renewal. This action results from Notch 1 ubiqui-
tination and degradation via induction of Numb [87]. FGF 
signaling is also regulating Notch-dependent neurogenesis, 
with consequences on the expansion of embryonic corti-
cal surface area, as shown by changes in the expression of 
Notch pathway genes in FgfR mutant embryos [88]. Several 

evidence have also been provided that Wnt signaling reg-
ulated embryonic neurogenesis upstream of Notch, in the 
hindbrain, cortex and retina [89–91]. SFRPs, which are Wnt 
signaling antagonists, also play an important role for Notch 
activation in the retina where Notch signaling was tran-
siently upregulated in Sfrp1−/−; Sfrp2−/− embryos, because 
SFRPs bind ADAM10 metalloprotease and downregulate 
Notch activity [92]. Sonic Hedgehog (SHH) morphogen is 
another upstream regulator of Notch signaling as shown for 
embryonic retinal progenitors ([93]; see next paragraph) and 
cortical progenitors. Conditional inactivation of Patched1, a 
negative regulator of the SHH pathway, in Nestin-positive 
neural progenitors of the neocortex led to an increase in the 
number of symmetric proliferative divisions of radial glial 
with a concomitant upregulation of Hes1 and Blbp, down-
stream targets of Notch signaling [94]. Finally, a role for 
the Slit1/2-Robo1/2 axis, which is known as a regulator of 
axonal and EC guidance, has also been shown in embryonic 
cortical progenitor cells where it activates transcription of 
the Notch effector Hes1, independently of Notch. Prolifera-
tion of radial glial stem cells is inhibited while production of 
intermediate progenitors is enhanced in Robo1/2 and Slit1/2 
mutants, suggesting that Slit/Robo signaling modulates the 
transition between primary and intermediate progenitors 
[95]. Together, these regulators may modulate ‘strength’ of 
Notch signaling directly through interactions with the path-
way components or indirectly by targeting the same genes 
Notch does.

One key question that still remains is which cell types 
act as the main Notch ligand-presenting cell for these NSCs 
in the developing neuroepithelium and in the neurogenic 
niches of the adult brain. During development, ECs are in 
intimate contact with radial glia which have been shown 
to regulate vessel stabilization via modulation of canoni-
cal Wnt signaling in the late embryonic cortex [96]. In the 
adult subventricular zone, neural stem cells are also closely 
apposed to local blood vessels, and able to directly contact 
ECs due to decreased pericyte coverage [97, 98]. Since the 
two Notch ligands Dll4 and Jag1 are highly expressed by 
ECs [99], this opens possibility that ECs may also be Notch-
ligand-presenting cells for embryonic and adult neural stem 
cells (Fig. 1b).

VEGFs and VEGFRs in neurogenesis

An increasing body of evidence shows that VEGF-A and 
its tyrosine kinase receptors also regulate development of 
the nervous system. In small invertebrates such as nema-
todes, which lack a vascular system and distribute oxygen 
by diffusion, orthologues of tyrosine kinase VEGF recep-
tors are expressed by the nervous system and regulate neu-
ronal and glial cell development [100, 101]. In vertebrates, 
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all of the VEGFs and VEGF receptors are also expressed 
in the CNS throughout development [102]. Their instruc-
tive role for neural cell development and their implication 
in brain diseases and repair have been discussed elsewhere 
[103–106].

VEGF transcript levels are abundant in the ventricular 
neuroepithelium of embryonic brain when neural stem/
progenitors cells and ECs proliferate rapidly [107]. This 
temporal and spatial expression of VEGF suggests that 
VEGF is synthesized and released by the ventricular neu-
roectoderm and that it may simultaneously induce the 
ingrowth of capillaries from the perineural vascular plexus 
and regulate neurogenic activity [108]. This is supported 
by findings that VEGF can act as a neurotrophic factor 
and as guidance cue for neural progenitors [109, 110]. 
Recently, in vitro studies using co-cultures of EC and neo-
natal rat brain slices suggested that VEGF-A is the main 
neurogenic factor delivered by ECs since RNA interfer-
ence against VEGF-A strongly inhibited the proliferation 
of Nestin+ neural progenitors in the presence of ECs [111]. 
Interestingly, VEGF-A depletion also altered expression 
of Pten, Akt1, and PI3P genes encoding key regulators of 
VEGFR signaling pathway [41].

Although VEGF-A proved to be a strongly neurogenic 
factor, its direct action has only been demonstrated for sub-
sets of neural progenitor cells, as indicated above. It has not 
been established if this local effect was liked to a region-
specific pattern of expression and if other members of VEGF 
family had eventually a complementary expression pattern 
and may substitute to VEGF-A for regulating neurogenesis. 
VEGFR-2 expression is also restricted to subpopulations 
of neural cells, mostly neurons [112, 113], suggesting that 
VEGF-A may not preferentially target neural stem cells 
but rather neuronal progenitors or neuroblasts. We have 

recently provided evidence that the lymphangiogenic ligand 
VEGF-C and its high-affinity receptor VEGFR-3 also regu-
lated neurogenesis by acting on neural stem cells and niche 
astrocytes, thus with a distinct cell-type specificity than the 
VEGF-A/VEGFR-2 axis.

VEGF-C, VEGF-D, and VEGFR-3 are expressed at low 
level by blood ECs endothelial cells and by other cell types, 
including neural cells [114]. In contrast to VEGF-A and 
VEGFR-2, which show a restricted spatio-temporal expres-
sion pattern in the CNS [4, 115, 116], VEGFR-3- and VEGF-
C-expressing cells have a broad and complex distribution 
in the developing and adult brain. As illustrated in Fig. 2, 
VEGF-A and VEGF-C show different patterns of expres-
sion in the developing brain. VEGF-A is highly expressed in 
ECs while VEGF-C expression is rather restricted to radial 
glia, in specific domains of the ventricular zone. Using 
VegfclacZ/+ and Vegr3lacZ/+ mice to detect β-galactosidase 
reporter expression of Vegfc and Vegfr3 respectively, as 
well as antibodies to stain VEGF-C and VEGFR-3, we have 
described overlapping or adjacent expressing patterns of 
VEGF-C and VEGFR-3 in different territories of the embry-
onic forebrain, midbrain and hindbrain, suggesting func-
tional ligand/receptor interactions between VEGF-C and 
VEGFR-3 [117]. VEGF-C/VEGFR-3 are especially coex-
pressed in proliferative neuroepithelial domains of the ven-
tral forebrain, such as the preoptic region and the olfactory 
bulb anlage, where proliferation of neural progenitors and 
migration of oligodendrocyte precursors was altered in both 
VegfclacZ/+ and VegfclacZ/lacZ-deficient embryos. Additional 
loss-of function mutations in Xenopus confirmed the spe-
cific requirement of VEGF-C for the proliferation of neural 
progenitor cells expressing VEGFR-3. Therefore, VEGF-C 
provides a trophic support to neural progenitor cells during 
vertebrate brain development.

A B

Fig. 2   VEGF-A/C expression in the embryonic mouse brain cor-
tex. a β-galactosidase reporter activity (X-gal staining) in the brain 
of a VegfclacZ/+ embryo at stage E13.5 reveals a high dorsal to low 
lateral gradient of Vegfc expression in the cortex of a whole-mount 
brain. C caudal, R rostral. b Immunolabeling of VEGF-C (green) in 
E13.5 brain shows expression in the dorsal cortex (large arrows) and 
the medial wall of telencephalon (thin arrows), especially at the ven-
tricular surface, which correlates with the expression pattern of the 

VegfclacZ/+ brain (white arrow). While VEGF-A (red), on the same 
sections, is expressed by ECs (arrowhead) throughout the dorsal and 
ventral parts of the forebrain (arrowhead). Pictures at higher mag-
nification display the vesicular pattern of expression for VEGF-C in 
neuroepithelial cells contrasting with the endothelial expression of 
VEGF-A. dCX dorsal cortex, H hem, LGE lateral ganglionic emi-
nence, LV lateral ventricle. Scale bar 100 μm
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VEGF-C and Vegfr3 expression in the embryonic and 
postnatal brain was characterized in detail in rats, using a 
combination of in situ hybridization, RT-PCR and immu-
nolabeling analyses which confirmed overlapping cerebral 
expression of Vegfr3 and Vegfc, notably in the hippocampus 
of control and ischemic animals [118–121]. These stud-
ies showed a specific VEGFR-3 expression in radial glial 
cells of the embryonic forebrain as well as in adult SVZ 
cells, suggesting that VEGFR-3 may contribute to forebrain 
neurogenesis during the lifespan. Interestingly, VEGFR-3 
expression persisted in adult radial glia including tanycytes 
of third ventricle, retinal Muller cells and cerebellar Berg-
mann glia, which display neural stem cell properties in vitro 
[118]. We have recently addressed the role of VEGFR-3 in 
adult neurogenesis, first focusing on the SVZ [122]. Using 
transgenic BAC VEGFR-3::YFP mice to visualize and iso-
late living Vegfr3-expressing cells, we found that adult SVZ 
VEGFR-3::YFP+ cells were predominantly (around 90 %) 
quiescent astrocytes and neural stem cells (Fig. 3a). Using 
the Cre/loxP system and a loxP-flanked (floxed) Vegfr3 allele 
(Vegfr3flox/flox) [123] to generate inducible cell-type-specific 
deletions of Vegfr3 in neural cells, with a Brn4Cre driver 
line, or in astroglial cells, with a GlastCreERT2 inducible 
driver line, we also showed that VEGFR-3 expression by 

SVZ astrocytes was required for proper adult neurogenesis 
and that VEGFR-3 mediated the promoting effect of VEGF-
C on adult neurogenesis.

The dentate gyrus (DG) of the hippocampal formation is 
the second neurogenic niche of the adult brain, playing an 
important role in learning, memory, and mood regulation 
[124–126]. We have investigated recently Vegfr-3 expression 
and role in DG neurogenesis and found that SGZ VEGFR-
3+ cells were GFAP+ astrocytes and radial glia/stem cells 
as well amplifying progenitors (Fig. 3b). Vegfr3  expression 
was not detectable in immature neurons and granule cells. 
Additional neurosphere assays performed on FACS-sorted 
Vegfr3-expressing cells from the DG of Vegfr3::YFP mice 
showed self-renewal and multipotency of these cells (data 
not shown; Calvo and Han, unpublished results). VEGFR-3 
expression is therefore a hallmark of adult neural stem cells 
in the mouse. These findings suggest VEGFR-3 action in 
DG neurogenesis and raise the question of the nature of 
VEGFR-3 ligand, which may be VEGF-C or/and VEGF-D, 
because both are expressed in the DG [117, 121, 127]. They 
also lead to explore whether VEGFR-3 signaling in SGZ 
stem cells may mediate the effects of environmental changes, 
such as physical activity or stress, on DG neurogenesis and 
eventually modulate hippocampus-dependent behaviors.

A B

Fig. 3   Synthetic scheme of VEGFR-3 expression by neural stem 
cells in the SVZ and SGZ of adult Vegfr3::YFP mice. a In the SVZ, 
VEGFR-3 is expressed by a subpopulation of astrocytes (b) and 
almost all NSCs (B1), but not in the majority of amplifying progeni-
tors (c), neuroblasts (a). VEGF-C is produced by SVZ astrocytes 
among other cell types, promoting activation of VEGFR-3 express-
ing cells, including the stem cells, as evidenced by an increase in 

amplifying progenitor and neuroblast cell numbers following VEGF-
C overexpression [122]. b In the SGZ, VEGFR-3 expression can be 
seen on immature cells including radial glia and horizontal cells, the 
region’s stem cells, as well as the Mash1+ intermediate progenitors. It 
is not expressed by the less plastic neuronal precursors or the differ-
entiated granule cells (Han, unpublished data)
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Notch and VEGFRs interactions during neurogenesis

Evidence that VEGF and Notch signaling regulates neuro-
vascular interactions resulted from pioneer works of Sally 
Temple’s group [128]. In this study, the authors showed 
that endothelial coculture stimulated embryonic and adult 
neural stem cells by promoting their self-renewal, inhibit-
ing their differentiation, and enhancing their neuron pro-
duction. This effect resulted from the delivery of soluble 
factors from EC, and not vascular smooth muscle cells. 
Moreover, neuroepithelial and ECs established cell-to-cell 
contacts activating Notch and Hes 1 in neural stem cells 
to promote their self-renewal. Additionally, gene-chip 
analysis of EC-stimulated rat brain slices indicated that 
VEGF-A siRNA strongly altered expression of Notch2 
and Hes1 transcripts, suggesting that VEGF-A modulates 
Notch signaling pathway induced by contact between neu-
ral cells or between neural cells and ECs [111]. Associa-
tive evidence of a link between VEGF-A, Notch activation 
and neurogenic activity was also provided for neonatal 
SVZ neural stem cells, where an enriched expression of 
both VEGF-A and cleaved notch-1 was found in the CD-1 
mouse strain, which displays a robust neurogenic response 
to neonatal hypoxic insult, compared to C57BL/6 mice, 
which are less responsive and recover poorly from hypoxia 
[62].

Proof of a relationship between VEGF-A/VEGFR-2 
and the Notch signaling pathway during neurogenesis was 
directly demonstrated early neuronal progenitors of the 
developing retina [129]. Using the model of the chicken 
retina, which is completely devoid of blood vessels through-
out development [130], the authors showed that perturbing 
VEGF signals, as well as VEGFR-2 receptor function, dur-
ing early stages of retinal neurogenesis influenced retinal 
progenitor cell proliferation and commitment. Augmenting 
VEGF signals increased progenitor cell proliferation and 
decreased retinal ganglion cell genesis. Conversely, absorb-
ing endogenous VEGF ligand or disrupting VEGFR-2 
activity attenuated cell proliferation and enhanced retinal 
ganglion cell production. VEGF signals transmitted by 
VEGFR-2 appeared to activate divergent intracellular sign-
aling components, which regulate different responses of 
progenitor cells. VEGF-induced proliferation is influenced 
by the MEK-ERK pathway, as well as by the basic helix-
loop-helix factor HES1. By contrast, VEGF-dependent gan-
glion cell suppression does not require MEK-ERK activa-
tion, but instead relies on VEGF-stimulated Hes1 activity, 
which is notably independent of Notch signaling. Based on 
their findings, the authors proposed that Hes1 is a signal-
ing hub in early retinal progenitor cells to integrate vari-
ous cell-extrinsic cues, including VEGF and also SHH, in 
order to control cell proliferation and neuronal specification 
(Fig. 1b).

To explore whether VEGFR-3 and Notch pathways 
interact to regulate neural stem cell maintenance in adult 
neurovascular niches, we performed microarray analysis 
of Vegfr3::YFP/CD31− FACS-sorted cells (NSC and not 
EC) from the adult SVZ and showed that Vegfr3 transcripts 
were coexpressed with high level of Notch1 and Notch tar-
get gene (Hes5, Hes1) RNAs, compared to other niche cell 
types (Table  1). VEGF-C stimulation of SVZ niche cells 
moreover strongly increased expression of Notch1, Hes5 
and Hes1 transcripts (data not shown). Further experiments 
testing in vivo the effects of Notch activation or blocking on 
VEGFR-3 activation, and of VEGF-C on Notch activity will 
determine whether VEGF-C and VEGFR-3 regulate and 
reinforce Notch signaling in adult SVZ NSCs, alike VEGF-
A/VEGFR-2 in embryonic retinal progenitor cells.

Concluding remarks

The findings reported above indicate that proper growth 
of blood vessels requires a dynamic interaction between 
VEGFR-2, VEGFR-3 and Notch signaling pathways. Notch 
appears to regulate the relative importance of VEGFR-2 
and VEGFR-3 for angiogenesis. Moreover, VEGFR-2 and 
Notch both modulate VEGFR-3 expression, independently 
and in opposite directions. Consequently, while VEGFR-2 
signaling is active and key regulator in ECs with high Notch 
activity and low VEGFR-3 expression, VEGFR-3 drives 
growth of ECs with low Notch signaling activity, even in the 
absence of VEGF ligands and VEGFR-2 signaling. In addi-
tion, VEGFR-3 can promote the stabilization of tip cells at 
vessel fusion sites by reinforcing Notch signaling through 
macrophage-derived VEGF-C activation. VEGFR-3 seems 
thus to have a dual pro-(active) and anti-(passive) angio-
genic function and to complement the angiogenic action of 
VEGFR-2 in environmental context inappropriate for the 
VEGF-A/VEGFR-2 axis.

These findings now lead us to investigate the distinct 
signaling cascades activated by varying Notch activity in 
ECs. They also raise questions about the mechanisms that 

Table 1   Microarray data showing upregulated transcripts of Notch 
and Notch signaling pathway genes in Vegfr3::YFP+ compared to 
Vegfr3::YFP− cells

Gene symbol Ratio p value

Notch signaling  
pathway genes

Notch 1 4.16 0.00133

Hes5 17.26 0.00189

Hey1 6.99 0.00189

APP 3.5 0.00121

Lfng 6.89 0.00106

BLBP [131] 9.44 0.00304
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allow ECs to change frequently from a tip to a stalk posi-
tion and to regulate Notch-VEGFRs interactions in a highly 
dynamic manner, likely by involving post-transcriptional 
regulations that have not yet been characterized. The highly 
dynamic Notch activity in ECs correlates with their abil-
ity to rapidly switch between tip and stalk cell fates during 
sprouting angiogenesis. Although neurogenesis does not 
always happen quite so rapidly, these signaling studies in 
angiogenesis offer a unique model for interpreting Notch-
VEGFRs interaction in other cell types, including NSCs 
and their dynamic plasticity through development. Both 
VEGFR-2 and VEGFR-3 are expressed by different neu-
ral cell types and have already been implicated in various 
parts of neurogenic regulation. Interplay between Notch-
VEGFR-2-VEGFR-3, as in ECs and angiogenic sprouts, 
may thus occur between different cell types within the neu-
rogenic niches. These interactions may vary according to 
CNS region, developmental stages, and, or the cell types 
interacting to elicit regulation over a wider variety of pro-
cesses and cell types in these complex tissues. For exam-
ple, VEGF-A-VEGFR-2-Hes1 regulation may be prevalent 
in neuronal progenitors of the embryonic retina, whereas 
VEGF-C-VEGFR-3-Notch signaling governs astroglial/
stem cell activity in the adult niches. Pharmacological 
approaches and genetic models are now available, allowing 
us to manipulate VEGFRs or Notch signaling molecules in 
these cell-type and spatio-temporal-specific patterns. Their 
combination will provide a better understanding of the neu-
rogenic niche cells and will help us determine the diver-
sity and the extent of regulation these pathways have on 
brain development and adult neurogenesis. These findings 
will set the groundwork for developing new therapies and 
improving current treatments for neural diseases, traumatic 
injuries, and age-related decline in humans.
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