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in the DNA sequence. Even though a proper definition is yet 
to be agreed upon, it is safe to consider “epigenetic” those 
changes, both heritable (genomic imprinting) and acquired, 
that can be propagated through meiosis and mitosis [1]. 
These changes include DNA methylation as well as histone 
modifications, such as acetylation and methylation.

Modifications of DNA and histone tails are specifically 
recognized by chromatin-remodeling complexes, such as 
members of the SWI/SNF family or the Polycomb group 
(PcG) proteins, and eventually transcription factors that 
would influence activation or silencing of chromatin regions.

Chromatin modifiers

Chromatin has been canonically divided into euchromatin 
and heterochromatin, which contain respectively expressed 
“open” and silenced “closed” regions. More recently it has 
become clearer that chromatin actually exists in three states: 
active, poised and inactive [2]. Each state is determined by 
specific histone modifications, combined in a particular 
manner, usually referred to as the histone code. Typically, 
trimethylation of lysine 9 on histone H3 (H3K9me3) acts 
as a repressive mark and can be found on both regulatory 
elements and at gene bodies. Also H3K9 dimethylation 
(H3K9me2) can be present at gene bodies and enhanc-
ers, while promoters exhibit trimethylation of H3K27 
(H3K27me3) to maintain a repressed status. Together with 
these histone methylation marks, DNA methylation is found 
at regulatory elements as well. The active state of chromatin 
is instead characterized by DNA hypomethylation, di- and 
trimethylation of H3K4 at the promoters, H3K36 trimethyl-
ation (H3K36me3) and H3K79 dimethylation (H3K79me2) 
at the gene bodies, and H3K4 mono- and dimethylation 
(H3K4me1 and me2) at the enhancers together with H3K27 
acetylation (H3K27ac) [2]. In between these two states, 
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Epigenetics, senescence and lifespan
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above, outer) and genetikos (γενετικός, from γένεσις gen-
esis, origin), and indicates changes in gene expression due 
to chromatin and histone modifications rather than changes 
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there are regions in the chromatin that are “poised” to be 
activated, and this is of particular importance during devel-
opment and tissue differentiation. Poised promoters present 
both activating and repressing marks, such as H3K4me3, 
H3K4me2 and H3K27me3 [3]. More recently, poised 
enhancers have also been identified. These enhancers, par-
ticularly important in early developmental stages, are char-
acterized by the presence of H3K27me3 and H3K4me1 
[4]. Recent work by Zhao et al. [5] has shown that H3K5 
acetylation is another important histone mark for regulating 
gene expression, marking those genes whose transcription 
is repressed just before mitosis, but that are needed to be 
immediately re-expressed once mitosis is complete.

A general concept appears to be emerging, in which it is 
becoming clear that acetylation and methylation compete 
for the same residue on histones. Therefore, gene expres-
sion of a particular cell at a particular moment results from 
the concerted action of multiple enzymes, including his-
tone deacetylases (HDACs), acetyltransferases, demethyl-
ases and methyltransferases.

Histone deacetylases

Histone deacetylases (HDACs) include 18 family members 
divided into 4 classes (class I, IIA/IIB, III and IV). Classes I, 
II and IV comprise the 11 canonical HDACs (HDAC 1–11) 
which are sensitive to the inhibitor trichostatin A (TSA), 
while class III includes sirtuins, NAD+-dependent deacety-
lases that are not inhibited by TSA [6, 7].

HDACs Canonical HDACs were first identified as histone 
deacetylases. Their activity is mostly associated with con-
densed and therefore inactive chromatin. Nonetheless, in recent 
years many nonhistone targets have been identified. In this con-
text, not all the HDACs are exclusively nuclear. For instance, 
HDAC6 (class IIB) is normally cytoplasmic, while several other 
HDACs are both nuclear and cytoplasmic [6]. So far HDAC1, 
HDAC2 and HDAC3 are the only ones found exclusively in the 
nucleus. Among the nonhistone targets of HDACs are several 
important transcription factors, such as p53, Stat3, Gata1 and 
Hif-1α [6]. It is not surprising that many tumors show an aber-
rant expression of these enzymes, and to date several HDAC 
inhibitors (HDACi) are being tested in clinical trials for cancer 
therapy ([8], see also the section Cancer).

HDACs in metabolism With regard to metabolism, mul-
tiple studies have linked HDACs to glucose metabolism. 
HDAC1/4/5 inhibit expression of the GLUT4 glucose trans-
porter [9, 10], thereby lowering insulin-induced glucose 
uptake. HDAC4 and HDAC5 are also involved in glucagon 
response via recruitment of HDAC3 and concomitant FOXO 
deacetylation at promoters of gluconeogenic genes [11]. 

Importantly, inhibition of class II HDACs in mouse models 
of type II diabetes have been shown to reduce glycemia [11]. 
Recent studies have also shown that HDAC1 promotes HNF4 
expression and FOXO1 activity in the HepG2 liver cell line, 
in turn increasing expression of gluconeogenic genes [12]. In 
this context, it remains unclear how these usually “repressing” 
enzymes cause activation of these genes. In addition, recent 
studies in cancer cells have shown that HDAC4 deacetylates 
Hif-1α, increasing its stability and therefore the expression of 
a subset of Hif-1α target genes [13]. Considering that many 
glycolytic genes are among Hif-1α targets, it may be possible 
that HDACs participate in the metabolic changes observed in 
cancer cells, as described in detail below.

HDACs, senescence and aging Recent studies have shown 
that reduced expression of HDAC1 and HDAC2 is associated 
with senescence of human multipotent stem cells (MSCs) 
[14], whereas HDAC1, HDAC5 and HDAC6 are downreg-
ulated upon aging in hematopoietic stem cells (HSC) [15]. 
Cellular senescence has been postulated as a potential mecha-
nism underlying organismal aging [16]. However, the role of 
HDAC1 in senescent differentiated cells seems quite oppo-
site to what has been reported for MSCs and HSCs. In fact, 
in both human melanocytes and fibroblasts, HDAC1 activity 
increases upon senescence [17, 18]. Further, overexpression 
of HDAC1 in human cervical adenocarcinoma cells (HeLa) 
induces senescence by deacetylating the transcription factor 
Sp1, which in turn interacts with p300. The p300/Sp1 com-
plex is recruited to genes such as p16INK4, leading to activa-
tion of the pRb tumor suppressor gene, in this way triggering 
senescence [19]. A recent study by Miller et al. [20] showed 
that in human primary fibroblasts, senescence is also accom-
panied by an increase in HDAC1 and HDAC2 activity, with 
a concomitant decrease in H3K56 acetylation. This histone 
mark appears to play a role not only in replicative senescence, 
but also in oncogene-induced senescence (OIS), since hypoa-
cetylation of H3K56 is observed upon overexpression of 
oncogenic Ras in primary fibroblasts. In contrast, H4K16ac is 
increased during OIS, but is decreased upon replicative senes-
cence. This difference might be explained by the observation 
that H4K16ac is rapidly lost at DNA damage sites but then it 
increases during DNA repair, leading the authors to propose 
that during OIS, cells try actively to repair their DNA, while 
spontaneously senescing cells fail to do so [20]. This would 
be in agreement with one of the current theories of aging, 
which proposes that during aging there is a decline in the abil-
ity of these senescing cells to repair DNA damage [21].

Other possible roles have been described for HDACs in 
aging and senescence, as shown by studies on the regenera-
tive potential of the liver in young and old mice. The liver 
is a very peculiar organ, with the ability to regenerate itself 
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upon partial hepatectomy [18]. The regenerative potential 
of the liver decreases during aging, a decline that has been 
linked to increased levels of the c/EBPα/Brm complex in 
liver from old mice [18]. This complex includes HDAC1, 
which causes H3K9 deacetylation on E2F-target gene pro-
moters, silencing these genes and inhibiting proliferation in 
liver from old mice [18]. These findings could also explain 
previous observations by Wang et al., who showed that 
liver-specific HDAC1 overexpression leads to hepatic stea-
tosis, a hallmark of aging in the liver, by modulating expres-
sion of lipid metabolic genes [18]. Despite this clear link 
between HDAC1 and senescence, surprisingly HDAC1 is 
actually overexpressed in human cancer [22, 23]. One possi-
bility could be that, in the context of tumors, upregulation of 
HDAC1 leads to the repression of tumor suppressor genes, 
such as cEBP/α, in turn increasing cell proliferation [18]. 
Overall, the precise role for HDACs in senescence and cell 
proliferation appears to be dependent on cell type and tissue 
context, an important point when considering HDAC modu-
lators as therapeutic agents, as discussed further below.
Sirtuins Sirtuins are class III HDACs. There are seven 
mammalian sirtuins (SIRT1–7), all homologs of the yeast 
protein Silent Information Regulatory 2 (Sir2) [7]. Sir2 is a 
NAD+-dependent deacetylase with a crucial role in regula-
tion of both yeast metabolism and lifespan. It was actually 
first identified in a screening for silencing factors [24], and 
later shown to be required for extension of replicative lifes-
pan in yeast upon calorie restriction (CR) [25]. Sir2 in Sac-
charomyces cerevisiae forms an active complex with Sir4 
and binds acetylated H4K16 [26, 27]. Following Sir2-medi-
ated deacetylation of H4K16, Sir3 is recruited to this resi-
due, causing compaction and silencing of the region [28]. 
The seven mammalian sirtuins share partial homology at  
the catalytic domain. Based on the phylogenetic classifica-
tion of sirtuins described originally by Frye [29], all the Sir2 
homologs fall into four classes (I–IV), with mammalian  
sirtuins divided as follows: SIRT1, SIRT2 and SIRT3 (class 
I); SIRT4 (class II); SIRT5 (class III); and SIRT6 and SIRT7 
(class IV). The deacetylation reaction catalyzed by sirtuins 
is NAD+-dependent, and leads the formation of O-acetyl-
ADP ribose (AADPR), which can be used as a donor group 
in ADP-ribosylation reactions [30]. For this reason some 
of the sirtuins could also exhibit ribosyl transferase activ-
ity. Overall these proteins differ among themselves for 
localization and activity. SIRT1, SIRT2, SIRT3 and SIRT7 
in vivo have only deacetylase activity, SIRT4 is mostly an 
ADP-ribosyl transferase, while SIRT6 exhibits both activi-
ties [7]. Strikingly, a recent study has demonstrated that 
SIRT5 appears to function as a desuccinylase and demalo-
nylase in vitro and probably in vivo [31, 32]. Such activities 
have never been described before in mammals, and there-
fore future studies addressing their physiological role will 
likely draw much attention. In terms of localization, SIRT1, 

SIRT6 and SIRT7 are mostly nuclear, SIRT2 is cytoplasmic 
and SIRT3, SIRT4 and SIRT5 are mainly mitochondrial [7]. 
The role of mammalian sirtuins has been mostly elucidated 
through generation of knockout mice [33]. Loss of SIRT1 
leads in the majority of cases to perinatal lethality with asso-
ciated retinal, bone and cardiac defects [33]. SIRT2 knock-
out mice have been shown to develop tumors in several 
tissues upon aging, in a phenotype linked to genome insta-
bility associated with increased mitotic defects [34]. SIRT3 
germline knockout mice show metabolic defects in several 
tissues (e.g. liver and muscle) associated with mitochondrial 
protein hyperacetylation [33]. Interestingly, conditional 
knockout mice lacking SIRT3 in either muscle or liver show 
the molecular but not the metabolic defects observed in the 
germline knockout mice [35]. Also mice deficient in SIRT4 
and SIRT5 are born normally but develop metabolic defects 
[33]. SIRT6 knockout mice die within 4 weeks of birth due 
to severe hypoglycemia [36]. SIRT7-deficient mice exhibit 
cardiac defects and reduced lifespan in a strain-specific 
manner [33], and recent studies have indicated that SIRT7 
deacetylates H3K18, enhancing proliferation in the context 
of tumor cells [37]. Overall, these observations strongly 
support a major role for sirtuins in modulating metabolism 
and potentially lifespan in mammalian organisms (Fig. 1). 
Given the focus of this review on epigenetics, we discuss 
below in detail some of the major functions of the two main 
sirtuins in the nucleus, SIRT1 and SIRT6.

Sirtuins in metabolism SIRT1 is the closest mammalian 
homolog of ySir2. PGC1α and FOXOs proteins have been 
extensively characterized as SIRT1 targets. Their deacetyla-
tion leads to increased mitochondrial respiration and lipid 
oxidation through regulation of genes such as ERRα (mito-
chondria regulatory gene), IDH3α (TCA cycle), Cyt-c and 
COXVα (respiratory chain genes), MCAD, CPT-1β and 
pyruvate dehydrogenase kinase 4 (PDK4; fatty acid and 
glucose utilization) and PCG1α itself [38]. This activity of 
SIRT1 is particularly relevant when higher energy levels are 
needed (i.e. exercise) or during CR. It has been reported that 
SIRT1 protein levels increase upon CR in several tissues 
[39, 40]. However, in other tissues, such as skeletal mus-
cle, SIRT1 activity increases without noticeable changes 
in protein content [41–43]. Cantó et al. [41] suggested that 
hyperactivation of SIRT1 in skeletal muscle in low nutrient/
exercise conditions depends on the crosstalk with another 
key metabolic enzyme, AMPK. Both CR and exercise cause 
higher consumption of ATP in cells, which determines an 
increase in the AMP/ATP ratio. AMPK is a holoenzyme that 
can bind both ATP and AMP, the latter increases its catalytic 
activity. Therefore, during CR or upon exercise, the higher 
AMP/ATP ratio activates AMPK, pushing the use of lipids 
as an energy source in order to satisfy the cellular energy 
demands. In addition, activation of AMPK causes increased 
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expression of nicotinamide phosphoribosyltransferase 
(Nampt). Nampt is the rate-limiting enzyme in NAD bio-
synthesis and its increase leads to higher NAD+ production, 
which in turn activates SIRT1 (discussed by Posavec et al. 
in this same review series). In addition, SIRT1 deacetylation 
and activation of PGC1α increases the biogenesis of mito-
chondria in muscle [43]. Overall, under conditions of nutri-
ent scarcity or higher energy demands, AMPK and SIRT1 
start a positive loop aiming to sustain metabolic adaptations 
required to survive under these conditions. Another impor-
tant protein in the response to metabolic stresses is mTOR, 
a master regulator of cell growth and metabolism. It is well 
established that AMPK activation leads to mTOR downreg-
ulation, in turn shutting down energy-consuming processes, 
such as protein and glycogen synthesis, both stimulated by 
mTOR. Recent work suggests that SIRT1 could regulate 
mTOR as well, inhibiting its activity in a TSC2-dependent 
manner [44]. Interestingly, recent studies have indicated that 
SIRT1 stimulates fatty acid oxidation in muscle and adipose 
tissue in response to activation of the cAMP-PKA pathway, 
rather than to changes in NAD+ levels [45]. cAMP-PKA 
activates SIRT1 through phosphorylation of a highly con-
served residue—serine 434—and this response is also part 
of a mechanism underlying temperature control in mice. 
Indeed, cAMP-PKA-dependent phosphorylation of SIRT1, 
and therefore its activity, is increased upon cold challenge, 
and SIRT1 transgenic mice have a better adaptation to  
cold [45].

SIRT1 exerts profound effects in liver metabolism as 
well. Under conditions of nutrient stress, SIRT1 deacety-
lation of PGC1α and FOXO1 causes increased mitochon-
drial biogenesis and gluconeogenesis, in part through 
upregulation of the gluconeogenic genes phosphoenolpyru-
vate carboxykinase (PEPCK) and glucose-6-phosphatase 
(G6Pase) [46]. In addition, SIRT1 increases fatty acid oxi-
dation and inhibits lipogenesis and glycolysis in the liver 

by modulating expression of another sirtuin, SIRT6 [46]. 
SIRT1 also deacetylates and inhibits the transcription factor 
HIF-1α, thereby downregulating the expression of glyco-
lytic genes [46]. Notably, the role of SIRT1 in gluconeogen-
esis has recently been challenged, with a study supporting 
negative regulation of gluconeogenesis by SIRT1, secondary  
to upregulation of Rictor, a component of the mTORC2 
complex [47]. Further confirmation of a role of SIRT1 in 
regulating lipid metabolism comes from the analysis of 
liver-specific SIRT1 knockout mice. These animals develop 
increased insulin resistance, decreased fatty acid oxidation 
and hepatic steatosis, secondary to PGC1α inhibition [46], 
suggesting that SIRT1 is a potential target against obesity 
and obesity-associated diseases. In support of this theory, 
treatment of mice with resveratrol (RSV), a SIRT1 activa-
tor, improved their mitochondrial function, reducing the 
occurrence of diet-induced obesity and its associated insulin 
resistance [38]. More recently, a clinical study in 11 obese 
men with no other medical condition showed that 30 days of 
RSV treatment was sufficient to improve glucose homeosta-
sis, mitochondrial function and systolic pressure [48]. These 
results support previous studies showing that SIRT1 over-
expression prevents diabetes in mice [46]. Even though the 
clinical study with RSV was performed in a small cohort of 
human patients, it suggests that sirtuin activators could pro-
vide potential therapeutic benefit in the context of diabetes 
and obesity.

Another nuclear sirtuin with a very strong effect on 
metabolism is SIRT6. SIRT6-null mice die within 28 days 
of birth because of severe hypoglycemia [36]. SIRT6 defi-
ciency leads to a dramatic increase in glucose uptake in cul-
ture cells as well as in brown adipose tissue and skeletal 
muscle in mice, explaining the hypoglycemic phenotype 
in these animals [49]. At the molecular level, SIRT6 func-
tions as a histone H3K9 deacetylase to repress expression 
of multiple glycolytic genes, acting as a corepressor of the 
transcription factor Hif1α [49]. Among the genes affected, 

Fig. 1  Summary of the inhibi-
tory and activating roles of the 
different mammalian sirtuins in 
metabolism, cancer, neurode-
generation and aging
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SIRT6 deficiency causes upregulation of the glucose trans-
porter Glut-1 (responsible for the increase in glucose 
uptake), phosphofructokinase 1, lactate dehydrogenase A 
and B (LDHA and B) and PDK1 and PDK4. From a bio-
logical standpoint, SIRT6 deficiency triggers a shift towards 
aerobic glycolysis, with increased production of lactate, and 
reduced mitochondrial respiration. The metabolic changes 
observed in SIRT6-deficient cells are reminiscent of the 
metabolic shift observed in cancer cells, which in fact rely 
on lactate glycolysis rather than mitochondrial respiration 
for their ATP production even in the presence of oxygen, 
the so-called Warburg effect. In agreement with these con-
siderations, recent studies have demonstrated that SIRT6 is 
indeed a powerful tumor suppressor, acting as a corepressor 
of both Hif1α and Myc to modulate glycolysis and protein 
synthesis [50]. SIRT6 has also been specifically deleted in 
the liver. These animals developed fatty liver with increased 
triglyceride synthesis, secondary to higher expression of 
genes involved in lipid metabolism, including fatty acid 
translocase. As shown previously for glycolytic genes, 
SIRT6 appears to control H3K9 acetylation at the promoters 
of these genes. These results are in line with the observation 
that SIRT6 transgenic mice exhibit lower levels of choles-
terol and triglycerides, compared to control animals [51]. 
Overall, the above results indicate that SIRT6 plays a major 
role in controlling cellular metabolism, adapting glucose 
and lipid metabolism to promote survival under conditions 
of nutrient stress and counteracting the metabolic switch 
observed in cancer cells. Altogether, these observations sup-
port a critical role for SIRT6 in the context of normal as well 
as transformed cells. Future studies should provide further 
mechanistic details on its function, in order to translate this 
information into therapeutic and/or diagnostic tools, as fur-
ther discussed below.

Sirtuins in aging The role of the yeast Sir2 protein in 
lifespan may depend on its ability to compact chromatin, a 
function of particular importance at subtelomeric regions. 
Work by Dang et al. [52] showed that H4K16 acetylation 
plays a key role in regulating lifespan of yeast cells. They 
reported an age-associated increase in H4K16 acetylation, 
in particular at subtelomeric regions, which is accompa-
nied by reduction of Sir2 protein levels. More importantly, 
Sir2 deletion in yeast and H4K16 mutation are epistatic in 
reducing cellular lifespan. It is important to consider that 
telomere dysfunction is associated with aging and genome 
instability both in yeast and higher eukaryotes. Telomeres 
are repetitive sequences at the end of chromosomes that are 
actively organized into structures that avoid recognition of 
such ends by DNA damage signaling pathways. Failure to 
maintain such structures leads to activation of DNA repair 
pathways and consequently p53-mediated senescence [53]. 
Together with changes in H4K16 acetylation, Dang et al. 

observed an age-dependent reduction of H3K56 acetylation 
at the same subtelomeric regions. Loss of this histone mark 
has been previously associated with genome instability [54], 
supporting the hypothesis that changes in histone acetyla-
tion at subtelomeric region might contribute to telomere-
mediated aging.

The role that Sir2 homologs play in lifespan modulation 
in other species is as yet controversial. In Caenorhabditis  
elegans, overexpression of Sir2.1 has been reported to 
induce a 15–50 % increase in lifespan [55]. However, recent 
studies have challenged this notion, indicating that most of 
the effect was linked to a mutation in another locus. Indeed, 
when such a mutation was eliminated, the effect of Sir2.1 
was either completely lost or minimal [56, 57]. Other stud-
ies in C. elegans have shown that CR extends lifespan in 
worms; this effect depends on Sir2.1 activity since Sir2.1 
mutations abolished the CR-mediated lifespan extension 
[56, 57]. Overall, future studies will be important in deci-
phering the precise role of sirtuins in modulating lifespan in 
worms, and whether such discrepancies were due to differ-
ences in the assays or the strains utilized.

A similar controversy arises when we consider the effect 
of dSir2 on lifespan in Drosophila melanogaster. Rosen-
berg and Parkhurst showed that dSir2 is a HDAC playing 
an important role in heterochromatic silencing, interact-
ing with Deadpan (Dpn), a member of the family of bHLH 
euchromatic repressors that control sex determination and 
segmentation in Drosophila. For these reasons, loss of dSir2 
led to sex specificity lethality, and the heterozygous flies  
showed both segmentation and sex ratio defects [58]. Further, 
dSir2 also participates in maintenance of heterochromatin 
silencing through its interaction with the PcG-complex histone  
methyltransferase E(Z) [7, 59]. However, other groups were 
unable to demonstrate these effects [60]. It also remains 
controversial whether dSir2 influences lifespan in flies. One 
study has shown that overexpression of dSir2 in several 
fly strains extends lifespan [61], but other groups failed to 
observe such a phenotype [57, 62].

In mammals, the precise role of sirtuins in lifespan regu-
lation is yet to be fully defined. Although a direct effect for 
SIRT1 in lifespan extension is yet to be described, SIRT1 
regulates multiple age-related pathways that suggests a 
beneficial healthspan effect for this sirtuin. For instance, 
SIRT1 deficiency in the liver has been associated with an 
increased production of reactive oxygen species (ROS) [47]. 
ROS accumulation leads to oxidation of macromolecules in 
cells, including DNA, structural protein and lipids. Notably, 
oxidative damage and impaired redox control are among 
the factors that has been linked to aging in several organ-
isms, suggesting that SIRT1 might play a role in modulat-
ing lifespan through regulation of ROS. In support of this 
hypothesis, SIRT1 deficiency is associated with increased 
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replicative senescence in human primary fibroblasts [63], 
and SIRT1 protein levels decrease in cultured cells upon 
senescence, at least in part due to a negative feedback loop 
between PPARγ and SIRT1 [64]. A separate study evalu-
ated how SIRT1 positioning on chromatin changes during 
aging. Oberdoerffer et al. observed that during aging, SIRT1 
redistributes on chromatin, moving from its gene targets 
towards sites of DNA breaks, in this way affecting not only 
gene expression but also genome stability. Interestingly, 
the changes SIRT1 undergoes during aging overlap with 
those occurring during DNA damage, in particular those 
observed upon oxidative damage [62]. The role of SIRT1 
in DNA damage is also supported by other studies showing 
that SIRT1 is involved in the repair of double strand breaks 
(DSBs) through deacetylation of NBS1, in nucleotide exci-
sion repair through deacetylation of XPA and XPC and in 
telomere maintenance by modulation of histone modifi-
cations [65]. In vivo findings have also demonstrated that 
SIRT1 overexpression in the context of p53 deficiency in 
mice improves survival after irradiation and protects against 
tumorigenesis, supporting a role of SIRT1 in maintenance 
of genome stability upon oxidative damage [62]. These 
results suggest a role for SIRT1 as a tumor suppressor acting 
on multiple levels, although such a role has recently been 
disputed, as discussed further below.

Another important protein that plays critical roles in 
oxidative stress responses and aging is the mitochondrial 
protein p66Shc. Inactivation of p66Shc is associated with 
increased resistance to oxidative stress, protection from 
aging-associated vascular disease, and increased lifespan 
[66]. Recent work has demonstrated that SIRT1-overex-
pressing transgenic animals are protected from age-related 
endothelial dysfunctions [66]. Moreover, when diabetes was 
induced in both control and transgenic mice by administra-
tion of streptozotocin, the transgenic mice exhibited less 
oxidative stress. Both these effects depend on SIRT1-medi-
ated regulation of p66Shc. SIRT1 binds to the promoter of 
the p66Shc gene, deacetylating histone H3 and downregu-
lating expression of this gene [66]. In the context of vascu-
lar diseases, it has also been shown that SIRT1 appears to 
stimulate angiogenesis by deacetylating Foxo1 and Notch1 
[67]. In contrast to these results, SIRT1 overexpression was 
shown in another study to increase triglyceride and cho-
lesterol synthesis in the liver, sustaining proatherogenic 
changes in lipid metabolism [68]. Overall, SIRT1 might 
influence angiogenesis and atherosclerosis acting on numer-
ous substrates, with the precise outcome likely depending 
on which of the phenotypes dominates over the others.

However, it is important to consider that SIRT1 could 
also affect age-related phenotypes through modulation of 
other transcription factors. For instance, SIRT1 deacety-
lates and inhibits p53—the first target described for this sir-
tuin—reducing genotoxic stress and DNA damage-induced 

apoptosis [69]. SIRT1 also binds, deacetylates and inhibits 
p65/RelA, a component of the NF-κB complex [69], in this 
way protecting against NF-kB-induced apoptosis and senes-
cence. Considering that the same stimuli that activate SIRT1 
(genotoxic and oxidative stress) activate NF-κB as well, it is 
possible that under stress conditions SIRT1 tries to counteract  
NF-κB action. Consistent with the proposed stimulatory  
effect of CR on SIRT1 and its putative beneficial conse-
quences on lifespan [25, 40, 70], CR has also been shown 
to inhibit NF-κB [71]. However, it remains to be determined 
whether such an effect on NF-κB is SIRT1-dependent. 
Recent work from the de Cabo’s laboratory has shown that 
in Rhesus monkeys CR does not increase lifespan, although 
it delays the onset of several age-related diseases, suggest-
ing the possibility that CR may extend healthier aging with-
out affect lifespan per se [72]. Whether SIRT1 plays a role 
in these phenotypes remains to be determined.

Remarkably, the first mammalian sirtuin to be linked to 
lifespan was SIRT6. In a recent study, Kanfi et al. demon-
strated that male transgenic mice overexpressing SIRT6 
live longer, but the mechanisms behind these observations 
remain unclear [73]. Original data suggested a role for 
SIRT6 in base excision repair, yet how SIRT6 modulates 
base excision repair at the molecular level remains unclear 
[36]. More recently, SIRT6 has also been shown to be 
involved in nonhomologous end joining (NHEJ) and homol-
ogous recombination (HR) pathways [70, 74]. These two 
pathways play critical roles in repairing DSBs [75]. Kaidi et 
al. demonstrated that SIRT6 is recruited to sites of damage 
to deacetylate the end-processing factor CtIP, an event nec-
essary for recruitment of downstream effectors. Consistent 
with this observation, HR and resistance to DSB-generating 
agents are severely impaired in cells lacking SIRT6 [70]. 
More recently, it has been shown that SIRT6 overexpression 
improves not only HR but also NHEJ efficiency, through a 
mechanism that involves SIRT6-specific mono-ADP ribo-
sylation of PARP1 [74]. Finally, SIRT6 has been implicated 
in the maintenance of telomere structures in human cells, by 
keeping H3K9 in a deacetylated state in telomere regions. 
Cells lacking SIRT6 show abnormal telomere structures, 
resembling the phenotypes observed in other progeroid dis-
eases, such as Werner syndrome [76].

 Even though the precise function of SIRT6 in DNA repair 
remains to be fully established, it is clear that this chromatin 
factor plays an important role in multiple DNA repair path-
ways. Whether the progeroid phenotypes in SIRT6-deficient 
mice and the extension of lifespan in transgenic SIRT6 ani-
mals are due to a protective role of SIRT6 against genomic 
instability, depend on its function in glucose metabolism, 
or a combination of both, remains to be established as well. 
Interestingly, SIRT6 can also mediate H3K9 deacetylation 
at NF-κB target gene promoters, repressing transcription 
of genes that have been previously linked to aging [69]. 
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Future work is required to decipher how SIRT6 coordinates 
in a concerted fashion the metabolic adaptations and DNA 
repair activities required for cells to survive in the face of 
nutrient and oxidative stress.

Acetyltransferases

Cellular deacetylases are counteracted by the activity 
of acetyltransferases (HATs). In mammalian cells, sev-
eral HATs have been identified, including CBP/p300, 
GCN5/pCAF and the MYST acetyltransferases such as 
TIP60. Deletion of GCN5, p300 and CBP in mice is embry-
onic lethal, indicating a critical role for these enzymes dur-
ing development. A recent study has shown that deletion 
of GCN5/pCAF in mammalian cells dramatically reduces 
H3K9ac, while CBP/p300 deletion affects mainly H3K18 
and H3K27 acetylation [77]. On the other hand, in vitro 
studies have suggested H3K9, H3K27 and H3K36 as targets 
for p300 [78]; acetylation at these residues induces open-
ing of chromatin, and as such these modifications have been 
associated with increased accessibility of RNA polymerase 
and concomitant increased gene expression.

Acetyltransferases in metabolism Recent studies have 
demonstrated a critical role for GCN5 in metabolic homeo-
stasis. GCN5 interacts with and acetylates PGC1α [79], 
counteracting SIRT1 in modulating glucose homeostasis. 
GCN5 overexpression in hepatocytes reduces the expres-
sion of the gluconeogenic genes PEPCK and G6Pase, trig-
gering the same response as observed in SIRT1 knockout 
hepatocytes [80]. These results suggest that GCN5 can 
induce metabolic changes depending on nutrient availabil-
ity. This idea is further supported by recent studies in yeast. 
When exposed to low-glucose conditions, budding yeast 
undergo a cycle of growth/stand-by that can be divided into 
three phases: oxidative (OX), reductive building (RB) and 
reductive charging (RC) [81]. During the OX phase, cells 
are actively synthesizing proteins involved in growth—for 
instance ribosomal genes—and they exhibit high levels of 
acetyl-CoA and enhanced mitochondrial respiration. During 
the RB phase, mitochondrial respiration in yeast cells slows 
down, DNA replicates and the cells divide. Lastly, during the 
RC phase, mostly survival and stress genes are expressed. In 
other terms, these cells undergo phases of growth (OX), cell 
division (RB) and quiescence (RC). Each of these phases is 
characterized by a specific gene expression profile. Inter-
estingly, the GCN5/SAGA complex is essential to trigger 
the expression of the growth-related genes in the OX phase 
[81]. Analysis of histone acetylation throughout the cell 
cycle has revealed a peak of histone acetylation during the 
OX phase, which persists into the RB phase. Acetylation 
of these histone residues occurs in growth-related genes, 
which were the ones for which the GCN5/SAGA complex 

peaked [81]. These observations demonstrate a strong link 
between mitochondrial metabolism and cell growth medi-
ated by epigenetic mechanisms.

Acetyltransferases in aging As has been shown for 
HDACs, the expression of HATs also changes upon senes-
cence. In fact, levels of p300 decrease in human melanocytes 
as the number of cell passages increases [82]. In this context, 
downregulation of p300 leads to stable repression of the cyc-
lin E promoter, with consequent induction of senescence. 
Interestingly, it has also been shown that p33ING levels are 
increased in high passage cells, leading to the binding of 
p300 to p53 [83]. p300 acetylates and activates p53, thereby 
inducing replicative senescence. Similarly, CBP also acti-
vates p53 by acetylation, a step required for OIS [84]. Taken 
together, these observations reinforce the concept that a fine 
balance between these chromatin enzymes is essential for 
controlling cellular homeostasis and growth.

Histone acetyltransferases are also involved in DNA 
repair and genome stability maintenance. Das et al. 
observed increased CBP/p300-dependent H3K56 acety-
lation at site of DNA breaks [85], although Miller et al. 
reported an opposite observation [20]. The dynamics of 
H3K56 acetylation upon damage remains still to be fully 
elucidated. An intriguing hypothesis is that changes in lev-
els and distribution of H3K56ac are linked to repositioning 
of nucleosomes upon damage in order to prevent further 
breakage and to allow repair. For example, GCN5-medi-
ated H3K56ac has been reported to be an essential step in 
nucleosomes assembly during DNA replication, and effi-
cient nucleosome reassembly is required for maintaining 
genome stability [86]. GCN5 maintains genome stability 
also by stabilizing TRF1, a component of the shelterin 
complex, thereby contributing to telomere protection [87]. 
As we discuss further below, maintenance of telomere 
structure is a crucial feature for preventing genome insta-
bility and senescence. Work on yeast supports the idea 
that GCN5 may link metabolism, DNA repair and lifes-
pan through modulation of the retrograde response [88]. 
Whether similar mechanisms take place in higher eukary-
otes remains to be determined.

Although a direct role for the MYST family of acetyl-
transferases in aging remains to be established, these 
enzymes have also been involved in control of DNA repair 
and replication processes, and defects in these enzymes 
have been associated with cancer [89]. For instance, Tip60 
controls the expression of several oncogenes and tumor 
suppressors and is a crucial player in the repair of DSBs. 
Tip60 in fact acetylates and activates both p53 and ATM, 
enhancing the DNA damage signaling cascade [90]. Recent 
studies indicate that Tip60 also mediates the recruitment of 
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ribonucleotide reductase to sites of damage, inducing a local 
increase in dNTPs pool, required for efficient repair [91].

Methyltransferases

Another important epigenetic modification, which can occur 
both on DNA and proteins, is methylation. As acetylation, 
DNA and histone methylation play critical roles in multi-
ple biological processes, including DNA replication, DNA 
repair, gene transcription and chromatin accessibility. This 
modification is regulated by a fine balance between the activ-
ities of methyl transferases and histone demethylases (and 
the newly emerging group of hydroxylases/carboxylases). 
Emerging evidence supports a role for these enzymes in 
metabolism, senescence and aging, as described elsewhere 
in this review series (see Chiacchiera et al.).

Epigenetic cross-talk and regulation of senescence

As discussed above, gene expression or silencing is influ-
enced by multiple epigenetic modifications, including his-
tone marks and DNA methylation. Although we treat them 
separately in the previous section, it is clear that chromatin-
remodeling enzymes act in a concerted manner to activate or 
repress gene transcription. Indeed, these enzymes form part 
of large multiprotein complexes, such as NuRD and NoRC 
[92, 93]. These complexes are usually recruited to chro-
matin through recognition of particular histone and DNA 
methyl marks already in place. Once bound, the different 
complexes might either maintain the status quo or deter-
mine further changes in those epigenetic marks, thereby 
activating or repressing gene transcription. In order to better 
understand the dynamics and the interactions between these 
different modifications, we consider a model gene locus that 
plays a key role in cellular senescence: the INK4-ARF locus 
(Fig. 2).

The INK4-ARF locus encodes three proteins: p16INK4a, 
p15INK4b and p19ARF. p16INK4a and p15INK4b are cyclin-
dependent kinase inhibitors of CDK6, essentially blocking 
cell cycle progression by preventing phosphorylation of 
pRB; p19ARF sustains cell cycle arrest and apoptosis mainly 
by stabilizing p53 [94]. The expression of these three pro-
teins increases during senescence—both physiological and 
OIS—triggering cell cycle arrest as a protective mecha-
nism against stress [95]. Considering the importance of this 
locus, it is not surprising that it is tightly regulated during 
cellular lifespan, being one of the most common silenced 
loci in cancers [96].

In normally dividing cells, the INK4-ARF locus is usu-
ally repressed due to binding of the Polycomb repressive 
complex 2 (PRC2) at the locus. PRC2 contains the lysine 
methyltransferase EZH2, which maintains high levels 
of H3K27me3. H3K27me3 in turn is recognized by the 

Polycomb repressive complex 1 (PRC1), which binds to 
this modified residue with high specificity. PRC1 contains 
the RING protein RING1b and BMI1, both ubiquitin ligases 
that monoubiquitinate H2A on lysine 119. Together with 
PRC1 and PRC2, DNMTs are also recruited to the locus 
to methylate DNA. Overall, H3K27me3, H2AUb and DNA 
methylation provide a stable, heritable lock, maintaining the 
INK4-ARF locus in a repressed state for as many genera-
tions as necessary. Further studies have shown that HDAC3 
and HDAC4 and the histone demethylase JHDM1b also par-
ticipate in silencing this locus by guaranteeing, respectively, 
deacetylation of H3 and H4 and demethylation of H3K36 
[97, 98]. While repression of this locus is faithfully main-
tained through many cellular divisions, multiple signals 
(oxidative stress, oncogenes, replicative stress) can cause 
de-repression of the INK4-ARF locus, with concomitant 
cellular senescence. One of the first steps in this process is 
displacement of the PRCs, a process mediated in part by 
downregulation of ANRIL, a noncoding RNA important for 
the recruitment of the PRC components to the INK4-ARF 
locus. At the same time, the SWI/SNF chromatin remod-
eling complex is recruited, which helps evict the PRC from 
the locus [94]. Removal of the PRC complex in turn induces 
CpG demethylation and acetylation of H4K16, an active 
chromatin mark. In addition, the H3K27me3 demethylase 
JMJD3 is activated, removing this key PRC recognition 
mark, further enhancing activation of the locus (Fig. 2) [94].

Notably, the SIRT1 deacetylase also binds to this locus, 
but it appears to play a dual role: it represses p16INK4a expres-
sion while activating p19ARF [99, 100]. How SIRT1 causes 
such phenotypes remains unclear. Original data on SIRT1 
deletion show that knockout mouse embryonic fibroblasts 
compared are more resistant than wildtype cells to replica-
tive senescence but not OIS [100]. This is supported by the 
observation that telomerase immortalized human fibroblasts 
and mouse HSCs also exhibit increased growth capacity 
upon SIRT1 silencing, through a mechanism involving the 
nutrient stress kinase AMPK [101]. Even though the above 
results would suggest that reduced levels of SIRT1 would 
be beneficial to avoid cellular senescence, other results are 
inconsistent with such an effect. In fact SIRT1 transgenic  
mice, compared to controls, exhibit a lower degree of  
age-associated phenotypes, such as osteoporosis, impaired 
glucose tolerance and accumulation of DNA damage. These 
phenotypes are at least in part ascribable to lower levels of 
p16INK4a [102], suggesting that SIRT1 repression of p16INK4a 
might dominate over the other functions. Consistent with 
these results, overexpression of SIRT1 has been shown to 
rescue PML-mediated premature senescence in mouse cells, 
through deacetylation and inactivation of p53 [103]. In addi-
tion, SIRT1 may also inhibit replicative senescence by dea-
cetylating H1, reducing the formation of heterochromatin 
[104] and through activation of the Erk-S6K1 signaling 
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pathway [99]. Such discrepancies might reflect different 
experimental conditions; however, they raise a note of cau-
tion with regard to modeling beneficial effects of putative 
sirtuin activators.

The accumulation of senescent cells in tissues and organs 
is now considered an integral part in the mechanisms con-
tributing to organismal aging, as we discuss above. Most 
importantly, it appears to also play a role in several degenera-
tive diseases associated with aging [105]. Strikingly, a recent 

study has shown a marked delay in the onset of age-related 
phenotypes, such as lordokyphosis and cataracts, in a prog-
eroid murine model in which p16INK4a-expressing cells were 
selectively killed [106]. Further, clearance of senescent cells 
caused a beneficial effect even in mice that already showed 
age-related dysfunction. This study strongly supports the 
causal link between senescence and age-related diseases, 
and further suggests that modulation of p16INK4a could be 
sufficient to reverse some of these degenerative phenotypes.

Fig. 2  Epigenetic modifica-
tions at the INK4-ARF locus. 
In replicating cells (a) ANRIL 
noncoding RNA mediates PRC2 
recruitment to the gene locus. 
The PRC2 subunit EZH2 tri-
methylates H3K27. H3K27me3 
recruits PRC1, which in turn 
ubiquitinates H2AK119. 
Other factors recruited to the 
INK4-ARF locus are DNMTs 
(which methylate the DNA), 
HDAC3, HDAC4 (deacety-
late histones) and JHDM1b 
(demethylates H3K4). These 
histones and DNA marks are 
necessary to maintain the locus 
in a repressed state. In senescent 
cells (b) ANRIL degradation 
and the recruitment of the 
SWI/SNF complex displaces 
the DNMTs, the HDACs and 
the PRC1 complex. JMJD3 
is recruited at the site and 
demethylates H3K27, removing 
the signal for PRC1 recruitment 
and therefore H2AK119ub is 
lost. SIRT1 is recruited, but its 
action is not fully defined. The 
net result is the activation of 
p16INK4a, p15INK4b and p19ARF 
expression and induction 
of senescence, which at the 
organismal level will lead to 
age-related dysfunction
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Chromatin topology and aging

Beyond epigenetic modifications, chromatin could also be 
classified as euchromatin and heterochromatin, historically 
considered as the open/active and the close/repressed con-
figurations, respectively. From a structural point of view, 
“euchromatin” is formed from nucleosomes assembled in 
the familiar “beads-on-a-string” configuration. Each nucle-
osome encompasses 147 bp of DNA wrapped around an 
octamer of histones, in turn formed by two H3/H4 dimers 
and two H2A/H2B dimers. In between nucleosomes, linker 
DNA adds up to 80 bp. The addition of other proteins, 
including the linker histone H1, enables the primary con-
formation to coil into 30-nm fibers or a higher-order, com-
pacted conformation, as seen in heterochromatin [107]. In 
order for cells to either duplicate or transcribe their DNA, 
histones need to be evicted from the DNA to allow the pas-
sage of the replication and transcription machineries and 
then promptly reassemble on DNA. This requires a very 
fast and effective “histone exchange” process. Even though 
the precise mechanisms governing this process remain to 
be elucidated, several lines of evidence suggest that such 
histone dynamics may play a role during aging as well, as 
discussed below.

Histone expression and aging

Recent studies have shown that during aging, as well as dur-
ing chronic exposure to damaging agents, histone levels in 
yeast are reduced [108–110]. In addition, deletion of ASF1, 
a histone chaperone involved in histone exchange, reduces 
replicative lifespan in yeast cells. A similar effect has been 
observed in cells lacking H3K56 acetylation, a chromatin 
mark in newly synthesized histones. This mark is recog-
nized by ASF1, allowing this chaperone to transfer H3-H4 
dimers to the CAF1 chaperone, which in turn incorporates 
them into nucleosomes [108]. Cells lacking ASF1 or with 
impaired acetylation of H3K56, exhibited lower levels of 
histones than control cells, suggesting that deficiency in 
total histone levels is sufficient to drive aging. Consistent 
with this idea, overexpression of histones cells was suffi-
cient to dramatically extend lifespan in yeast [108], clearly 
indicating that at least in this organism, histone levels play a 
crucial role during aging.

Similar to what happens in yeast, human primary fibro-
blasts exhibit reduced histone levels following replicative 
senescence [109]. This process is also accompanied by sig-
nificant changes in histone modifications. Indeed, H3K56ac, 
H3K9me2, H3K9me3 and H4K20me3 levels decrease, 
whereas H3K9me1 and H4K20me2 levels increase in cells 
undergoing senescence [109]. Due to these changes, overall 
nucleosome number decreases [111], causing major gene 
expression changes and increased susceptibility to DNA 

damage, explaining at least in part why senescent cells 
exhibit higher levels of pH2AX and increased genomic insta-
bility. Moreover, DNA damage itself can also affect histone 
expression, generating a vicious cycle with cellular senes-
cence as the endpoint, as we discuss below [109]. Recent 
studies have shown that during aging, learning decline is 
associated with a specific decrease in H4K12 acetylation. 
Remarkably, the phenotype is rescued upon intrahippocam-
pal injection of the SAGA acetyltransferase [112]. These 
compelling results suggest the tantalizing possibility that 
correcting epigenetic changes may suffice to restore func-
tion in the aging brain. Overall, these studies demonstrate 
that maintenance of histone content in a cell is an actively 
regulated process that plays a critical role in modulating 
proper gene expression and maintaining genome integrity, 
a process that seems to go awry with age.

Senescence associated heterochromatic foci

In 2003, Narita et al. observed that human senescent 
fibroblasts accumulate distinct heterochromatic struc-
tures, termed senescence-associated heterochromatic foci 
(SAHF). SAHF exhibit highly methylated DNA, binding of 
the heterochromatin protein HP1, hypoacetylated histones 
and high levels of H3K9me3 and H4K20me3 [94, 113]. 
Most importantly, these foci present a very peculiar his-
tone variant: histone macroH2A. Deletion of macro H2A 
in senescent cells induces disappearance of SAHF. Work 
by Zhang et al. has shown that the histone chaperone ASF1 
and HIRA are required to form SAHF and that these struc-
tures are not simply a consequence of senescence. Notably, 
cells expressing mutant forms of HIRA and/or ASF1 still 
undergo senescence, despite the fact that SAHF are not 
formed [113]. It was thought that SAHF formation contrib-
utes to inducing and/or maintaining senescence, activating 
pRB-mediated silencing of E2F genes [113, 114]. However, 
recent work indicates that SAHF are not observed in all cell 
types upon senescence. Further, their appearance depends 
on the type of insult triggering senescence [115]. For exam-
ple, MRC5 fibroblasts develop SAHF both in OIS and DNA 
damage-induced senescence, while BJ fibroblasts exhibit 
SAHF only following oncogene insult. Taken together, 
these studies indicate that SAHF is an integral characteristic 
of at least some forms of senescence, but their precise role 
in this process, and whether they play a role during normal 
aging remain to be determined.

Role of telomeres structure in senescence

Telomeres are segments of repetitive DNA at the extremities 
of each chromosome. During S phase, the DNA polymer-
ase machinery can fully replicate the leading DNA strand, 
while the lagging strand poses a serious challenge. In order 
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to prevent, or at least slow down, telomere shortening, cells 
take advantage of telomerase, an enzyme capable of adding 
a repetitive sequence at the end of the chromosome using 
RNA as a template [116]. In 2003, Masutomi et al. reported 
that growing and presenescent fibroblasts exhibit telomer-
ase activity, while senescent cells show almost undetectable 
activity [117]. These results prompted these authors to pro-
pose that incomplete replication at the end of the lagging 
strand, in association with a very low telomerase activity, 
could cause telomeres shortening in human cells, activating 
a checkpoint that causes replicative senescence [118]. These 
studies have now been extended to clearly demonstrate a 
critical role for telomere structure in preventing senescence. 
In this context, telomeres are fully covered by the shelterin 
complex [53], which mainly avoid telomeres being recog-
nized as DNA breaks, preventing in this way the activa-
tion of the ATM signaling cascade. Indeed, mice with any 
of the shelterin complex proteins deleted exhibit signs of 
tissue degeneration and neoplastic transformation, even in 
the presence of telomeres of normal length, suggesting that 
persistent activation of DNA damage signaling pathways, 
rather than telomere length per se, is crucial in promoting 
senescence and transformation [119].

From an epigenetic point of view, telomeres are char-
acterized by heterochromatic markers: CpG methylation, 
H3K9me3 and H4K20me3. Recent studies indicate that 
during aging, DNA hypomethylation and changes in lev-
els of deacetylases and methyltransferases can affect these 
marks, therefore leading to telomere dysfunction [94, 120]. 
Furthermore, telomere shortening has also been associated 
with downregulation of H3 and H4 histone levels and desta-
bilization of the histone chaperone ASF1 [109]. Reduc-
tion in ASF1 levels causes chromatin assembly defects, 
which in turn will further reduce H3 and H4 levels, starting 
a vicious cycle that could affect telomere structure [109]. 
When telomere shortening passes a certain threshold, it acti-
vates ATM signaling, leading to cell cycle arrest and cel-
lular senescence. Interestingly, recent observations indicate 
that telomere dysfunction also influences the metabolic and 
mitochondrial changes that usually accompany the organ-
ismal decline observed with aging. Indeed, ATM-mediated 
p53 activation in telomerase-deficient mice leads to repres-
sion of PGC1α, with a concomitant decrease in mitochon-
drial biogenesis and function, decreased gluconeogenesis, 
cardiomyopathy, and increased ROS [121]. This contradicts 
the findings of previous studies showing a positive action of 
p53 on mitochondrial respiration [122]. It is possible that 
the effects of p53 on mitochondrial respiration depend on 
the specific context of the cell and interaction of the differ-
ent signaling pathways.

Overall, it is clear that telomere biology plays a key role 
in cellular senescence and as such it represents an essen-
tial component of human aging. Remarkably, the progeroid 

phenotype observed in mTERT-deficient animals is basi-
cally reversed by inducing the re-expression of mTERT in 
vivo [123]. This study provides evidence that aging may 
actually be a reversible process and could represent a mile-
stone in the field of regenerative medicine.

Mitochondrial metabolism affects histone acetylation

Acetylation of histones relies on the availability of acetyl-
CoA as metabolite donor, as well as on the presence of 
NAD+ as cofactor for deacetylases. Given that these factors 
play critical roles in cellular metabolism and their availabil-
ity is subject to nutrient availability, food intake and cellular 
energy status can directly impinge on epigenetic processes, 
as we discuss in this section.

Acetate freely diffuses through cell membranes. There-
fore in order to maintain a discrete acetate pool in different 
cellular compartments, it is necessary to conjugate acetate 
to coenzyme-A to form acetyl-CoA. The conversion of ace-
tate to acetyl-CoA is catalyzed by acetyl-CoA synthetase 
(AceCS in mammalian cells, ACS in bacteria), while the 
opposite reaction requires acetyl-CoA hydrolase. AceCS 
is present in two isoforms in mammalian cells: cytosolic 
AceCS1 and mitochondrial AceCS2. Both enzymes are reg-
ulated by acetylation and are targets of sirtuins [124, 125]. 
Acetyl-CoA in the mitochondria is mainly generated from 
pyruvate as part of glucose metabolism, but under fasting 
or hypoxic conditions citrate is generated from lipids or 
glutamine rather than glucose [126, 127]. Once acetyl-CoA 
is formed, it will enter the TCA cycle to be converted into 
citrate. Citrate will provide either the first step in the TCA 
cycle to form ATP, or else it will be shuttled outside the 
mitochondria, where ATP-citrate lyase (ACL) will convert 
it back to acetyl-CoA for lipid synthesis in the cytoplasm 
[128].

The acetyl-CoA pool is necessary not only to sustain 
many metabolic pathways in the cells, but also as acetate 
donor in the acetylation of proteins. Therefore mutations in 
pathways producing acetyl-CoA may affect protein acetyla-
tion. In this context, Wellen et al. showed that silencing of 
ACL causes a dramatic reduction on H2B, H3 and H4 acety-
lation, which can be rescued by adding acetate to the culture 
medium. Most importantly, depletion of ACL and the result-
ing hypoacetylation of histones impair both cell growth and 
differentiation [129], indicating that this crosstalk between 
mitochondria and chromatin plays an important homeostatic 
role. Cells lacking ACL also exhibit impaired lipogenesis 
and glucose-dependent growth, a phenotype that confers on 
these cells resistance to PI3K-induced tumorigenesis [128]. 
In support of these findings, chemical inhibition of ACL 
can suppress in vitro and in vivo tumor growth [130]. ACL 
activity might itself be affected by the availability of citrate, 
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therefore changes in the metabolism of mitochondria can 
lead to changes in cytosolic acetyl-CoA, in turn influencing 
histone acetylation.

These observations support the idea that cell metabolism 
modulates the epigenetic states in cells [131]. Moreover, 
these changes may influence levels of metabolic genes, in 
turn affecting metabolism in another example of a feed-
back cycle. This represents a very important loop that may 
be relevant, for example, in cancer and metabolic syn-
drome. Undoubtedly, a better understanding of the crosstalk 
between these mechanisms could open new therapeutic and 
diagnostic horizons, and its potential we are only starting 
to grasp.

Impact of epigenetics in age-related diseases

Aging is a complex process associated with a progressive 
decline in the organism and its ability to react to external 
stresses. Many factors contribute to aging and among these 
increased oxidative stress, accumulation of DNA damage 
and changes in gene expression appear to have a particu-
lar impact [105]; as we discuss above, chromatin dynamics 
seems to play key roles in modulating these factors.

Not only might DNA and histone modifications partici-
pate in physiological aging, but they also might also con-
tribute to the occurrence of age-related diseases, such as 
diabetes, neurodegeneration, cancer and progeria-like syn-
dromes. Indeed, many trials investigating the potential of 
drugs regulating HDACs, sirtuins and DNMTs in the treat-
ment of these diseases are ongoing. In the case of cancer, 
HDACi have already been approved for particular cases. In 
this section, we discuss in detail the link between epigenetic 
changes and age-related degenerative diseases. Considering 
that diabetes and progeroid diseases have been extensively 
discussed above, we focus on neurodegeneration and cancer.

Neurodegeneration

As mentioned above, changes in H4K12 acetylation may 
play an important role in learning decline during aging 
[112]. Recent studies have also shown that HDAC1 pro-
tects neurons in a mouse model of neurodegeneration [132]. 
Neurotoxic stimuli, as in Alzheimer’s disease (AD) and 
ischemia/stroke, induces calpain-mediated cleavage of p35, 
in turn forming the active form p25. p25 forms a complex 
with CDK5 and among other things, it inhibits HDAC1. 
HDAC1 inhibition leads to accumulation of DNA DSBs and 
expression of cell cycle genes [132], leading these postmi-
totic neurons to undergo apoptosis [133]. These observa-
tions partially contradict the findings of previous studies in 
which CBP was shown to protect neurons from apoptosis in 
neurodegeneration mouse models [134]. In addition, SIRT1 

activation can also protect neurons from apoptosis in several 
models of neurodegeneration, including AD, amyotrophic 
lateral sclerosis, and primary neurons exposed to neurotoxic 
insults [135]. A different study has suggested instead that 
SIRT1 inhibition in mice restores cognition in AD by stabi-
lizing tau protein [136]. According to Liu et al. such discrep-
ancy might be linked to cellular NAD+ status [137]. They 
proposed that during cerebral hypoxia/ischemia, levels of 
ATP and oxygen in neurons are reduced, leading to a higher 
release of glutamate. Glutamate receptor overstimulation 
determines both bioenergetic and oxidative stress, leading 
to DNA breaks and SIRT1 activation. In this context, SIRT1 
activation, instead of protecting cells, further reduces the 
NAD+ pool, worsening the bioenergetic defects and trig-
gering apoptotic programs. With such a background, SIRT1 
inhibition might actually protect cells from apoptosis. In 
other words, it appears that SIRT1 could protect neurons 
from neurotoxic insults when cells are not presensitized by 
severe bioenergetic impairments. For all these reasons, even 
if sirtuin and HDAC modulators represent putative thera-
peutic tools for neurodegenerative diseases, their use might 
need to be adapted to specific cases and bioenergetic con-
texts. Of note, deacetylase inhibitors affect not only neu-
rons but also astrocytes and glia cells. For example, it has 
been shown that both HDAC3 and SIRT1 inhibit NF-κB 
transcription with opposing outcomes: enhancement of the 
inflammatory response in response to HDAC3 and dimin-
ished release of inflammatory molecules—such as iNOS—
in response to SIRT1 [138]. Again, such results raise a note 
of caution, indicating that the net effect of these modulators 
might be context- and cell-dependent.

It is important to note that DNA damage accumulation is 
a common feature in the pathogenesis of many neurodegen-
erative disorders [75]. Given that chromatin also affects the 
susceptibility of cells to DNA damage, it is likely that the 
epigenetic changes that occur with age, as described above, 
may contribute to the development of neurodegenerative 
diseases through their effects on genome stability.

Cancer

Human tumors rely on the acquisition of multiple “hall-
marks”: sustained proliferative signals, the ability to escape 
growth suppression, apoptosis and immune response; acti-
vation of angiogenesis and invasion/metastasis; immortali-
zation and a metabolic shift towards glycolysis and lactate 
production, a phenomenon known as the “Warburg effect” 
[139]. Epigenetic changes may be associated with many, if 
not all, of these characteristics, as we have discussed.

SIRT1, 2, 3, 6 and 7 have all been shown to modulate tum-
origenesis in mouse models. Haploinsufficiency of SIRT1 
leads to genome instability and when associated with hap-
loinsufficiency of p53 leads to a higher rate of spontaneous 
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tumors [140]. Wang et al. also showed that SIRT1 is down-
regulated in human tumor samples. In contrast, other studies 
have shown that knockdown of SIRT1 in pancreatic tumor 
cells induces senescence and apoptosis, reducing invasive-
ness while enhancing chemosensitivity [141]. It is important 
to note that the latter was an in vitro study, and in this sys-
tem, persistent p53 activation (secondary to SIRT1 knock-
down) might have a dominant effect. Considering that the in 
vivo evidence collected so far supports mostly an antitumor 
role for SIRT1 [142], it is not surprising that several SIRT1 
activators are in clinical trials for cancer therapy [143, 144]. 
As discussed above, other sirtuins, mainly SIRT6, also play 
a role in preventing tumorigenicity. In this context, over-
expression of SIRT6—at least in vitro—induces apoptosis 
selectively in cancer cells [145]. Moreover, as indicated 
before, in recent studies SIRT6 was shown to work as a 
tumor suppressor, inhibiting the Warburg effect in a mouse 
model of colon cancer, and higher levels of SIRT6 strongly 
correlate with a better prognosis in human colorectal can-
cer patients [50], suggesting that SIRT6 could represent not 
only a therapeutic target, but also a prognostic tool.

Several cancers express high levels of HDACs. Indeed, 
in vitro experiments have shown that inhibition or silenc-
ing of HDACs induces cell cycle arrest and apoptosis in 
cancer cells [6]. In vivo, HDACi exhibit selective cytotoxic-
ity towards tumor cells. This effect might be explained by 
the different cell cycle dynamics and checkpoints between 
normal and tumor cells, but also by the recent finding that 
HDACi seem to increase the expression of antigens recog-
nized by cells of the immune system [146, 147]. However, 
if administered systemically, HDACi instead reduce the 
inflammatory response and the innate immunity against the 
tumor, through mechanisms that remain unclear [146]. Fur-
ther studies are required to optimize the use of HDACi. Yet, 
they are emerging as a valid therapeutic option against this 
disease, and for this reason there are many ongoing trials 
with HDACi in cancer therapy, both alone and in combina-
tion with other drugs [6, 143]. In this context, the first such 
a drug, the HDACi Vorinostat (SAHA), has already been 
approved for treatment of T cell lymphoma [148], and it is 
conceivable that it will be the first of many to come.

Concluding remarks

Chromatin dynamics appear to play key roles in virtually 
every cellular process. In this context, the activity of histone 
and DNA modifiers seems closely intertwined with cellu-
lar metabolism, and this is evident at least at three levels: 
(1) epigenetic modifications affect expression of metabolic 
genes; (2) multiple histone modifiers have, among their non-
histone targets, metabolic proteins; (3) metabolic intermedi-
ates and cofactors influence the activity of histone and DNA 

modifiers. Changes in epigenetic marks can be dictated by 
changing metabolic conditions (i.e. nutrient availability and 
oxidative stress). In turn, defects in chromatin dynamics 
could impinge on cellular metabolic pathways, influenc-
ing processes beyond their obvious effects in the nucleus. 
Misregulation of histone and DNA modifications appear to 
play causal roles in aging and age-related diseases such as 
diabetes mellitus, neurodegeneration and cancer. As such, 
drugs that modulate chromatin enzymes provide promising 
therapeutic alternatives in such diseases. Considering that 
many of these enzymes act in a highly concerted manner, a 
better understanding of the precise mechanisms governing 
epigenetic dynamics may help in the design of better thera-
peutic strategies against these devastating diseases.
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